
Contents lists available at ScienceDirect
Information Systems

Information Systems 55 (2016) 20–36
http://d
0306-43

n Corr
E-m

gcf@ind
journal homepage: www.elsevier.com/locate/infosys
A novel digital information service for federating
distributed digital entities

Ahmet F. Mustacoglu a,n, Geoffrey C. Fox b,c

a TUBITAK BILGEM – The National Research Institute of Electronics and Cryptology (UEKAE), Turkey
b School of Informatics and Computing, Indiana University, Bloomington, IN, USA
c Community Grids Lab, Indiana University, Bloomington, IN, USA
a r t i c l e i n f o

Article history:
Received 30 June 2015
Received in revised form
27 July 2015
Accepted 28 July 2015
Available online 8 August 2015

Keywords:
Web services and Service-Oriented
computing
SOA
Web 2.0
Data management
Information retrieval and management
Federation and unifications
x.doi.org/10.1016/j.is.2015.07.007
79/& 2015 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: afatih.mustacoglu@tubitak.gov
iana.edu (G.C. Fox).
a b s t r a c t

We investigate the performance and the scalability metrics of a Digital Information
Service framework that is used for unifying and federating online digital entities by
retrieving and managing information located on the web. The Digital Information Service
consists of tools and web services for supporting Cyberinfrastructure based scientific
research. This system supports a number of existing online Web 2.0 research tools (social
bookmarking, academic search, scientific databases, journal and conference content
management systems) and aims to develop added-value community building tools that
leverage the management and federation of digital entities and their metadata obtained
from multiple services. We introduce a prototype implementation and present its
evaluation. As the results indicate, the proposed system achieves federation and unifica-
tion of digital entities coming from different sources with negligible processing overheads.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Information is spread all over the Web in various loca-
tions including centralized repositories, web servers and user
desktops. Centralized repositories represent the old fashion
techniques for resource sharing, whereas completely decen-
tralized systems such as P2P systems allow users to share
information without depending on a third party repository.
The necessities to find and share information led to devel-
opment of emergent Web 2.0 applications. These new Web
2.0 applications such as social bookmarking tools introduce a
new way of sharing information with respect to the old
fashion and P2P systems do. Social bookmarking tools
address the challenging problems of finding and sharing
.tr (A.F. Mustacoglu),
information among small groups, teams and communities.
Various types of social bookmarking tools developed their
own systems to support different kinds of resources. Flickr,
for example, allows the tagging and sharing of photos,
del.icio.us the tagging and sharing of bookmarks, BibSonomy,
CiteULike and Connotea the tagging and sharing of scholarly
publications, YouTube the tagging and sharing of video, and
43Things the tagging and sharing of goals in private life.
Some of these tools may not survive in the future, for
example, Connotea ended operation in March 12, 2013 due
to the growing problems with spam and associated service
outages. Note that this type of cases can be thought of as an
advantage since our proposed system stores data coming
from external services locally and the stored data can be
retrieved and exported into supported file formats (.txt etc.).
Furthermore, in the case of these tools are not operating
continuously (e.g., system down status of few days) our
system would continue to operate perfectly. The proposed
system stores the data in its own database hence the data

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2015.07.007
http://dx.doi.org/10.1016/j.is.2015.07.007
http://dx.doi.org/10.1016/j.is.2015.07.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.07.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.07.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2015.07.007&domain=pdf
mailto:afatih.mustacoglu@tubitak.gov.tr
mailto:gcf@indiana.edu
http://dx.doi.org/10.1016/j.is.2015.07.007


Table 1
Status of Web-based popular academic/non-academic services.

Tool name Academic (A)/non-
academic (NA)

