
A Low–Level Communication Library for Java

HPC

Sang Boem Lim1, Bryan Carpenter2, Geoffrey Fox3

and Han-Ku Lee4⋆

1 Korea Institute of Science and Technology Information (KISTI)
Daejeon, Korea

slim@kisti.re.kr
2 OMII, University of Southampton

Southampton SO17 1BJ, UK
dbc@ecs.soton.ac.uk

3 Pervasive Technology Labs at Indiana University
Bloomington, IN 47404-3730

gcf@indiana.edu
4 School of Internet and Multimedia Engineering, Konkuk University

Seoul, Korea
hlee@konkuk.ac.kr

Abstract. Designing a simple but powerful low-level communication li-
brary for Java HPC environments is an important task. We introduce
new low-level communication library for Java HPC, called mpjdev. The
mpjdev API is designed with the goal that it can be implemented portably
on network platforms and efficiently on parallel hardware. Unlike MPI
which is intended for the application developer, mpjdev is meant for li-
brary developers. Application level communication may be implemented
on top of mpjdev. The mpjdev API itself might be implemented on
top of Java sockets in a portable network implementation, or-on HPC
platforms-through a JNI (Java Native Interface) to a subset of MPI.

1 Introduction

HPJava [1] is an environment for scientific and parallel programming using Java.
It is based on an extended version of the Java language. HPJava incorporates
all of the Java language as a subset. This means any ordinary Java class can be
invoked from an HPJava program without recompilation. Moreover, a translated
and compiled HPJava program is a standard Java class file that can be executed
by a distributed collection of Java Virtual Machines.

Locally held elements of multiarrays and distributed arrays can be accessed
using some special syntax provided by HPJava. HPJava does not provide any
special syntax for accessing non-local elements. Non-local elements can only be
accessed by making explicit library calls. This policy in the HPJava language,

⋆ Correspondence to: Han-ku Lee, School of Internet and Multimedia Engineering,
Konkuk University, Seoul, Korea



attempts to leverage successful library-based approaches to SPMD parallel com-
puting. This idea is in very much in the spirit of MPI, with its explicit point-
to-point and collective communications. HPJava raises the level of abstraction a
notch, and adds excellent support for development of libraries that manipulate
distributed arrays. But it still exposes a multi-threaded, non-shared-memory,
execution model to programmer. Advantages of this approach include flexibility
for the programmer, and ease of compilation, because the compiler does not have
to analyze and optimize communication patterns.

Java version of Adlib APIs
Other application−level

mpjdev

Pure Java

MPJ and

(e.g. IBM SP3, Sun HPC)
Parallel Hardware

Native MPI

Networks of PCs
SMPs or

Fig. 1. An HPJava communication stack

The mpjdev [2] [3] API is designed with the goal that it can be implemented
portably on network platforms and efficiently on parallel hardware. Unlike MPI
which is intended for the application developer, mpjdev is meant for library
developers. Application level communication libraries like the Java version of
Adlib (or MPJ [1]) may be implemented on top of mpjdev. The mpjdev API
itself might be implemented on top of Java sockets in a portable network imple-
mentation, or-on HPC platforms-through JNI (Java Native Interface) to a subset
of MPI. The positioning of the mpjdev API is illustrated in Figure 1. Currently
not all the communication stack in this figure is implemented. The Java version
of Adlib, the pure Java implementation on SMPs, and native the MPI implemen-
tation are developed and included in the current HPJava or mpiJava releases.
The rest of the stack may be filled in the future.

2 Communications API

In MPI there is a rich set of communication modes. Point-to-point communica-
tion and collective communication are two main communication modes of MPI.
Point-to-point communication support blocking and non-blocking communica-
tion modes. Blocking communication mode includes one blocking mode receive,
MPI RECV, and four different send communication modes. Blocking send
communication modes include standard mode, MPI SEND, synchronous mode,
MPI SSEND, ready mode, MPI RSEND, and buffered mode, MPI BSEND.
Non-blocking communication mode also uses one receives, MPI IRECV and
the same four modes as blocking send: standard, MPI ISEND, synchronous,



public class Comm {

public void size() { ... }

public void id() { ... }

public void dup() { ... }

public void create(int [] ids) { ... }

public void free() { ... }

public void send(Buffer buf, int dest, int tag) { ... }

public Status recv(Buffer buf, int src, int tag) { ... }

public Request isend(Buffer buf, int dest, int tag) { ... }

public Request irecv(Buffer buf, int dest, int tag) { ... }

public static String [] init(String[] args) { ... }

public static void finish() { ... }

. . .

