
 1

Implementing Geographical Information System Grid Services to Support

Computational Geophysics in a Service-Oriented Environment

Mehmet Aktas(1), Galip Aydin(1),*,Andrea Donnellan(2), Geoffrey Fox(3), Robert Granat (4),

Greg Lyzenga(5), Dennis McLeod(6), Shrideep Pallickara(1), Jay Parker(7), Marlon Pierce(8),*,

John Rundle(9), and Ahmet Sayar(1)

(1) Community Grids Lab, Indiana University, Bloomington, IN 47404-3730 (2) NASA Jet Propulsion
Laboratory, Mail Stop 183-335, 4800 Oak Grove Drive, Pasadena, CA 91109-8099, USA (email:
Donnellan@jpl.nasa.gov). (3) Community Grids Laboratory, Departments of Computer Science, Physics, and
School of Informatics, Indiana University, Bloomington, Indiana 47404-3730, USA (email: gcf@indiana.edu;
phone +1 812-856-7977). (4) NASA JPL, Mail Stop 126-347, 4800 Oak Grove Drive, Pasadena, CA 91109-
8099 (email: Robert.Granat@jpl.nasa.gov). (5) NASA JPL, Mail Stop 126-347, 4800 Oak Grove Drive,
Pasadena, CA 91109-8099 (email: Gregory.Lyzenga@jpl.nasa.gov). (6) University of Southern Califoria, Mail
Code 0781, 3651 Trousdale Parkway, Los Angeles, CA 90089-0742, USA (email: mcleod@pollux.usc.edu). (7)
NASA Jet Propulsion Laboratory, Mail Stop 238-600, 4800 Oak Grove Drive, Pasadena, CA 91109-8099, USA
(email: jay.w.parker@jpl.nasa.gov). (8) Community Grids Laboratory, Indiana University, Bloomington, Indiana
47404-3730, USA (email: mpierce@cs.indiana.edu, phone: +1 812-856-1212). (9) Department of Physics,
University of California-Davis, One Shields Avenue, Davis, CA 95616-8677 USA (email:
rundle@physics.ucdavis.edu).

* Corresponding author

Abstract-We describe the architecture and
implementation of the Solid Earth Research Virtual
Observatory (SERVO)’s Complexity Computational
Environment. We base our design on a globally scalable
distributed “cyber-infrastructure,” or Grid, built around
a Web Services-based approach consistent with the
extended Web Service Interoperability (WS-I+) model. In
order to investigate problems in earthquake modeling and
forecasting, we need to programmatically couple
numerical simulation codes and data assimilation and
mining tools to online observational data sets, including

GPS stations, fault data, and seismic activity catalogs.
These observational data sets are now available on-line in
internet-accessible forms, and the quantity of this data is
expected to grow explosively over the next decade. As
part of our efforts in building SERVO, we are extending
these online data repository capabilities so that they are
not just available directly for human users, but may also
be searched, filtered, and streamed to simulation codes
that are also managed by SERVO services.

I. INTRODUCTION

In this paper we describe the architecture and initial
implementation of the International Solid Earth Research
Virtual Observatory (iSERVO) [1]. We base our design on a
globally scalable distributed computing infrastructure (often
termed “cyber-infrastructure” or “Grid infrastructure” [2][3])
that enables on-line data repositories, modeling and
simulation codes, data mining tools, and visualization
applications to be combined into a single cooperating system.
We build this infrastructure around a Web Services-based
approach. This report describes our efforts to couple science
application codes to data sources using appropriate
community standards.

The Solid Earth Science Working Group of the United
States National Aeronautics and Space Administration
(NASA) has identified several challenges for Earth Science
research [4], summarized below. Particularly relevant for
iSERVO are the following:
• How can the study of strongly correlated solid earth

systems be enabled by space-based data sets?
• What can numerical simulations reveal about the

physical processes that characterize these systems?
• How do the interactions in these systems lead to space-

time correlations and patterns?
• What are the important feedback loops that mode-lock

the system behavior?
• How do processes on a multiplicity of different scales

interact to produce the emergent structures that are
observed?