Start–end
date

Users/data as of now (valid as of 02.01.2015) Current
status

Citeulike A 11.2004–
current

Around 7.4 million articles Active

Connotea A 12.2004–
03.2013

No information Retired

BibSonomy A Early 2006 Around 3.4 million links Active
Google Scholar A 11.2004–

current
All scholarly literature Active

Microsoft Academic
Search

A 11.2009–
current

Over 4.1 million papers Not
updated

ResearchGate A 05.2008–
current

Over 3 million members Active

IEEE Xplore A 02.2000–
current

Over 3 million documents Active

CiteSeerX A 1998–current Over 2 million documents Active
Science Direct A 1997–current Over 11 million articles Active
DBLP A 09.2006–

current
Over 2.3 million articles Active

ACM DL A 1997–current 391,000 full text articles Active
Mendeley A 07.2013–

current
Over million documents Active

Delicious NA 09.2003–
current

Around 1 billion links Active

YouTube NA 02.2005–
current

Over 1 billion visitor users/Over 6 billion hours of video watching
per month

Active

Flickr NA 02.2004–
current

87 million users/over 6 billion images Active

43Things NA 01.2005–
current

Over 3 million users Active

Pinterest NA 03.2010–
current

70 million users worldwide Active

Facebook NA 02.2004–
current

1.2 billion Active

A.F. Mustacoglu, G.C. Fox / Information Systems 55 (2016) 20–36 21
can be retrieved at any time as needed: the data is updated
in a system adaptive way, and the data in these services are
mirrored in our proposed system with a frequency that can
be determined adaptively. Table 1 explains the status of
popular web-based academic and non-academic tools as
of now.

The some of the services that are marked as academic
and nonacademic in Table 1 are directly integrated into the
our proposed system (citeulike, Connotea, GoogleScholar,
GoogleScholar Advance, Microsoft Academic Search, Deli-
cious) and the others are a natural candidate for imple-
menting our algorithm. Note that Microsoft Academic
Search has active status but its database is not updated
since 2012.

As the web-based academic or nonacademic tools
enabling storing, tagging and sharing documents have gained
popularity, an emerging need has appeared for supporting
these tools by using their existing services via Web Service
wrappers with added capabilities. To address this challenges,
an ideal architecture should meet the following require-
ments: a) uniformity: the architecture should support one-
to-many services among information resources and their
communication protocols; b) federation: the architecture
should present a federation capability where different ser-
vices belonging to different annotation resources on the web
can interoperate with each other; c) interoperability: the
architecture should be interoperable with different kinds of
clients on the web; d) performance: the architecture should
search/retrieve/store metadata for scholarly publications with
negligible processing overheads; e) persistency: the architec-
ture should be able to back-up metadata about digital records
without affecting the system performance; and f) fault
tolerance: the architecture should be distributing metadata
describing a digital content and managing redundancy of
metadata about digital entities in acceptable rates. Fig. 1
illustrates a model of building a system hierarchy where
search tools and existing services of social bookmarking tools
can be used with added capabilities to collect and manage
metadata and data for scientific content. Our goal is to define
the practical extent of existing annotation tools for scholarly
publications based on information retrieval and management
in a consistent way.

We propose a Digital Information Service framework
that improves the previous work [23] in great detail for
reconciling distributed digital entities that addresses the
challenges of discovering, retrieving, sharing and mana-
ging distributed data located on web-based systems in a
Service Oriented Architecture where communications are
provided through the Web Service technology. The pro-
posed system provides users with ability to access their
data even if a web-based system retires and discontinues
its service in the future.

In this study, we present the semantics and the architec-
tural design of the centralized Digital Information Service.
We introduce a prototype implementation called IDIOM
(Internet Documentation and Integration of Metadata) of



Fig. 1. Research tools with added capabilities for Sharing and Managing Scientific Documents.

A.F. Mustacoglu, G.C. Fox / Information Systems 55 (2016) 20–3622
this architecture and present its performance evaluation. As
the main focus of this research is information federation in
online digital information systems, we discuss unification,
federation, interoperability, and performance aspects and
leave out distribution and fault-tolerance aspects of the
proposed system. The main novelty of this study is that it
describes an architecture, implementation, and evaluation of
the Digital Information Service that supports both distribu-
ted and centralized paradigms and handles both dynamic,
small-scale and static, large-scale metadata by utilizing
event-based infrastructure and consistency maintenance
mechanism [21]. This novel approach unifies different imple-
mentations of research tools for scholarly publications to
provide a common access interface to different kinds of
metadata [4]. It also provides federation of information
among the scholarly publications tools for digital entities,
so that they can share or exchange metadata with each other
[30]. This study should inspire the design of other informa-
tion systems along with similar metadata management
requirements.

