
 1

Developing a Web Service-Compatible Map Server for
Geophysical Applications

Ahmet Sayar
Community Grids Lab and Department

of Computer Science
Indiana University

Bloomington, IN, 47404
(812) 856-0752

asayar@cs.indiana.edu

Geoffrey Fox
Community Grids Lab, Department of

Physics, Department of Computer
Science, and School of Informatics

Indiana University
Bloomington, IN, 47404

(812) 856-7977

gcf@grids.indiana.edu

Mehmet S. Aktas
Community Grids Lab and Department

of Computer Science
Indiana University

Bloomington, IN, 47404
(812) 856-0755

maktas@cs.indiana.edu

Marlon Pierce
Community Grids Lab

Indiana University
Bloomington, IN, 47404

(812) 856-1212

mpierce@cs.indiana.edu

Galip Aydin
Community Grids Lab and Department

of Computer Science
Indiana University

Bloomington, IN, 47404
(812) 856-0753

gaydin@cs.indiana.edu

ABSTRACT
The Open Geospatial Consortium (OGC) defines a number of
standards (both for data models and for online services) that have
been widely adopted in the Geographical Information System
(GIS) community. In this paper we will describe our group's
efforts to implement GIS services according to OGC standard
specifications in accordance with the Web Services approach.
This paper focuses on the Web Map Service (WMS), which we
are coupling to problems in computational geophysics. Through
the use of Web Services, we are able to integrate GIS services
with other families of services, including information, data
management, and remote application execution and management.
We also describe WMS client building efforts that are suitable for
integration with computational Web portals.

To be able to interact with non-Web Service versions of WMS,
we also have built bridging service for our extended WMS. Since
Web Service oriented WMS has a different request/response
paradigm from non-Web Service versions, we have extended
cascading WMS by adding request handler functionality. This
kind of WMS behaves like both a cascading WMS and a proxy to
handle different types of requests to overcome interoperability
problems between different WMS systems.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: Miscellaneous

J.2 [Physical Sciences and Engineering]: Earth and Atmospheric
Sciences.

General Terms
Design, Human Factors, Standardization.

Keywords
Geographic Information Services (GIS), Web Map Services
(WMS), Web Feature Services (WFS), Geographic Markup
Language (GML), Web Services, Open Geospatial Consortium
(OGC).

1. INTRODUCTION
Geographical Information Systems (GIS) introduce methods and
environments to visualize, manipulate, and analyze geospatial
data. These methods and environments have some interoperability
problems. The nature of the geographical applications requires
seamless integration and sharing of spatial data from a variety of
providers. Interoperability of services across organizations and
providers is a main goal for GIS and also Grid computing [15,
27].

To solve the interoperability problems, the Open Geospatial
Consortium (OGC) has introduced standards by publishing
specifications for the GIS services. OGC is a non-profit,
international standards organization that is leading the
development of standards for geographic data related operations
and services. OGC has variety of contributors from different areas
such as private industry and academia to create open and
extensible software application programming interfaces for GIS
[1].

GIS services, such as defined by the OGC, are part of a larger
effort to build distributed systems around the principles of Service
Oriented Architectures (SOA). Such systems unify distributed
services through a message-oriented architecture, allowing loose
coupling, scalability, fault tolerance, and cross-organizational
service collections [25]. Web Service standards [3] are a common

 2

implementation of SOA ideals, and Grid computing has
converging requirements [15, 27]. By implementing Web
Service versions of GIS services, we can integrate them directly
with scientific application grids [11].

This document gives the details about the design and architecture
of our Web Service refactoring of OGC specifications for the
Web Map Service. This is part of a larger effort by our group to
investigate translations of GIS services into Web Service
standards [2]. Some earlier work in this area is reported in WMS
[13]. In these documents they define standard WSDL description
of the service interfaces.

In this document we first give a brief explanation of the GIS
technology and related terminology. After briefly describing GIS,
we give the definitions of some commonly used terms in the GIS.
In Section 3, we describe general architecture for developing Web
Service-Compatible mapping services. Under this title as
subtopics we describe contributions of the Web Services to the
GIS services, technical challenges encountered during
implementations, integrating Web Services into OGC compatible
GIS visualization, creating valid requests to WMS services in case
of using Web Services, bridging capability of cascaded WMS,
other services involved in proposed visualization system and
implementation details of WMS. In Section 4, future work is
described. Section 5 is the conclusion.