}

Fig. 2. The public interface of mpjdev Comm class.

MPI ISSEND, ready, MPI IRSEND, and buffered, MPI IBSEND. Collec-
tive communication also includes various communication modes. It has charac-
teristic collective modes like broadcast, MPI BCAST, gather, MPI GATHER,
and scatter, MPI SCATER. Global reduction operations are also included in
collective communication.

The mpjdev API is much simpler. It only includes point-to-point communi-
cations. Currently the only messaging modes for mpjdev are standard blocking
mode (like MPI SEND, MPI RECV) and standard non-blocking mode (like
MPI ISEND, MPI IRECV), together with a couple of ”wait” primitives.

The communicator class, Comm, is very similar to the one in MPI but it has
a reduced number of functionalities. It has communication methods like send(),
recv(), isend(), and irecv(), and defines constants ANY SOURCE, and
ANY TAG as static variables. Figure 2 shows the public interface of Comm
class.

We can get the number of processes that are spanned by this communicator
by calling size() (similar to MPI COMM SIZE). Current id of process relative
to this communicator is returned by id() (similar to MPI COMM RANK).

The two methods send() and recv() are blocking communication modes.
These two methods block until the communication finishes. The method send()
sends a message containing the contents of buf to the destination described by
dest and message tag value tag.

The method recv() receives a message from matching source described by
src with matching tag value tag and copies contents of message to the receive
buffer, buf. The receiver may use wildcard value ANY SOURCE for src and
ANY TAG for tag instead specifying src and tag values. These indicate that



public class Request {

public Status iwait() { ... }

public Status iwaitany(Request [] reqs) { ... }

. . .

}

Fig. 3. The public interface of Request class.

a receiver accepts any source and/or tag of send. The Comm class also has
the initial communicator, WORLD, like MPI COMM WORLD in MPI and
other utility methods. The capacity of receive buffer must be large enough to
accept these contents. It initializes the source and tag fields of the returned
Status class which describes a completed communication.

The functionalities of send() and recv() methods are same as standard
mode point–to–point communication of MPI (MPI SEND and MPI RECV).
A recv() will be blocked until the send if posted. A send() will be blocked until
the message have been safely stored away. Internal buffering is not guaranteed
in send(), and the message may be copied directly into the matching receive
buffer. If no recv() is posted, send() is allowed to block indefinitely, depending
on the availability of internal buffering in the implementation. The programmer
must allow for this–this is a low-level API for experts.

The other two communication methods isend() and irecv() are non-blocking
versions of send() and recv(). These are equivalent to MPI ISEND and
MPI IRECV in MPI. Unlike blocking send, a non-blocking send returns imme-
diately after its call and does not wait for completion. To complete the commu-
nication a separate send complete call (like iwait() and iwaitany() methods
in the Request class) is needed. A non-blocking receive also work similarly.
The wait() operations block exactly as for the blocking versions of send() and
recv() (e.g. the wait() operation for an isend() is allowed to block indefinitely
if no matching receive is posted). The method dup() creates a new communi-
cator the spanning the same set of processes, but with a distinct communica-
tion context. We can also create a new communicator spanning a selected set
of processes selected using the create() method. The ids of array ids contain
a list of ids relative to this communicator. Processes that are outside of the
group will get a null result. The new communicator has a distinct communica-
tion context. By calling the free() method, we can destroy this communicator
(like MPI COMM FREE in MPI). This method is called usually when this
communicator is no longer in use. It frees any resources that used by this com-
municator.

We should call static init() method once before calling any other methods
in communicator. This static method initializes mpjdev and makes it ready to
use. The static method finish() (which is equivalent of MPI FINALIZE) is
the last method should be called in mpjdev.