The organization of the rest of this paper is as follows.
Background information relevant to this study is given in
Section 2. Section 3 provides an overview of the proposed
Digital Information Service. Section 4 presents the seman-
tics of the Digital Information Service. Section 5 describes
the architectural design and the prototype implementation
of the system in details. Section 6 evaluates the perfor-
mance and the scalability test results for the prototype
implementation of the Digital Information Service frame-
work. Last, we conclude with some final remarks and
future work in Section 7.
2. Background

We overview the event systems and the consistency
maintenance issues for distributed systems that are crucial
for the proposed Digital Information Service framework in
the following sub-sections.
2.1. Event systems

In recent years, there has been an increasing amount of
research focused on event based systems. Their main
objective is to notify the necessary entities about the
changes that occurred in the domain of interest. Today,
event systems are needed and used in several areas such
as graphical user interfaces, databases, web based applica-
tions, networking applications, distributed applications,
publish–subscribe paradigm etc. For example, NaradaBro-
kering [10,11,25] system implements publish–subscribe
paradigm and it is an open-source event-based messaging
infrastructure developed by the Community Grids Lab at
Indiana University.

There are two different approaches to the event definition.
The first approach defines an event as it is an instantaneous
atomic occurrence, so it is represented as a point in time
[8,12,20]. Based on this approach, timestamps of event
occurrences can be categorized in three different ways:
�
 Absolute time point: it consists of date and time.

�
 Relative time points: it is defined relative to a particular

position.



A.F. Mustacoglu, G.C. Fox / Information Systems 55 (2016) 20–36 23
�
 Virtual Clocks are explained in detail by [17], and
unique timestamp values are assigned automatically
to each event by the system.

The second approach defines an event as occurrence as
an interval in time [2,13,19,26]. Based on this approach, a
state change of an event can be specified within a specific
interval and the interval can be represented in two ways:
�
 As relative, absolute, or virtual time points represent
starting and ending point of an interval.
�
 Event occurrences that represent the initial and the
ending points of an interval.

So, first approach defines events as having no duration
while the second approach defines events by having them
a particular duration. Most of the previous works regard-
ing the event systems use the first approach for their
event-based modeling and design.

Discussion: in our research, we have chosen to use the
first approach to define events due to its suitability to our
design of the proposed Digital Information Service infra-
structure. We assign a time stamp value to each minor or
major event once they occur within the system as an
absolute time point described in our prior work. The
assigned time stamp values provide us with ability to sort
events based on their occurrences. Our proposed system can
generate any version of a final document by using the sorted
events. Furthermore, the proposed system uses time stamp
values for consistency maintenance described in detail in
Section 4.
2.2. Event representation

According to [15,32,33], events are described as tuples.
Since any state change of an event in a specific time point or
an interval represents information, which is defined as a
data structure with several attributes. Events are con-
structed in the form of tuple structure and delivered to
external entities that are listening to the system for a
particular state changes. The communication model for
delivering events in the form of tuple structure to the
external entities takes place in the form of messages.
Message formats vary based on the domain of each system.
Messages in event system portray a tuple structure and
generic tuples composed of:
�
 Unique Event Id.

�
 Event attributes that carry additional information about

the event.

The unique event id helps an event to be separated from
other events and it is a mandatory field for event repre-
sentation. Event attributes carry extra information related
to the event such as event type, event owner, etc.

Events are described as in the form of tuples with
already built in abstract data types in previous work such
as CORBA Event Notification Service, Java AWT delegation
Event Model, DOM interfaces for tuple representation. In
database programming, events are stored as tuples in the
form of record structures composing the event histories.

Every system has a response unit to the state changes
coming from various environments to handle the changes.
Reactive applications depend on the data that describe the
current state of their environment due to changes. Each
application continuously checks any state changes happen-
ing in their environment to obtain the changes in their
interest. The process of uninterrupted checking for detect-
ing the state changes and retrieving the changes that
represents the current environment is called monitoring
the environment. Instead of monitoring the state changes,
most of the systems prefer to be notified by the changes
that happened in their domain of interest so that they do
not need to monitor the state changes, resulting in reducing
the computational load. Use of event-based systems pro-
vides applications with the state changes in their domain of
interest in the form of messages without monitoring their
environment. As a result, external systems do not need to
spend any additional computation to retrieve the state
changes. They can be notified by the event-based systems
once a state change occurred [3,15].