2. GIS TECHNOLOGY and
TERMINOLOGY
GIS is a collection of methods to visualize, manipulate, and
analyze, geographically referenced data or geospatial data. The
sources of geospatial data are digitized maps, aerial photographs,
satellite images, statistical tables and other related documents.
These maps are created in layers collected from distributed data
sources (other map servers, feature servers, and so on). When
combined with scientific applications, dynamically generated
maps provide a powerful technique for conveying information.
For example state boundary lines data can be analyzed and
produce a map. In the same fashion, earthquake fault data can be
analyzed to produce a map. GIS relates these two data sets by
overlaying these two maps produced from the corresponding data
and reach a conclusion about this relationship.

Below we list and give the definitions of some commonly used
terms in the GIS. We will be using these terms often in the
following sections [8].

Spatial Data: Spatial data pertains to the space occupied by
objects. Example spatial data from the real world are cities, rivers,
roads, states, crop coverage, mountain ranges etc. In the
implementation these are represented by points, lines, rectangles,
surfaces, volumes and etc. Spatial data have some common
characteristics. These type of data are geometric data and in high

dimensions. These data can be either discrete (vector) or
continuous (raster). GIS applications are applied on these types of
data.

Geospatial Data: Geospatial data are spatial data associated with a
location relative to the Earth.

Feature: A feature is an abstraction of a real world phenomenon.
A digital representation of the real world can be thought of as a
set of features.

Geographic Feature: A geographic feature is a feature associated
with a location relative to the Earth. Geographic features are those
that may have at least one property that is geometry-valued [7].

Vector Data: Vector data deals with discrete phenomena, each of
which is conceived of as a feature. The spatial characteristics of a
discrete real world phenomenon are represented by a set of one or
more geometric primitives (points, curves, surfaces, or solids).
Other characteristics of the phenomenon are recorded as feature
attributes [21]. Usually, a single feature is associated with a single
set of attribute values.

Raster Data: Raster data deals with real world phenomena that
vary continuously over space. It contains a set of values, each
associated with one of the elements in a regular array of points or
cells. It is usually associated with a method for interpolating
values at spatial positions between the points or within the cells.

Coverage – Coverage Data: OGC uses the term “coverage” to
refer to any data representation that assigns values directly to
spatial position. Coverage is a feature that associates positions
within a bounded space (its spatiotemporal domain) to feature
attribute values (its range). Examples include a raster image, a
polygon overlay, or a digital elevation matrix [21].

The spatio-temporal domain of coverage is a set of geometric
objects described in terms of direct positions. Commonly used
spatio-temporal domains include point sets, grids, collections of
closed rectangles, and other collections of geometric objects.

Spatial Reference System: A spatial reference system is a function
which associates locations in space to geometries of coordinate
tuples in a mathematical space, usually a real valued coordinate
vector space, and conversely associates coordinate values and
geometries to locations in the real world.

Temporal Reference System: A temporal reference system is a
function that associates time to a coordinate (usually one
dimensional points and intervals) and conversely associates
coordinate geometries to real world time.

Spatial-Temporal Reference System: A spatial temporal reference
system is an aggregation of a spatial system and a temporal
system that it uses to associate coordinate geometries to locations
in space and time. Normally, the aggregation uses orthogonal
coordinates to represent space and time, but this is not necessarily
the case in more complex, relativistic environments [22].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

 3

3. ARCHITECTURE

3.1 Web Services for GIS
Web Services give us a means of interoperability between
different software applications running on a variety of platforms.
Web Services support interoperable machine-to-machine
interaction over a network. Every Web Service has an interface
described in a machine-readable format. Web Service interfaces
are described in a standardized way by using Web Service
Description Language (WSDL) [19]. WSDL files define input and
output properties of any service and services’ protocol bindings.
WSDL files are written as XML documents. WSDL is used for
describing and locating Web Services. Web Services are defined
by the four major elements of WSDL, “portType”, “message”,
“types” and “binding”. Element portType defines the operations
provided by the Web Services and the messages involved for
these operations. Element message defines the data elements of
the operations. Element types are data types used by the Web
Service. Element binding defines the communication protocols.
Other systems interact with the Web Service in a manner as
described in WSDL using Simple Object Access Protocol (SOAP)
messages.

SOAP [18] is an XML based message protocol for exchanging the
information in distributed environment. It provides standard
packaging structure for transporting XML documents over a
variety of network transport protocols. It is made up of three
different parts. These are the envelope, the encoding rules and the
Remote Procedure Call (RPC) convention. SOAP can be used in
combination with some other protocols such as HTTP. OGC
compatible Web Services will be using SOAP over HTTP.