The other important class is Request (Figure 3). This class is used for non-
blocking communications to ensure completion of non-blocking send and receive.
We wait for a single non-blocking communication to complete by calling iwait()
method. This method returns when the operation identified by the current class
is complete. The other method iwaitany() waits for one non-blocking commu-
nication from a set of requests reqs to complete. This method returns when one
of the operations associated with the active requests in the array reqs has com-
pleted. After completion of iwait() or iwaitany() call, the source and tag fields
of the returned status object are initialized. One more field, index, is initialized
for iwaitway() method. This field indicates the index of the selected request in
the reqs array.

3 Message Format

This section describes the message format used by mpjdev. The specification
here doesn’t define how a message vector which contained in the Buffer object
is stored internally-for example it may be as a Java byte [] array or it may be
as a C char [] array, accessed through native methods. But this section does
define the organization of data in the buffer. It is the responsibility of the user to
ensure that sufficient space is available in the buffer to hold the desired message.
Trying to write too much data to a buffer causes an exception to be thrown.
Likewise, trying to receive a message into a buffer that is too small will cause
an exception to be thrown. These features are (arguably) in the spirit of MPI.

A message is divided into two main parts. The primary payload is used to
store message elements of primitive type. The secondary payload is intended to
hold the data from object elements in the message (although other uses for the
secondary payload are conceivable). The size of the primary payload is limited
by the fixed capacity of the buffer, as discussed above. The size of the secondary
payload, if it is non-empty, is likely to be determined ”dynamically”-for example
as objects are written to the buffer.

The message starts with a short primary header, defining an encoding scheme

used in headers and primary payload, and the total number of data bytes in the
primary payload. Only one byte is allocated in the message to describe the
encoding scheme: currently the only encoding schemes supported or envisaged
are big-endian and little-endian. This is to allow for native implementations of
the buffer operations, which (unlike standard Java read/write operations) may
use either byte order. A message is divided into zero or more sections. Each
section contains a fixed number of elements of homogeneous type. The elements
in a section will all have identical primitive Java type, or they will all have
Object type (in the latter case the exact classes of the objects need not be
homogeneous within the section).

Each section has a short header in the primary payload, specifying the type
of the elements, and the number of elements in the section. For sections with
primitive type, the header is followed by the actual data. For sections with object
type, the header is the only representation of the section appearing in the primary



payload–the actual data will go in the secondary payload. After the primary
payload there is a secondary header. The secondary header defines the number
of bytes of data in the secondary payload. The secondary header is followed in
the logical message by the secondary payload. The mpjdev specification says
nothing about the layout of the secondary payload. In practice this layout will
be determined by the Java Object Serialization specification.

4 Discussion

We have explored enabling parallel, high-performance computation–in particular
development of scientific software in the network-aware programming language,
Java. Traditionally, this kind of computing was done in Fortran. Arguably, For-
tran is becoming a marginalized language, with limited economic incentive for
vendors to produce modern development environments, optimizing compilers for
new hardware, or other kinds of associated software expected by today’s pro-
grammers. Java looks like a promising alternative for the future.

Java introduces implementation issues for message-passing APIs that do not
occur in conventional programming languages. One important issue is how to
transfer data between the Java program and the network while reducing over-
heads of the Java Native Interface. As contribution toward new low-level APIs,
we developed a low-level Java API for HPC message passing, called mpjdev. The
mpjdev API is a device level communication library. This library is developed
with HPJava in mind, but it is a standalone library and could be used by other
systems. We discussed message buffer and communication APIs of mpjdev and
also format of a message. To evaluate current communication libraries, we did
various performance tests. We developed small kernel level applications and a full
application for performance test. We got reasonable performance on simple ap-
plications without any serious optimization. We also evaluated a communication
performance of the high- and low-level libraries for future optimization.

References

1. HPJava project home page. www.hpjava.org.
2. Sang Boem Lim. Platforms for HPJava: Runtime Support for Scalable Programming

in Java. PhD thesis, Florida State University, June 2003.
3. Sang Boem Lim, Bryan Carpenter, Geoffrey Fox, and Han-Ku Lee. A device level

communication library for the hpjava programming language. In the IASTED In-
ternational Conference on Parallel and Distributed Computing and Systems (PDCS
2003), November 2003.