In distributed event-based systems, multiple objects at
different locations can be notified by events that could take
place at any of these objects. To do so, they use publish–
subscribe mechanism that allow an object to generate and
propagate the type of events to all subscribed parties.
Objects that are willing to receive updates from an object
that has published its events subscribe to the type of events
in their domain of interest. Different event types can point
to different methods executed by the interested object.
Notifications are the objects that represent events. Events
and notifications can be used in various applications such as
interactive applications, modifying a document, chat appli-
cations. Distributed event-based systems have two main
characteristics [7]:
�
 Heterogeneous: when event-based systems are used
for communication between distributed objects, differ-
ent components that are not designed to work together
can be interoperated. It is described in detail how
event-based system can be used to interoperate differ-
ent components on the internet [5].
�
 Asynchronous: event generating objects send notifica-
tions to all objects that subscribe to them so that
publisher does not need to synchronize with the sub-
scriber objects. Project Mushroom described in detail
by [14] is a distributed event-based system that sup-
ports collaborative work.
Discussion: in this study, each event has a unique event
id, and we have distinguished our events as major and
minor events. We have defined our events as a time-
stamped action on a digital document. In our study, we
have unified and federated heterogeneous annotation tools
to communicate with each other via event-based infra-
structure and Web Service technology. Moreover, we have
integrated search and web-based academic search tools
that are used for retrieving and collecting data and meta-
data from internet into the proposed system. We did not



Fig. 2. General architectural design of a Digital Information Service.

A.F. Mustacoglu, G.C. Fox / Information Systems 55 (2016) 20–3624
use publish–subscribe paradigm to disseminate updates
since the integrated annotation tools do not support pub-
lish–subscribe mechanism. However, any application that
requires and supports publish–subscribe mechanism, then
a broker address and a topic can be defined in a property
file of our proposed system to provide updates via publish–
subscribe mechanism by connecting to the broker and
subscribing to the topic. Finally, our update propagation
falls into unicast communication technology that requires
sending updates to each annotation tool separately by the
system not the underlying mechanism.
2.3. Consistency maintenance

Consistency is an important issue in distributed systems.
Consistency means that all copies of a same document
should be the same. When one copy is updated, then it
must be ensured that all copies are updated as well.
According to [31], consistency models can be classified into
two groups: a) data-centric consistency models; b) client-
centric consistency models. Details about these two models,
update propagation and consistency protocols are given in
the following sub-sections.

2.3.1. Data-centric consistency models
A consistency model is an agreement between processes

and hosting environment, where data is stored. As long as
processes obey the rules, the hosting environment promises
to work correctly. A process that executes a read operation
on a data item expects to get a value that is a result of the
last write operation on the data item. However, in the
absence of a global clock, it is difficult to say which write
operation is the last one. So to maintain consistency in
different ways, there are other data-centric consistency
model definitions. Each data-centric consistency model has
different restrictions on what a read operation can return on
a data item. It is easy to implement and use consistency
models with minor restrictions whereas it requires lots of
effort to use consistency models with major restrictions. But
the gain is different in each model since the one with major
restrictions provides better results than the one with minor
restrictions do [31]. More information on consistency mod-
els is explained in detail by [1,22]. Tanenbaum classifies



Table 2
Stored metadata comparison in major annotation tools.

Stored metadata Citeulike Delicious Connotea
(discontinued)

URL ✔ R R
Title R ✔

DOI ✔ ✔

PMID ✔

ISBN/ASIN ✔

Reference type R ✔

Authors ✔ ✔

Publication name ✔

Volume no. ✔ ✔

Issue no. ✔ ✔

CHAPTER ✔

Edition ✔

Start page ✔

End page ✔

Pages ✔

Year ✔

Month ✔

Day ✔

Publication date ✔

Date other ✔

Editors ✔

Journal ✔

Book title ✔

How published ✔

Institution ✔

Organization ✔

Publisher ✔

Address ✔

School ✔

Series ✔

Bibtex key ✔

Abstract ✔

Display title ✔

Tags a ✔ R
Tag suggestions ✔

Description R ✔

My work ✔

Everyone's tag ✔

Privacy settings ✔ ✔

Release date to all
users

✔

Priority of records ✔

Note ✔ ✔

Comment ✔

✔¼Supported, R¼Required.
a Adds “no-tag” footnote.