We have used Apache Axis for creating and publishing the Web
Service. Axis takes care of the SOAP communication between
server and the client. Axis 1 has proven itself to be a reliable and
stable base on which to implement Java Web Services. Porting
OGC services to Web Services will offer several key benefits,
including:

Distribution: It will be easier to distribute geospatial data and
applications across platforms, operating systems, computer
languages, etc. They are platform and language neutral.

Integration: It will be easier for application developers to integrate
geospatial functionality and data into their custom applications. It
is easy to create client stubs from WSDL files and invoke the
services.

Infrastructure: We can take advantage of the huge amount of
infrastructure that is being built to enable the Web Services
architecture – including development tools, application servers,
messaging protocols, security infrastructure, workflow
definitions, etc [13]. Some of these features are being developed
by using Web Service infrastructure in Naradabrokering [28],
message based middleware system, developed in CGL
(Community Grids Lab.) at Indiana University. NaradaBrokering
aims to provide a unified messaging environment that integrates
grid services, web services, peer-to-peer interactions and
traditional middleware operations. In the near future we will be
utilizing these features in GIS visualization systems.

3.2 Integrating Web Services into OGC
Compatible GIS Visualization
The WMS OpenGIS Specification specifies the implementation
and use of the WMS operations (GetCapabilities, GetMap and
GetFeatureInfo) in the Hypertext Transfer Protocol (HTTP)
distributed computing platform. WMS operations can be invoked
using a standard web browser by submitting requests in the form
of Uniform Resource Locators (URLs). In the specification it is
also said that future version may apply to other distributed
computing platforms such as Web Services.

Web Services use SOAP for messaging. SOAP is an XML
protocol. SOAP provides an envelope that encapsulates XML data
for transfer through the web infrastructure (e.g. over HTTP,
through caches and proxies). Most services (including our own)
use the Remote Procedural Call (RPCs) encoding convention, but
we expect more message-centric applications in the future with
the release of Axis 2 and other implementations of SOAP Version
1.2. Serialization mechanisms are based on XML Schema data
types [15].

3.3 Creating valid Request to WMS Services
in Case of Using Web Services
In developing Web Service versions of the WMS, we have
converted existing HTTP GET/P0ST conventions [4] into WSDL
interfaces. We have encountered some minor technical problems
in this conversion. Data binding frameworks such as Castor [16]
or XMLBeans [17] take XML Schemas as input and produce java
sources, greatly simplifying the coding work needed to process
requests and responses. But one major problem with these
frameworks is that sometimes it is not easy to find an object
oriented correspondence of the XML Schema constructs. In such
cases either the source codes can not be generated or generated
source codes may not produce correct XML instances.

We chose the Castor data binding framework for our initial
implementation. Unfortunately, some of the XML Schema types,
such as substitutions and abstract types, used in OGC Schemas
are currently not supported by Castor. We had to make several
changes to make these schemas compatible with Castor Source
Generator. Modifications are done just for the latest versions of
the schema files of the GIS services. These modified schemas are
available at
http://complexity.ucs.indiana.edu/~asayar/ogc/modified/. We are
currently investigating the use of XMLBeans as an alternative
data binding framework.

Internal implementations of the WMS services are compatible
with the current WMS specifications but service interfaces and
the way to invoke services are different a bit different. Services
are invoked through the SOAP over HTTP. Requests are created
as XML documents and wrapped into body part of the SOAP
request message. These requests are shown in Figure 1-3.

Invoking WMS operations should be according to specifications.
OGC compatible requests to WMS are well defined in the WMS
specifications [4]. Requests must have some parameters whose
names, numbers, and values should obey the rules defined in the
specifications to be OGC compatible. In this section we try to
define these requests in the schema files to use them in
accordance with the GIS services implemented as Web Services.

 4

These schema files are created to be used during the invocation of
operations implemented as Web Services at the WMS side [13].
Requests are created at the WMS Client side. Clients create these
requests after getting required parameter from the user. When
request is ready, client sends this request to WMS as a SOAP
message. WMS has deployed Web Services for each service,
getMap, getCapabilities and getFeatureInfo. Clients use client
stubs created before to invoke these specific Web Services. All
these services in WMS take one String parameter. This String
parameter is request itself. These requests are actually xml
documents in String format.

Below schema files displayed in Figure 1-3 are created with the
help of Altova XmlSpy. They include all the elements and
attributes of corresponding requests defined in OGC WMS
specifications [4].

Figure 1 : GetCapabilities Request Schema.

Figure 2 : GetMap Request Schema.

