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Abstract-We describe the architecture and 
implementation of the Solid Earth Research Virtual 
Observatory (SERVO)’s Complexity Computational 
Environment.  We base our design on a globally scalable 
distributed “cyber-infrastructure,” or Grid, built around 
a Web Services-based approach consistent with the 
extended Web Service Interoperability (WS-I+) model. In 
order to investigate problems in earthquake modeling and 
forecasting, we need to programmatically couple 
numerical simulation codes and data assimilation and 
mining tools to online observational data sets, including 

GPS stations, fault data, and seismic activity catalogs.  
These observational data sets are now available on-line in 
internet-accessible forms, and the quantity of this data is 
expected to grow explosively over the next decade.  As 
part of our efforts in building SERVO, we are extending 
these online data repository capabilities so that they are 
not just available directly for human users, but may also 
be searched, filtered, and streamed to simulation codes 
that are also managed by SERVO services.  

 

I. INTRODUCTION 

In this paper we describe the architecture and initial 
implementation of the International Solid Earth Research 
Virtual Observatory (iSERVO) [1].  We base our design on a 
globally scalable distributed computing infrastructure (often 
termed “cyber-infrastructure” or “Grid infrastructure” [2][3]) 
that enables on-line data repositories, modeling and 
simulation codes, data mining tools, and visualization 
applications to be combined into a single cooperating system.  
We build this infrastructure around a Web Services-based 
approach.  This report describes our efforts to couple science 
application codes to data sources using appropriate 
community standards. 

The Solid Earth Science Working Group of the United 
States National Aeronautics and Space Administration 
(NASA) has identified several challenges for Earth Science 
research [4], summarized below.  Particularly relevant for 
iSERVO are the following: 
• How can the study of strongly correlated solid earth 

systems be enabled by space-based data sets? 
• What can numerical simulations reveal about the 

physical processes that characterize these systems? 
• How do the interactions in these systems lead to space-

time correlations and patterns? 
• What are the important feedback loops that mode-lock 

the system behavior? 
• How do processes on a multiplicity of different scales 

interact to produce the emergent structures that are 
observed? 
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• Do the correlations allow for the capability to forecast 
the system behavior? 

In order to investigate these questions, we need to couple 
numerical simulation codes and data mining tools to 
observational data sets.  This observational data (including 
crustal fault data from the literature, GPS data, and seismic 
activity data) are now available on-line in internet-accessible 
forms, and the quantity of this data is expected to grow 
explosively over the next decade.   

The challenges in solid earth modeling motivate a number 
of interesting research and development issues in distributed 
computer science and informatics.  Key among these are 
providing programmatic access to distributed data sources; 
coupling remote data sources to application codes, including 
automated searching and filtering; coupling of 
complementary application codes that are deployed on 
geographically separated host computers; and providing 
human level interfaces to these remote services.  

The iSERVO team possesses a broad range of skills and 
tools that may be used to investigate solid earth research 
challenges.  Team expertise includes the development high 
performance modeling and simulation applications for both 
the study of large, interacting earthquake systems and the 
detailed study of individual fault properties; federated 
database and ontology design; geological characterization of 
faults; and high performance visualization codes.  Welding 
all of these components into a common distributed computing 
infrastructure is the subject for the rest of this paper. 

II. WEB SERVICE ARCHITECTURES 

Problems in managing distributed computing resources, 
applications, and data have been studied for many years (see 
[2], [3]).  Typical desired functionality in these systems 
includes remote command execution, data transfer, security, 
and high performance messaging. To scale globally, these 
systems must abandon tight coupling approaches such as 
those used in distributed object systems, and adopt instead a 
Service Oriented Architecture (SOA) [5] that is compatible 
with millisecond (or longer) communication speeds.  
Component services requiring high performance may still be 
implemented using standard parallelization techniques, but 
this level of communication is not exposed to the system as a 
whole. 