A.F. Mustacoglu, G.C. Fox / Information Systems 55 (2016) 20–36 25
data-centric consistency models into seven sub-categories:
a) Strict Consistency; b) Linearizability and Sequential Con-
sistency; c) Casual Consistency; d) FIFO Consistency; e)
Weak Consistency; f) Release Consistency; and g) Entry
Consistency [31].

2.3.2. Client-centric consistency models
In the previous section, we have overviewed and sum-

marized data-centric consistency models that are all about
providing a system wide consistent view on a shared data.
On the other hand, client-centric consistency models ensure
the consistent view of data from a client's perspective. They
allow copies of a data to be inconsistent with each other as
long as the consistency is maintained from a single client's
point of view. Tanenbaum classifies client-centric consis-
tency models into five sub-categories: a) Eventual Consis-
tency; b) Monotonic Reads; c) Monotonic Writes; d) Read
Your Writes; and e) Writes Follow Reads [31].

Discussion: the consistency framework of the proposed
Digital Information Service falls into a client-centric con-
sistency model, and the implementation protocol is the
replicated-write protocol because updates can be origi-
nated from several replicas. In this research, the optimistic
replication approach [16,29] has been adopted to ensure
eventual consistency between replicas. The consistency in
our system is made possible by updating the relevant
databases with a period of 24 h. Shorter period would
entail more up to date database entries but degrade the
system/network performance adversely. Details can be
found in Section 4.

3. Digital Information Service

We designed and built a novel Information Service called
Digital Information Service to provide an ideal approach to
unify and federate major web-based annotation/search tools,
support collaboration, retrieve, represent and manage content
of scientific documents coming from various sources in a
flexible fashion. Digital Information Service forms an add-on
architecture that interacts with the various social networking
tools and unifies them in a higher-level system. In other
words, it provides a unifying architecture, where one can
assemble metadata instances of different web-based informa-
tion services. We built a prototype implementation called
Internet Documentation and Integration of Metadata (IDIOM)
that showed that the proposed Digital Information Service
achieves unification and federation of the three academic
publication management tool implementations, namely, Con-
notea, Delicious and Citeulike, and support their communica-
tion protocols. Furthermore, the prototype implementation
also supports ability to use major academic search tools
(Microsoft Academic Search and Google Scholar etc.) to collect
metadata and store them into a local system. We also showed
that the Digital Information Service achieves information
federation by utilizing a global schema called Merged Schema.
The merged schema consists of annotation tools' schemas,
academic search tools' schemas, Dublin Core Metadata Initia-
tive schemas and BibTex schemas. With these capabilities, the
proposed Digital Information Service enables implementa-
tions of different digital metadata management and academic
search tools to interact with each other and to share each
other's metadata. We discuss the semantics and architecture
of the proposed Digital Information Service in the following
sections.

4. Semantics of the Digital Information Service

In this section, we discuss three core underlying
mechanism of the proposed Digital Information Service:
uniform access interface, event-based infrastructure and con-
sistency maintenance. General architectural design of the
Digital Information Service appears in Fig. 2.

4.1. Unified Access Interface

The Digital Information Service system supports one to
many annotation/academic search tools interactions and



Fig. 3. Content of a digital entity.

Fig. 4. Minor event parameters.

A.F. Mustacoglu, G.C. Fox / Information Systems 55 (2016) 20–3626
their communication protocols by utilizing a Unified
Access Interface. The Uniform Access Interface presents a
common access interface to the integrated web-based
annotation and academic search tools. Namely, the Uni-
form Access Interface imports APIs of the supported
annotation and academic search tools so that they are all
accessible from a common interface. This way, the pro-
posed system unifies different annotation/academic search
tools under one hybrid system.

To meet the federation requirements, the Digital Informa-
tion Service framework presents a federation capability
where different annotation/academic search tools and their
services can be federated in metadata instances. To enable
this capability, we introduce a global schema for annotation/
search tools by integrating different annotation/search tools
data models. The global schema for annotation/search tools
provides a common platform to enable interaction between
the annotation/search tools, and it represents a merged
schema from the federated annotation/search tools by inte-
grating their schemas into one. Schema integration is a
functionality of providing a unified representation of multiple
data models [27]. To meet the comprehensive metadata field
requirements, the Digital Information Service infrastructure
supports various metadata fields to represent the complete
metadata about a scholarly publication. Supported metadata
fields by the proposed study are compatible with the one that
specified by the Dublin Core Metadata Initiative and BibTex.
Table 2 portrays the stored metadata comparison in Con-
notea, Citeulike, and Delicious annotation tools that are
integrated with the IDIOM.