GetMap request is created for our WMS implementation. We
have not implemented Styling capability yet. Styling capability
will be added soon, for the current status and the future works
please see the Section 4. WMS supporting styling are called SLD-
enabled WMS. The Open GIS Consortium (OGC) Styled Layer
Descriptor (SLD) specification [6] defines a mechanism for user-
defined symbolization of feature. An SLD-enabled WMS
retrieves feature data from a Web Feature Service [7] and applies
explicit styling information provided by the user in order to
render a map.

In our project since we have just implemented Basic WMS, we
have not used elements related to styling in the WMS getMap
requests. For defining styling in the getMap request we use
StyledLayerDescriptor element. StyledLayerDescriptor has other
sub elements and attributes.

Figure 3 : GetFeatureInfo Request Schema.

 5

3.4 Other GIS Components Involved in
Proposed Visualization System
Our Web Service-compatible WMS depends upon Web Feature
Service [32] and Information Services [33] to accomplish its
required tasks. They are ongoing projects in CGL (Community
Grids Lab.). This section briefly describes the WMS interactions
with these other services.

A general picture of interactions between these three services is
displayed in Figure 4. Initial invocations are displayed as black
arrows.

Figure 4 : Basic GIS Components involved in Visualization

System. Abbreviations are expanded in the text.

3.4.1 Web Feature Service (WFS)
WFS instances store geospatial data and serve them upon request
from clients. WFS clients include Web Map Servers and other
WFS instances (in case of cascading WFS). WFS provide vector
data, described in Section 2. Vector data are encoded in GML
(Geographic Markup Language) [9], an XML encoding for the
transport and storage of geographic information, including both
the geometry and properties of geographic features.

According to OpenGIS WFS specification, basic Web Feature
Services are getCapabilities, describeFeatureType and getFeature.
If WFS is transactional than this WFS provides two more
services. These are “transaction” and “lockFeature” services.

Since we have implemented basic WFS, WMS uses basic WFS
services: getCapabilities, describeFeatureType, and getFeature.
WMS sends a getCapabilities requests to WFS to learn which
feature types WFS can service and what operations are supported
on each feature type. The getCapabilities request can also be
mediated by the aggregating Information Services (IS). WMS
makes its request to IS to get a specific WFS address that provides
needed feature. Please see Section 3.4.2 for the details about the
interconnection between WMS and IS.

When any WMS client sends a getFeatureInfo request to
WMS, WMS creates a getFeature request and sends it to
WFS. The URL address of the WFS is found by using IS.
After choosing an appropriate WFS, the WMS makes a
getFeature requests to get feature data. A sample request is

shown in Figure 5 . The GML file encoded in XML is
returned in a SOAP envelope as a response to this request.
We have been using Apache Axis 1.2 [30] to handle Web
Service issues. Developing and deploying web services,
creating client-stubs, creating soap messages and invoking
services are all handled by using Axis libraries. Our job is
to make an interesting service implementation, described in
Section 3.5 and 3.6

Figure 5 : Sample GetFeature request from WMS to WFS.

3.4.2 IS (Information-Discovery Services)
An OGC Catalog [14] is a collection of descriptive information
(metadata) regarding the data stored in a geographic database.
OGC catalog service is specific to OGC domain. Each GIS
Service provides access to geographic data. An important factor
that characterizes GIS Services is the metadata about the data.
Thus, metadata act as properties that can be queried and requested
through catalog services. A catalog service provides discovery of
GIS services through the metadata of the data that these services
provide. The OGC Catalog Service is provides useful GIS
metadata and registry capabilities, but we are interested in making
several extensions. For instance, the registry should also allow
discovery of services based on non-functional requirements of
services such as Quality of Service attributes. Also, OGC Catalog
Service should be consistent with other existing and more general
registry models such as UDDI or ebXML.

To overcome these limitations, we utilize a Registry model which
is being developed in CGL as a general registry model for Web
Services, Fault Tolerant High Performance Information Services
(FTHPIS) [33]. An Information Service (IS) is a general service
registry and discovery model based on UDDI specifications [34].
UDDI is WS-I approved specifications, in other words, it is inter
operable with other Web Service based standards. An IS provides
both publishing and discovery services for of Web Services and
(WS-Context) [23] contextual information of GIS Services. Since

 6

IS stores both functional metadata (metadata about GIS data) and
non-functional metadata (metadata about Quality of Services of
data, such as high throughput), it provides more complex query
abilities when discovering GIS services.

A map server interacts with Information Services to dynamically
discover available Web Feature Services. We can summarize the
interaction between an Information Service, Web Feature Service
and Web Map Server as following.