 2

• Do the correlations allow for the capability to forecast
the system behavior?

In order to investigate these questions, we need to couple
numerical simulation codes and data mining tools to
observational data sets. This observational data (including
crustal fault data from the literature, GPS data, and seismic
activity data) are now available on-line in internet-accessible
forms, and the quantity of this data is expected to grow
explosively over the next decade.

The challenges in solid earth modeling motivate a number
of interesting research and development issues in distributed
computer science and informatics. Key among these are
providing programmatic access to distributed data sources;
coupling remote data sources to application codes, including
automated searching and filtering; coupling of
complementary application codes that are deployed on
geographically separated host computers; and providing
human level interfaces to these remote services.

The iSERVO team possesses a broad range of skills and
tools that may be used to investigate solid earth research
challenges. Team expertise includes the development high
performance modeling and simulation applications for both
the study of large, interacting earthquake systems and the
detailed study of individual fault properties; federated
database and ontology design; geological characterization of
faults; and high performance visualization codes. Welding
all of these components into a common distributed computing
infrastructure is the subject for the rest of this paper.

II. WEB SERVICE ARCHITECTURES

Problems in managing distributed computing resources,
applications, and data have been studied for many years (see
[2], [3]). Typical desired functionality in these systems
includes remote command execution, data transfer, security,
and high performance messaging. To scale globally, these
systems must abandon tight coupling approaches such as
those used in distributed object systems, and adopt instead a
Service Oriented Architecture (SOA) [5] that is compatible
with millisecond (or longer) communication speeds.
Component services requiring high performance may still be
implemented using standard parallelization techniques, but
this level of communication is not exposed to the system as a
whole.

SOAs are implemented around two basic components:
service definition languages (which describe how to invoke
the remote service) and message formats for over-the-wire
transmissions. In iSERVO, we have adopted the Web
Service approach to building an SOA: we use WSDL
(http://www.w3c.org/TR/wsdl) for service description and
SOAP (http://www.w3.org/TR/soap/) for message formats.

Web Service systems have an important design feature:
services are decoupled from the user interface components.

This enables us to build (in principal) a number of different
services that can interact with the same remote service.
Browser-based computing portals are typical of this sort of
user interface and have been the subject of research and
development work for a number of years [6]. Currently this
field is undergoing a revolution as component-based portal
systems are being widely adopted, and standard component
programming interfaces have been released (for details, see
http://jcp.org/aboutJava/communityprocess/final/jsr168/index
.html). This so-called “portlet” approach enables reusability
of components: portals may be built out of standard parts that
aggregate content and functionality from many different
sources.

SOA and portal standards are not the only relevant
standards for building systems such as iSERVO. The Open
Geospatial Consortium (OGC) (http://www.opengis.org)
defines a number of standards for modeling earth surface
feature data and services for interacting with this data. The
data models are expressed in the XML-based Geography
Markup Language (GML), and the OGC service framework
is being adapted to use the Web Service model.

III. IMPLEMENTING ISERVO

We have implemented an initial set of services and portal
components for addressing the problems described in the
introduction. We have followed a Web Service-based Grid
design described above that uses Web Service standards. The
components of the system and their interactions are
summarized in Fig. 1. Users interact with remote services
through a Web browser portal that is run by the User
Interface Server (UIS). This portal generates dynamic web
pages that collect input information from the user and deliver
response messages. The UIS does not directly implement
services such as job submission and file transfer. Instead, it
maintains client proxies to these remote services. These
proxies are responsible for generating the SOAP messages
appropriate to the particular services’ WSDL descriptions and
for receiving the responses from the services. The UIS and
most services are implemented in Java using the Apache Axis
toolkit (http://ws.apache.org/axis/), but we have also
implemented C++ services using gSOAP
(http://www.cs.fsu.edu/~engelen/soap.html) for simple
remote visualization.