4.2. Event-based infrastructure and consistency
maintenance

The event-based infrastructure utilizes the use of event
concept as its building block to meet the requirements for
handling data and metadata coming from different sources
such as online collaboration tools, peer to peer systems,
social bookmarking websites, academic search engines,
scientific databases, journal and conference content man-
agement systems. According to this concept, the content of
scientific documents originating from various sources is
represented as events. Events constitute the base atomic
unit for our event-based infrastructure, and an event is
commonly defined as the act of changing the value of an
attribute of some object [28]. Storing all the events about an
object enables the actions on this object to be reviewed and
undone [9]. An event may also be defined as an actionwith a
time stamp and a message [25]. In our event-based infra-
structure of the proposed Digital Information Service, we
adopt the view of an event as a time-stamped action on a
document, which only maintains the modifications to an
object. We distinguish between minor and major events:
insertion of a new digital entity (DE), which is a collection of
metadata representing a scholarly publication represented
in Fig. 3 into the system or deletion of an existing digital
entity from the system is considered a major event; updates/
modifications to existing digital entities are considered
minor events. Each minor event is defined with its para-
meters including its unique id, its operation type (replace,
merge, delete), which DE it belongs to, its timestamp value,
and its data. These parameters are transferred as an XML
message to the necessary modules. Schema of parameters of
a minor event is depicted in Fig. 4. Examples of modification
are: deleting one or more fields of a digital entity, changing
the value of one or more fields of a digital entity by adding
or deleting metadata, and so on.

Another concept underlying the event-based infrastruc-
ture is that of dataset. A dataset is a collection of minor
events related to a user. A dataset creation is a way to group
the modifications of a digital entity. There are two important
issues requiring attention during the process of dataset
creation: a) events that are selected as members of a dataset
must belong to the same digital entity (we do not want to
include into a dataset events belonging to different digital
entities) and b) the order of the events is a key factor in that
the events related to a DE are applied in the order they
occur. A document representation by collection of events is
depicted in Fig. 5. As it is seen in the figure, documents are
constructed from major and minor events. A major event
represents the original entry in the system, while the minor
events are the modifications to the original entry during the
time. Details about how a document is formed from major
and minor events are explained in the sub-section of Event
Processing Engine.

The supported annotation tools by a Digital Information
Service hold metadata about scholarly publications forming a
digital record being referred as a distributed annotation



Fig. 5. Document representation as an event.

A.F. Mustacoglu, G.C. Fox / Information Systems 55 (2016) 20–36 27
records (DARs). Furthermore, each integrated annotation tool
acts as a replica to the Digital Information Service. Consis-
tency maintenance mechanism of the Digital Information
Service has been designed to ensure eventual consistency
between distributed annotation records that are stored at the
integrated annotation tools and a primary copy of each DAR
that is located in a local database of the proposed Digital
Information Service. The consistency framework is a client-
centric consistency model, and the implementation protocol
is the replicated-write protocol since updates can be origi-
nated from several replicas. We have adopted the optimistic
replication approach [16,29] to ensure eventual consistency
between replicas. In our proposed study, update propaga-
tions are carried out through pull and push based app-
roaches. The push approach enforces consistency model on
primary copies of DARs located in a central database. In this
model whenever updates occurred on a primary copy of a
DAR, they are being propagated immediately to each inte-
grated annotation tool to update existing DARs on their site.
However, the pull approach is a time-based consistency
control approach [18]. Each supported annotation tool and
DARs located on the annotation tools is periodically checked
for any updates. Collecting updates from supported annota-
tion tools require: 1) finding the primary copy of each replica
record by using our duplicate detection algorithm; 2) com-
paring each replica record with its primary copy to figure out
modifications if there is any. After identifying the updates,
the next step is to apply them to their primary copies and
disseminate them to all replicas located on the annotation
tools. If there is any concurrent update on a shared docu-
ment, then the concurrent updates are handled based on
optimistic approach as defined by [31]. The integrated ann-
otation tools do not support publish–subscribe paradigm
forcing the Digital Information Service to use unicast com-
munication to propagate updates to replicas. However, any
application that require and support publish–subscribe con-
cept, then broker address and topic can be defined in a
property file to provide updates via publish–subscribe meth-
odology by connecting to the broker and subscribing a topic.
The Digital Information Service also supports roll-back ability
to help maintain consistency due to the nature of the
proposed event-based mechanism. It basically allows users
to roll-back to a previous state at any time. It is also a critical
issue to find out if a document that is about to be inserted
into the system already exists in the system or not. The
event-based infrastructure executes its duplicate detection
algorithm to decide whether two given digital entity is
similar or not with a defined threshold value. The duplicate
detection algorithm works based on hashing the available
metadata fields of a given document including URL, title,
authors and publication venue. As the main focus of this
paper is to discuss information federation in academic
search/annotation tools, a detailed discussion on concurrent
access to shared document and duplicate detection aspects
of the system is omitted here.