All GIS Web Feature Services are expected register themselves
into an existing IS in order to be "discoverable". Once the registry
is completed, the IS starts interacting with WFS to retrieve more
information about their capabilities. So, IS stores information
about the functionality's of each WFS.

A Web Map Server queries an Information Service to find
available WFS. Apart from discovery of the services, WMS can
create capabilities file of a WFS on the fly, as the IS provide
extensive information about the capabilities of WFS. An IS
provides consistent and uniform API for publishing and
discovering OpenGIS Web Services, and it is defined by a
WSDL. Once the WFS are dynamically discovered through IS,
WMS can then invoke corresponding WFS to retrieve the features
that it needs.

3.5 Visualization Service - WMS
WMS is the key service to the GIS visualization system. WMS
produce maps from the geographic data. A map is not the data
itself. Maps create information from raw geographic data, vector
or coverage data. Maps are generally rendered in pictorial formats
such as jpeg (Joint Photographic Expert Group), GIF (Graphics
Interchange Format), PNG (Potable Network Graphics). WMS
also produce maps from vector-based graphical elements in
Scalable Vector Graphics (SVG) [20].

WMS provide three main services; these are getCapabilities
(Section 3.5.1), getMap (Section 3.5.2) and GetFeatureInfo
(Section 3.5.3). GetCapabilities and getMap are required services
to produce a map but GetFeatureInfo is an optional service. These
services and our implementations are explained in the following
subsections.

3.5.1 GetCapabilities from WMS
Before a WMS Client requests a map from WMS, it should know
what layers WMS provides in which bounding boxes.
GetCapabilities request enables WMS Clients to obtain this type
of information about the contacted WMS. GetCapabilities request
allows the server to advertise its capabilities such as available
layers, supported output projections, supported output formats and
general service information. After getting this request, WMS
returns an XML document with the metadata about the WMS
Server. This capabilities file is kept in the local file system and
sent to clients upon getCapabilities request.

After getting the request WMS parses it to derive parameters. If
WMS verifies that the request, than it sends the capabilities file to
the WMS Client as a SOAP attachment. If WMS encounters any
problem during handling of the request than it sends exception
message in SOAP back to the WMS Client. Basic getCapabilities
request are pictured out at Figure 6.

Figure 6 : getCapabilities work flow.

3.5.2 GetMap from WMS
Another service interface that WMS provides is GetMap request.
The getMap service interface allows the retrieval of the map.
Chained processes to produce maps are illustrated in Figure 7.
This request is done by the client after finishing getCapabilities
request and defining the available layers. After getting the getMap
request, the WMS goes over the flow depicted in Figure 7 and if
everything succeeds, then returns the result as an image in a
format defined in the getMap request. All the supported image
formats are defined in WMS Capabilities document. Requests for
the image formats should be made in accordance with the WMS’s
Capabilities file. The image is returned back to the WMS Client
as an attachment to SOAP message. If the WMS encounters any
problem during handling of the request, it sends an exception
message in SOAP back to the WMS Client.

WMS first parses the parameters and get their values from the
getMap. Depending on these parameters, WMS might need to
make some requests to some other WMS services. WMS first
determines what layers are requested, in which bounding box, in
which form, and so forth. After determining all the request
parameters, it makes find_service and getAccess_point requests to
IS to determine the WFS providing requested feature data. These
requests are done as SOAP messages to IS service interfaces
implemented as Web Services. GetAccess_point returns the Web
Service access point address of the WFS that provides the
requested feature. WMS makes getFeature request to the returned
WFS and gets the requested feature data in GML format. If the
parameter defining returned image format in getMap request is
Scalable Vector Graphics (SVG), then WMS creates SVG from
returned feature data by using its geometry elements. If the
requested image is not in SVG format, we first create the SVG
image and then convert it into the desired image formats (such as
PNG, GIF, or JPEG). Apache Batik provides libraries for this
conversion. Batik is a Java(tm) technology based toolkit for
applications or applets that use images in the SVG format for
various purposes, such as viewing, generation or manipulation.
Schema files for the geometry elements are well defined. By
using these schema files we derive geometry elements from the
GML file to visualize the feature data. These geometry elements
in GML [9] are basically Point, Polygon, LineString, LinearRing,
MultiPoint, MultiPolygon, MultiGeometry, etc.

To create the images from the features returned from the WFS, we
have used Java Graphics2D and Java AWT libraries. For the each

 7

layer we create a different graphics object. If you assign each
layer to different graphics object than Java libraries allow you to
overlay these graphic objects.

Figure 7 : getMap work flow.