A typical interaction involves the user selecting a code
through the portal, setting up an input file in part through
interactions with databases (such as the QuakeTables Fault
Database[7]), invoking the code and monitoring its progress,
and having the output visualized through various third party
tools of varying sophistication. These interactions are based
on a dataflow model: services communicate by exchanging
data files, which must be pulled from one server to another.

 3

Aggregating Portal

QuakeTables

JDBC

DB

Job Sub/Mon
And File
Services

Operating and
Queuing
Systems

WSDLWSDL

Browser Interface

Portlet

WSDL

PortletPortlet Portlet

Viz Service

WSDL

Host 1 Host 2 Host 3

RIVA

User Interface Server
HTTP

SOAP SOAP

Fig. 1 The architecture for the iSERO portal and services

uses Web Service and portal standards.

In building iSERVO, we have implemented a number of

innovations on the standard model components. The portlet
component model normally assumes local portlets with
content that navigates to other web sites (news portals such as
Yahoo and CNN are examples). We have built extensions to
this simple model to allow portlet content to be managed
remotely, have its display maintained within its component
window through a series of navigations, maintain HTTP
sessions state with remote content, pass HTTP GET and
POST variables, and support SSL security.

Basic iSERVO services include remote command
execution, file upload and download, and host-to-host file
transfer. We do not directly alter the geophysical
applications included in the portal but instead follow a “proxy
wrapping” approach [8]. Typically, applications require
preprocessing of input files, post processing, and in general
require task executions that are distributed across many
different hosts. To support this sort of distributed service
orchestration, we have developed a simple “workflow”
service based on the Apache Ant project
(http://ant.apache.org/). This service uses Ant as an engine
that may be invoked remotely (as a service on Host 2 in Fig.
1) and may also coordinate service invocations on remote
hosts, as needed to complete its task.

iSERVO couples typical “Execution Grid” services such
as described above with “Data Grid” services. iSERVO
applications work with many different data sources, and we
have developed services to automate the coupling of this data
to application services. A typical problem is as follows: the
iSERVO application RDAHMM (a Hidden Markov Model
application) needs as input either GPS or seismic activity
records. Both data sources are available online, but there is

no programmatic way of working with this data. Instead, it is
typically downloaded and edited by hand. To solve this
problem, we have implemented GML-based services for
describing these data records, and in the process we have
unified several different data formats. These services allow
the application user to build search filters on the desired data
set (for example, returning events larger than magnitude 5.0
on a particular region of interest since 1990). Additional
filters reformat the data into one suitable for RDAHMM, and
the data is then shipped to the location of the remote
executable.

IV. GEOGRAPHICAL INFORMATION SYSTEM
(GIS) DATA SERVICES

iSERVO data service requirements represent an excellent
opportunity for further work leveraging open standards for
services that will tie iSERVO to larger Geographical
Information Systems (GIS) community, allowing us to
potentially incorporate many additional third party data
sources and tools. The NASA OnEarth project
(http://onearth.jpl.nasa.gov/) is an excellent example of a GIS
project that is being incorporated with iSERVO services. As
part of our GIS development work, we are currently re-
implementing the OGC standard services Web Feature
Service and Web Map Service as iSERVO-compatible Web
Services.

We note that the GIS community has other data model
and service standards than those defined by the OGC: the
commercial vendor ESRI provides another prominent set of
data standards along with extensive client tools. Our
adoption of OGC standards is intended to take advantage of
the significant amount of freely available GIS data that
already exists in OGC formats. More importantly, OGC
standards define an open architecture that may be integrate
with Grid/Web service standards for distributed scientific
computing discussed in the previous sections. We note
further that ESRI and OGC interoperability tools already
exist for obvious reasons, so adopting OGC standards does
not preclude later integration of our data services with
sophisticated ESRI software clients.

Advances in Geographical Information Systems (GIS)
introduce several challenges for acquiring, processing and
sharing data among interested parties. Different research
groups, organizations, and commercial vendors develop their
own data models and storage structures. Consequently the
data is expressed in various formats and stored in various
archives. These archives are often remotely accessible only
through simple protocols (like FTP) that do not allow queries
and filtering and which are difficult to integrate with
geophysical applications. On the other hand the nature of the
geographical applications requires seamless integration of
spatial data from a range of providers to produce layers,

 4

maps, etc. As a result we see the interoperability between
applications and data stores as a significant goal for any GIS.