SOAs are implemented around two basic components: 
service definition languages (which describe how to invoke 
the remote service) and message formats for over-the-wire 
transmissions.  In iSERVO, we have adopted the Web 
Service approach to building an SOA: we use WSDL 
(http://www.w3c.org/TR/wsdl) for service description and 
SOAP (http://www.w3.org/TR/soap/) for message formats.  

Web Service systems have an important design feature: 
services are decoupled from the user interface components.  

This enables us to build (in principal) a number of different 
services that can interact with the same remote service.  
Browser-based computing portals are typical of this sort of 
user interface and have been the subject of research and 
development work for a number of years [6].  Currently this 
field is undergoing a revolution as component-based portal 
systems are being widely adopted, and standard component 
programming interfaces have been released (for details, see 
http://jcp.org/aboutJava/communityprocess/final/jsr168/index
.html). This so-called “portlet” approach enables reusability 
of components: portals may be built out of standard parts that 
aggregate content and functionality from many different 
sources.   

SOA and portal standards are not the only relevant 
standards for building systems such as iSERVO.  The Open 
Geospatial Consortium (OGC) (http://www.opengis.org) 
defines a number of standards for modeling earth surface 
feature data and services for interacting with this data.  The 
data models are expressed in the XML-based Geography 
Markup Language (GML), and the OGC service framework 
is being adapted to use the Web Service model. 

III. IMPLEMENTING ISERVO 

We have implemented an initial set of services and portal 
components for addressing the problems described in the 
introduction.  We have followed a Web Service-based Grid 
design described above that uses Web Service standards.  The 
components of the system and their interactions are 
summarized in Fig. 1.  Users interact with remote services 
through a Web browser portal that is run by the User 
Interface Server (UIS).  This portal generates dynamic web 
pages that collect input information from the user and deliver 
response messages.  The UIS does not directly implement 
services such as job submission and file transfer.  Instead, it 
maintains client proxies to these remote services.  These 
proxies are responsible for generating the SOAP messages 
appropriate to the particular services’ WSDL descriptions and 
for receiving the responses from the services.  The UIS and 
most services are implemented in Java using the Apache Axis 
toolkit (http://ws.apache.org/axis/), but we have also 
implemented C++ services using gSOAP 
(http://www.cs.fsu.edu/~engelen/soap.html) for simple 
remote visualization.   

A typical interaction involves the user selecting a code 
through the portal, setting up an input file in part through 
interactions with databases (such as the QuakeTables Fault 
Database[7]), invoking the code and monitoring its progress, 
and having the output visualized through various third party 
tools of varying sophistication.  These interactions are based 
on a dataflow model: services communicate by exchanging 
data files, which must be pulled from one server to another. 
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Fig. 1 The architecture for the iSERO portal and services 

uses Web Service and portal standards. 
 
In building iSERVO, we have implemented a number of 

innovations on the standard model components.  The portlet 
component model normally assumes local portlets with 
content that navigates to other web sites (news portals such as 
Yahoo and CNN are examples).  We have built extensions to 
this simple model to allow portlet content to be managed 
remotely, have its display maintained within its component 
window through a series of navigations, maintain HTTP 
sessions state with remote content, pass HTTP GET and 
POST variables, and support SSL security.   

Basic iSERVO services include remote command 
execution, file upload and download, and host-to-host file 
transfer.  We do not directly alter the geophysical 
applications included in the portal but instead follow a “proxy 
wrapping” approach [8].  Typically, applications require 
preprocessing of input files, post processing, and in general 
require task executions that are distributed across many 
different hosts.  To support this sort of distributed service 
orchestration, we have developed a simple “workflow” 
service based on the Apache Ant project 
(http://ant.apache.org/).   This service uses Ant as an engine 
that may be invoked remotely (as a service on Host 2 in Fig. 
1) and may also coordinate service invocations on remote 
hosts, as needed to complete its task. 