3.5.3 GetFetureInfo from WMS
This is an optional WMS service. It is not necessary to create a
map. It is used only when a user needs further information about
any feature type on the map. However, we have found this very
useful when building interactive user interfaces to geophysical
applications. The GetFeatureInfo method allows us to send
additional information (such as earthquake fault dimensions and
material properties) to simulation codes that use these as inputs
[10, 11].

The GetFeatureInfo works as follows: the user supplies an (x, y)
Cartesian coordinate and the layers of interest and gets the
information back in the form of HTML, GML or ASCII format.
All these supported formats are defined again in WMS
Capabilities file. Figure 8 illustrates the successive processes done
by the WMS to respond to getFeatureInfo requests from the WMS
Client. To make the presentation more concrete in the figure, we
assumed the feature information is requested in text/HTML
format. This value is defined in parameter “info_format” in
getFeatureInfo request. GetFeatureInfo service interface supports
two more info_formats as well. These are plain text and GML
formats. Since HTML creation requires a generic XSL [31] file
and XSLT transformation, we have chosen this type of requests to
demonstrate getFeatureInfo request processing in Figure 8.

All the processes explained in Section 3.5.2 for the getMap until
getting requested features from WFS are same for the
getFeatureInfo processing. Again all the remote invocations are
done by using SOAP messages.

After getting the feature collections data from the WFS, instead of
producing map as explained in Figure 7, WMS lists all the non-
geometry elements and attributes in the returned GML file. For

the getMap request WMS deal with geometry elements of the
returned GML file but for the getFeatureInfo WMS deal with non-
geometry elements. From the list of non-geospatial elements,
WMS creates a new XML file to be able to transform non-
geometry elements into HTML. This XML file is simply another
form of GML which includes just non-geometry elements,
properties and attributes. To display all of the processes involved
in getFeatureInfo handling (Figure 8), we assumed information is
requested in HTML format. After creating new XML file from the
non-geo elements, WMS creates HTML file from newly created
XML file by using generic XSL file and XSLT transformation
machine. For the detailed documentation about the
getFeatureInfo, please see our project page [2].

Figure 8 : getFeatureInfo work flow.

3.6 Bridging Web Service Oriented WMS to
other WMS Instances
This section explains the architecture to combine Web Services
based implementation of WMS systems with the third party WMS
systems. Third party systems use HTTP as distributed computing
platform.

Cascading WMS is the key issue to enable bridging of these two
groups of visualization systems. A cascading WMS is a WMS
which aggregates the contents of several individual WMS into
one service that can be accessed by clients. Cascading WMS acts
like a client to the other WMS and as a server to the clients [4].
The client does not need to keep track of several WMS servers; it
only has to be aware of one. The client application does not need
to know the ultimate source of all images.

A cascading map server reports the capabilities of other WMS as
its own and aggregates the contents and capabilities of several

 8

distinct WMS servers into one service. In most cases, the
cascading map server can work on different WMS servers that
cannot serve particular projections and formats themselves [5].

Figure 9 : Bridging of the Web Service-compatible WMS and

other WMS.
Clients make their requests to cascaded WMS. Cascaded WMS
services are implemented as Web Services. Clients create their
requests and send them in SOAP messages over HTTP. WMS
parse coming requests by request handlers. Request handlers
derive all the parameters from the request and trigger the
responsible modules in the WMS. Figure 9 gives a general
depiction.

After getting and parsing the requests WMS defines the requested
layers’ names. WMS determines if the requested layers are
cascaded or not by looking at its capability file. If layer is
cascaded than WMS defines the other third party WMS providing
requested layer by looking at the capabilities file. If the layer is
not cascaded than WMS determines the addresses of the WFS
services that provide these layers by making geo-query to IS. For
the cascaded layers, requests to the other (non-Web Service)
WMS instances are done over HTTP as defined in OGC
specifications, HTTP GET and POST.

Figure 10 illustrates this. We have combined earthquake fault and
state-boundaries data as features from a WFS server with Landsat
7 satellite imagery map from WMS at NASA OnEarth [29]. WMS
from OnEarth provides access to the World map via OGC
compatible HTTP GET and POST requests. We are using these
clients to set up geophysical simulation runs, as initially described
in [11, 12]

3.7 WMS Client
We also have been implementing a portlet-based browse client to
our Web Service based standard visualization system for testing
and the demonstration purposes. A sample WMS client is shown
in Figure 10. Several capabilities are implemented for the user to
access and display geospatial data. Our WMS client enables the
user to zoom in, zoom out, measure distance between two points
on the map for different coordinate reference systems, to get
further information by making getFeatureInfo requests for the
attributes of the features on the map, and drag and drop the map
to display different bounding boxes. Users can also request maps
for the area of interest by selecting predefined options clicking the
drop-down list. The user interface also allows the user to change

the map sizes from the drop-down lists or enable them to give
specific dimensions. Zoom-in and zoom-out features let the user
change the bounding box values to display the map in more or
less details. Each time user change the bounding box values, user
interface shows the updated bounding box values at the each side
of the map.