As an example of how this goal can be accomplished we
describe our design for serving a subset of geographical
information. We first review the existing data formats in our
domain of interest and summarize our initial work for
generating a common data format. We then explain how we
employ Web Services approach for data conversion, storage
and query capabilities. The next section gives a brief
discussion about our experience and findings on XML and
Relational Databases, and the user interfaces we created for
testing the Web Services.

We designed a service-based architecture for solving the
aforementioned challenges. However, before implementing
this system we identified several goals to make the scope of
this project clear. These goals are as follows:
• Making GPS and Seismic data easily available for

humans and applications alike;
• Providing seamless access to data repositories and

computing resources;
• Providing a common data format for each

information area;
• Supporting search capabilities on the catalogs for

certain properties, filtering the search results, and
retrieving the results in various formats; and

• Integrating data with the scientific applications.

Fig. 2 illustrates the major components of the system for
achieving these goals. Existing public archives maintained
by the Southern California Earthquake Center (SCEC) and
the Southern California Integrated GPS Network (SCIGN)
are accessed through Web Services that download and
reformat the data into GML (steps 1 and 2 in Fig. 2). Data
sources that we relied upon are more extensively documented
at www.crisisgrid.org. We then store the converted data in
either native XML or relational databases (step 3).

The above steps summarize administrative services that
need to be performed once per external archive for
initialization, followed by regular updates. Application users
do not need to use these services. They do, however, make
use of the search services (right hand side of Fig. 2). These
are also Web Services defined in WSDL and so may be
accessed by various client programs.

Fig. 2 Major parts of the architecture and a sample workflow for
processing geo-data using Web Services.

V. IMPLEMENTING GIS WEB SERVICES

As we have described above, GML is a data modeling
language that can be used to encode geophysical data. We
may then store this data in various archival systems and
design Web Services that can query, retrieve, and update the
data. These web services are compatible with the “Execution
Grid” services illustrated in Fig. 1.

These Web Services, because they use a generic data
model, may be standardized and generalized. The OpenGIS
Consortium defines specifications for several such services,
with the Web Feature Service and the Web Map Service as
two prominent examples. These services, unfortunately, are
not designed to be Web Service compatible (they do not use
WSDL or SOAP but rather lower level HTTP GET/POST
conventions for messaging). In order to adapt these services
to the QuakeSim architecture while taking advantage of
existing OGC resources, we have redesigned these OGC
services to use Web Service standards.

The Web Feature Service (WFS) [9] describes standards
to publish, update, and delete geographic features, such as
faults and GPS stations. We designed a Web Service version
of OGC WFS that provides WSDL interfaces for the required
capabilities. Instead of using HTTP Post, the user or the client
application communicates with the WFS using SOAP
messaging. The results of the requests are sent to the user as
GML documents.

One important property of the WFS is that it can serve
multiple feature types. Different features from different data
stores are integrated with the WFS and the clients do not
realize that the features are retrieved from several sources.

 5

We have also implemented a Web Service version of Web
Map Service to generate interactive maps [10] that can be
used for visualizing geo-referenced data used or created by
geophysics applications managed by Execution Grid services.
The Web Map Service creates images using data from
various Web Feature Services as well as images obtained
from other map servers. For iSERVO we typically combine
our own feature data with high quality imagery obtained in
real time from the NASA OnEarth project
(http://onearth.jpl.nasa.gov/).

VI. GIS INFORMATION SERVICES

Services such as the Web Map and Web Feature Service,
because they are generic, must provide additional, descriptive
metadata in order to be useful. The problem is simple: a client
may interact with two different Web Feature Services in
exactly the same way (the WSDL is the same), but the Web
Feature Services may hold different data. One, for example,
may contain GPS data for the Western United States while
the other has GPS data for Northern Japan. Clients must be
able to query information services that encode (in standard
formats) all the necessary information, or metadata, that
enables the client to connect to the desired service. This is an
example of the very general problem of managing
information about Web Services. To address these problems,
we are designing a general purpose information system, the
Fault Tolerant High Performance Information System
(FTHPIS), that we are applying initially to problems in GIS
information management .