iSERVO couples typical “Execution Grid” services such 
as described above with “Data Grid” services.  iSERVO 
applications work with many different data sources, and we 
have developed services to automate the coupling of this data 
to application services.  A typical problem is as follows: the 
iSERVO application RDAHMM (a Hidden Markov Model 
application) needs as input either GPS or seismic activity 
records.  Both data sources are available online, but there is 

no programmatic way of working with this data.  Instead, it is 
typically downloaded and edited by hand.  To solve this 
problem, we have implemented GML-based services for 
describing these data records, and in the process we have 
unified several different data formats.  These services allow 
the application user to build search filters on the desired data 
set (for example, returning events larger than magnitude 5.0 
on a particular region of interest since 1990).  Additional 
filters reformat the data into one suitable for RDAHMM, and 
the data is then shipped to the location of the remote 
executable.  

IV. GEOGRAPHICAL INFORMATION SYSTEM 
(GIS) DATA SERVICES 

iSERVO data service requirements represent an excellent 
opportunity for further work leveraging open standards for 
services that will tie iSERVO to larger Geographical 
Information Systems (GIS) community, allowing us to 
potentially incorporate many additional third party data 
sources and tools.  The NASA OnEarth project 
(http://onearth.jpl.nasa.gov/) is an excellent example of a GIS 
project that is being incorporated with iSERVO services.  As 
part of our GIS development work, we are currently re-
implementing the OGC standard services Web Feature 
Service and Web Map Service as iSERVO-compatible Web 
Services.  

We note that the GIS community has other data model 
and service standards than those defined by the OGC: the 
commercial vendor ESRI provides another prominent set of 
data standards along with extensive client tools.  Our 
adoption of OGC standards is intended to take advantage of 
the significant amount of freely available GIS data that 
already exists in OGC formats.  More importantly, OGC 
standards define an open architecture that may be integrate 
with Grid/Web service standards for distributed scientific 
computing discussed in the previous sections.   We note 
further that ESRI and OGC interoperability tools already 
exist for obvious reasons, so adopting OGC standards does 
not preclude later integration of our data services with 
sophisticated ESRI software clients. 

Advances in Geographical Information Systems (GIS) 
introduce several challenges for acquiring, processing and 
sharing data among interested parties. Different research 
groups, organizations, and commercial vendors develop their 
own data models and storage structures. Consequently the 
data is expressed in various formats and stored in various 
archives. These archives are often remotely accessible only 
through simple protocols (like FTP) that do not allow queries 
and filtering and which are difficult to integrate with 
geophysical applications. On the other hand the nature of the 
geographical applications requires seamless integration of 
spatial data from a range of providers to produce layers, 
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maps, etc. As a result we see the interoperability between 
applications and data stores as a significant goal for any GIS. 

As an example of how this goal can be accomplished we 
describe our design for serving a subset of geographical 
information. We first review the existing data formats in our 
domain of interest and summarize our initial work for 
generating a common data format. We then explain how we 
employ Web Services approach for data conversion, storage 
and query capabilities. The next section gives a brief 
discussion about our experience and findings on XML and 
Relational Databases, and the user interfaces we created for 
testing the Web Services.  

We designed a service-based architecture for solving the 
aforementioned challenges. However, before implementing 
this system we identified several goals to make the scope of 
this project clear. These goals are as follows: 
• Making GPS and Seismic data easily available for 

humans and applications alike; 
• Providing seamless access to data repositories and 

computing resources; 
• Providing a common data format for each 

information area; 
• Supporting search capabilities on the catalogs for 

certain properties, filtering the search results, and 
retrieving the results in various formats; and 

• Integrating data with the scientific applications. 
 

Fig. 2 illustrates the major components of the system for 
achieving these goals.  Existing public archives maintained 
by the Southern California Earthquake Center (SCEC) and 
the Southern California Integrated GPS Network (SCIGN) 
are accessed through Web Services that download and 
reformat the data into GML (steps 1 and 2 in Fig. 2).  Data 
sources that we relied upon are more extensively documented 
at www.crisisgrid.org.  We then store the converted data in 
either native XML or relational databases (step 3).   