We have developed WMS Client shown in Figure 10, by using
Java Server Pages (JSP), Cascading Style Sheets (CSS) and Java
Script technologies. We have also developed a portlet version of
the WMS Client to be able to deploy in a JSR 168-compatible
portlet container. This simplifies distribution of our client
application.

WMS services are stateless services. Each time a user makes a
request, the WMS client creates a new request object and invokes
remote WMS. All the requests are created according to schema
files defined in Section 3.3 and wrapped into the SOAP envelope.
After creating SOAP message it is sent over HTTP to the remote
WMS. Invocation is done by the WMS Client-stubs created by
using Apache Axis 1.2 [30].

Figure 10: Project Demo page with the geophysics

application. It uses California Fault data and state-boundaries
data.

We are currently interesting in upgrading the client and WMS
server to provide scientific visualizations, real time streaming,
and collaborative mappings. For the detailed future works please
see the Section 4.

4. FUTURE WORK
The first goal in the near feature is improving the quality of
maps. To do this, we are planning to implement Web
Coverage Service (WCS) [13], Coverage Portrayal Service
(CPS) [24] and Styled Layer Descriptor (SLD) Service.
All these services have corresponding OGC specifications
and they should be implemented according to the
specifications to become OGC compatible. All should have
well defined service interface described in their WSDL
files. Each of these services can be implemented as a
standalone application, but we will be deploying them in
our project step by step. First we will finish implementation

 9

according to specifications and then handle the
interoperability issues between these and already used
OGC services.

Performance is a key issue. To improve performance we need to
handle common problems in the GIS. We are planning to make a
contribution to solution by generating new algorithms, generating
new optimization techniques, using distributed rendering and
tiling, parallel rendering of images etc.

We plan to use our WMS services for scientific visualization. To
be able to adapt WMS to scientific visualization we need to
handle high volume of data. This requires us to solve performance
problems by motivating distributed High Performance Computing
and collaborative shared WMS supporting multiple simultaneous
Clients.

We will be working on optimization and performance algorithms
of the system. To accomplish this, we will need to handle image
pipelining, faster rendering, caching or client rendering.

5. CONCLUSION
With the development of spatial information application and the
network technique, the spatial data between different districts and
different departments need to be shared and to be made
interoperable. ISO/TC211 and OGC have defined interface
specifications and standards to ensure sharing and interoperable
capability of the spatial data. By adapting these to Web Service
standards, we simplify the interoperation of GIS services with
other service domains.

In this document we have described our efforts to build an OGC
compatible GIS Services by using Web Service technologies and
OGC specifications.

We can extend OGC OpenGIS specifications as much as we can,
but we need to consider the performance issue. This will be an
important issue for us in upcoming work. Since images can be
too large, capabilities documents can be too large and transferring
these data over the internet is cumbersome, our first priority will
be researching techniques for improving WMS performance.
Visualization can be slow as overlays or even basic maps become
large. Complicated maps also require large capabilities files, and
parsing these can be a bottleneck. Such efficiency and
performance issues will be important also to our investigations of
streaming map servers.

6. ACKNOWLEDGEMENTS
This work is supported by the Advanced Information Systems
Technology Program of NASA's Earth-Sun System Technology
Office and the National Science Foundation’s National
Middleware initiative.

7. REFERENCES

[1] OGC (Open Geospatial Consortium) official web site

http://www.opengeospatial.org/
[2] GIS Research at Community Grids Lab, Project Web Site:

http://www.crisisgrid.org.
[3] Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion,

M., Ferris, C., and Orchard, D. “Web Service Architecture.”

W3C Working Group Note, 11 February 2004. Available
from http://www.w3c.org/TR/ws-arch.

[4] Jeff De La Beaujardiere, OpenGIS Consortium Web
Mapping Server Implementation Specification 1.3, OGC
Document #04-024, August 2002.

[5] Kris Kolodziej, OGC OpenGIS consortium, OpenGIS Web
Map Server Cookbook 1.0.1, OGC Document #03-050r1,
August 2003.

[6] Lalonde, W. (ed.), Styled Layer Descriptor(SLD)
Implementation Specification 1.0.0, OGC Document #02-
070, August 2002

[7] Vretanos, P. (ed.), Web Feature Service Implementation
Specification (WFS) 1.0.0, OGC Document #02-058,
September 2003.