In a FTHPIS, there is a need for registry services to make
the information about services available. We use the
Universal Description, Discovery, and Integration (UDDI)
[11] specifications in our design as centralized registry.
UDDI offers users a unified and systematic way to find
service providers through a centralized registry of services.
We design an extension to existing UDDI Specifications in
order to provide dynamically updated service registry data.

We classify metadata associated with Web Services as
dynamic metadata and static metadata. Dynamic metadata is
the session (or state) metadata generated by the individual
interactions with Web Services. Such metadata describes the
context of the session and has a lifetime. There are different
approaches specifying session metadata. For instance, WS-
Context [12] provides an abstract context defining such
metadata. Static metadata is the metadata describing a Web
Service profile such as its usage cost, availability, bandwidth,
computing power, storage capability, etc. We extend existing
UDDI and WS-Context specifications in order to associate
metadata with Web Service descriptions.

VII. ACKNOWLEDGEMENTS

This work was funded by the Computational Technologies Program
and the Advanced Information Systems Technology Program, both
of NASA’s Earth-Sun System Technology Office. We gratefully
acknowledge the project management work of Michele Judd.

VIII. REFERENCES

[1] QuakeSim Project Home Page:
http://quakesim.jpl.nasa.gov/. For project documentation, see
http://quakesim.jpl.nasa.gov/milestones.html.
[2] Foster, I. and C. Kesselman, 2003, The Grid 2: Blueprint
for a New Computing Infrastructure. Morgan Kaufmann.
[3] Berman, F., G. C. Fox, and T. Hey, eds., 2003, Grid
Computing: Making the Global Infrastructure a Reality John
Wiley & Sons, Chichester, England, ISBN 0-470-85319-0,
March 2003. http://www.grid2002.org
[4] Solomon, S. C., (chair), 2002, “Living on a Restless
Planet”, Solid Earth Science Working Group Report.
Available from
http://solidearth.jpl.nasa.gov/PDF/SESWG_final_combined.p
df.
[5] Booth, D., H. Haas, F. McCabe, E. Newcomer, M.
Champion, C. Ferris, and D. Orchard, Web Services
Architecture. W3C Working Group Note 11 February 2004.
Available from http://www.w3.org/TR/ws-arch/.
[6] G. Fox and A. Hey, eds. Concurrency and Computation:
Practice and Experience, Vol. 14, No. 13-15 (2002).
[7] Chen, A. Y., S. Chung, S. Gao, D. McLeod, A.
Donnellan, J. Parker, G. Fox, M. Pierce, M. Gould, L. Grant,
and J. Rundle, 2003. Interoperability and semantics for
heterogeneous earthquake science data. 2003 Semantic Web
Technologies for Searching and Retrieving Scientific Data
Conference, October 20, 2003, Sanibel Island, Florida.
[8] Youn, C., M. E. Pierce, and G. C. Fox., 2003 Building
Problem Solving Environments with Application Web
Service Toolkits To be published in Future Generation
Computing Systems Magazine (in press).
[9] Vretanos, P (ed.) (2002), Web Feature Service
Implementation Specification, OpenGIS project document:
OGC 02-058, version 1.0.0.
[10] de La Beaujardiere, Jeff (2004), Web Map Service, OGC
project document reference number OGC 04-024.
[11] Bellwood, T., Clement, L., and von Riegen, C. (eds)
(2003), UDDI Version 3.0.1: UDDI Spec Technical
Committee Specification. Available from
http://uddi.org/pubs/uddi-v3.0.1-20031014.htm.
[12] Bunting, B., Chapman, M., Hurley, O., Little, M.,
Mischkinky, J., Newcomer, E., Webber, J., and Swenson, K.,
Web Services Context (WS-Context), available from
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-
CTX.pdf.

 6