The above steps summarize administrative services that 
need to be performed once per external archive for 
initialization, followed by regular updates.  Application users 
do not need to use these services.  They do, however, make 
use of the search services (right hand side of Fig. 2).  These 
are also Web Services defined in WSDL and so may be 
accessed by various client programs. 

 
 

Fig. 2 Major parts of the architecture and a sample workflow for 
processing geo-data using Web Services. 

V. IMPLEMENTING GIS WEB SERVICES 

As we have described above, GML is a data modeling 
language that can be used to encode geophysical data.  We 
may then store this data in various archival systems and 
design Web Services that can query, retrieve, and update the 
data.  These web services are compatible with the “Execution 
Grid” services illustrated in Fig. 1. 

These Web Services, because they use a generic data 
model, may be standardized and generalized. The OpenGIS 
Consortium defines specifications for several such services, 
with the Web Feature Service and the Web Map Service as 
two prominent examples.  These services, unfortunately, are 
not designed to be Web Service compatible (they do not use 
WSDL or SOAP but rather lower level HTTP GET/POST 
conventions for messaging).  In order to adapt these services 
to the QuakeSim architecture while taking advantage of 
existing OGC resources, we have redesigned these OGC 
services to use Web Service standards.  

The Web Feature Service (WFS) [9] describes standards 
to publish, update, and delete geographic features, such as 
faults and GPS stations. We designed a Web Service version 
of OGC WFS that provides WSDL interfaces for the required 
capabilities. Instead of using HTTP Post, the user or the client 
application communicates with the WFS using SOAP 
messaging. The results of the requests are sent to the user as 
GML documents.  

One important property of the WFS is that it can serve 
multiple feature types. Different features from different data 
stores are integrated with the WFS and the clients do not 
realize that the features are retrieved from several sources. 
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We have also implemented a Web Service version of Web 
Map Service to generate interactive maps [10] that can be 
used for visualizing geo-referenced data used or created by 
geophysics applications managed by Execution Grid services.  
The Web Map Service creates images using data from 
various Web Feature Services as well as images obtained 
from other map servers.  For iSERVO we typically combine 
our own feature data with high quality imagery obtained in 
real time from the NASA OnEarth project 
(http://onearth.jpl.nasa.gov/).   

VI. GIS INFORMATION SERVICES 

Services such as the Web Map and Web Feature Service, 
because they are generic, must provide additional, descriptive 
metadata in order to be useful. The problem is simple: a client 
may interact with two different Web Feature Services in 
exactly the same way (the WSDL is the same), but the Web 
Feature Services may hold different data.  One, for example, 
may contain GPS data for the Western United States while 
the other has GPS data for Northern Japan.  Clients must be 
able to query information services that encode (in standard 
formats) all the necessary information, or metadata, that 
enables the client to connect to the desired service.  This is an 
example of the very general problem of managing 
information about Web Services. To address these problems, 
we are designing a general purpose information system, the 
Fault Tolerant High Performance Information System 
(FTHPIS), that we are applying initially to problems in GIS 
information management .  

In a FTHPIS, there is a need for registry services to make 
the information about services available. We use the 
Universal Description, Discovery, and Integration (UDDI) 
[11] specifications in our design as centralized registry. 
UDDI offers users a unified and systematic way to find 
service providers through a centralized registry of services. 
We design an extension to existing UDDI Specifications in 
order to provide dynamically updated service registry data. 

We classify metadata associated with Web Services as 
dynamic metadata and static metadata. Dynamic metadata is 
the session (or state) metadata generated by the individual 
interactions with Web Services. Such metadata describes the 
context of the session and has a lifetime. There are different 
approaches specifying session metadata. For instance, WS-
Context [12] provides an abstract context defining such 
metadata. Static metadata is the metadata describing a Web 
Service profile such as its usage cost, availability, bandwidth, 
computing power, storage capability, etc.  We extend existing 
UDDI and WS-Context specifications in order to associate 
metadata with Web Service descriptions. 
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