[8] Ahmet Sayar, Marlon Pierce, Geoffrey Fox OGC
Compatible Geographical Information Services Technical
Report (Mar 2005), Indiana Computer Science Report
TR610

[9] Simon Cox , Paul Daisey, Ron Lake, Clemens Portele, Arliss
Whiteside, Geography Language (GML) specification 3.0,
Document #02-023r4., January 2003.

[10] Galip Aydin, Marlon Pierce, Geoffrey Fox, Mehmet Aktas
and Ahmet Sayar “Implementing GIS Grid Services for the
International Solid Earth Research Virtual Observatory”.
Submitted to Journal of Pure and Applied Geophysics.

[11] Mehmet Aktas, Galip Aydin, Andrea Donnellan, Geoffrey
Fox, Robert Granat, Lisa Grant, Greg Lyzenga, Dennis
McLeod, Shrideep Pallickara, Jay Parker, Marlon Pierce,
John Rundle, Ahmet Sayar, and Terry Tullis “iSERVO:
Implementing the International Solid Earth Research Virtual
Observatory by Integrating Computational Grid and
Geographical Information Web Services” Technical Report
December 2004, to be published in Special Issue for Beijing
ACES Meeting July 2004.

[12] John D. Evans, OGC Web Coverage Service (WCS)
Specifications 1.0.0, Document #03-065r6 August 2003

[13] Jérôme Sonnet, Charles Savage. OGC Web Service Soap
Experiment Report 0.8 Document#03-014, Jan 2003.

[14] Douglas Nebert, Arliss Whiteside, OpenGIS Consortium
Catalogue Services Specifications 2.0. OGC Document# 04-
021r2, May 2004.

[15] Fran Berman, Geoffrey C, Fox, Anthony J. G. Hey., Grid
Computing: Making the Global Infrastructure a Reality. John
Wiley, 2003.

[16] Castor http://castor.exolab.org
[17] XMLBeans (http://xml.apache.org/xmlbeans)
[18] Don Box, David Ehnebuske, Gobal Kakivaya, Andrew

Layman, Dave Winer., Simple Object Access Protocol
(SOAP) Version 1.1, May 2000,.

[19] Christiensen, Francisco Curbera, Greg Meredith, Sanjiva
Weerawarana, Web Service Description Language (WSDL)
Version 1.1, March 2001.

[20] Ferraiolo, Dean Jackson, Scalable Vector Graphics (SVG)
Sprcification 1.1., January 2003.

 10

[21] George Percivall, OpenGIS Consortium Reference Model
0.1.3, OGC Document #04-040, September 2003.

[22] Roel Nicolai, The OpenGIS® Abstract Specification, Topic
2: Spatial referencing by coordinates 2.0.0. Document #03-
073r1, October 2003.

[23] Mark Little, Eric Newcomer, Greg Pavlik., OASIS Web
Services Context Specifications (WS-Context) 0.8.
November 2004.

[24] Jeff Lansing., OWS1 Covarage Portrayal Service (CPS)
Specifications 1.0.0, Document #02-019r1 February 2002.

[25] A Note on Distributed Computing, S. C. Kendall, J. Waldo,
A. Wollrath, G. Wyant, A Note on Distributed Computing,
Sun Microsystems Technical Report TR-94-29, November
1994. Available from
http://research.sun.com/techrep/1994/abstract-29.html.

[26] Web Services Technologies http://www.w3.org/2002/ws/.

[27] Foster, I. and Kesselman, C., (eds.) The Grid 2: Blueprint for
a new Computing Infrastructure, Morgan Kaufmann (2004).

[28] Message based middleware project at Community Grids Lab,
Project Web Site: http://www.naradabrokering.org/

[29] Project OnEarth at NASA JPL (Jet Propulsion Lab)
http://onearth.jpl.nasa.gov/

[30] Apache Axis Project Web Site : http://ws.apache.org/axis/
[31] W3C XSL Web Site : http://www.w3.org/Style/XSL/
[32] Aydin G., SERVOGrid WFS implementation web page:

http://www.crisisgrid.org/html/wfs.html
[33] Aktas M., SERVOGrid Information Services Web Site,

http://grids.ucs.indiana.edu/~maktas/fthpis
[34] Bellwood, T., Clement, L., and von Riegen, C. (eds) (2003),

UDDI Version 3.0.1: UDDI Spec Technical Committee
Specification. Available from http://uddi.org/pubs/uddi-
v3.0.1-20031014.htm.