Finally, the Digital Information Service has a well-
defined update model that is built on the event-based
structure to provide flexible choices to users. The update
model uses events for applying updates on existing digital
entities. It provides users with flexible choices to apply the
updates as minor events when faced with existing DEs
within the repository as:
�
 Keep the existing version.

�
 Replace the existing version with the new one.

�
 Merge the existing and the new version.
So, the update model supports the above choices to be
applied for all matching digital entities or each existing
individual digital entity in the system. By doing that,
updates can be applied to each individual or all digital
entities as a default based on the selected choice.
4.3. Event Processing Engine

Main duty of the Event Processing Engine is to build a
complete document by using the document's dataset and
events for a given state. To do so, Event Processing Engine
collects all the dataset and the events belong to the
requested DE from the database of the Digital Information
Service. Having done that, the Event Processing Engine
processes all the minor events sorted by time using their
timestamp on top of the major event to retrieve the final
version of the requested document. In other words, by
using the initial metadata, which is a major event, of a
digital entity and by applying the dataset(s) on top of it,
one can retrieve any version of a DE. Hence, in case of an
error or users' request, the proposed architecture supports
to restore the system to a previous safe state by using the
related dataset for that state.

Fig. 6 shows the process of building a document by using
its major event and datasets. Each dataset (Dataset-1…
Dataset-N) is composed of a number of minor events, and
each dataset modifies the digital entity metadata based on
the events that it has. In the event-based infrastructure of
the Digital Information Service, all available datasets of a
digital entity are applied on top of the initial digital entity
metadata, which is the major event of this DE, based on
their increasing creation time to retrieve the latest digital



Fig. 6. Forming a document from its events.

A.F. Mustacoglu, G.C. Fox / Information Systems 55 (2016) 20–3628
entity metadata. During the application process, we apply
each dataset and its associated events in the increasing
order of their creation time.

As depicted in Fig. 6, to build a digital entity metadata
for a certain point, we just apply the related dataset(s) on
top of the initial digital entity metadata based on their
creation time, and the plus sign (þ) in the formula indicates
the application of the related dataset(s) on top of the initial
digital entity metadata. As a result, we have:

Current DE Metadata¼ Initial DE Metadataþ
Xn

k ¼ 1
Dataset ðkÞ

ð1Þ

5. Architecture

The Digital Information Service is an add-on system that
interacts with major academic search/annotation tools and
unifies them in a higher-level architecture. Fig. 7 illustrates
the detailed architectural design of the prototype implemen-
tation of the Digital Information Service. The annotation/
academic search tools interact with the system through the
uniform access interface. The prototype implementation
IDIOM supports XML API for Connotea, Citeulike, Delicious
annotation tools, Google Scholar and Microsoft Academic
search engines, and the Merged Schema (combines different
schemas for representing the metadata of scholarly publica-
tions into one global schema for federation of web-based
annotation tools). This layer is designed as generic as
possible so that it can support one-to-many XML APIs, as
the new web-based tools are integrated with the system.

The IDIOM prototype implementation consists of five main
layers: a) the client layer; b) the service layer; c) the server
layer; d) the helper layer; and e) the data layer. The client
layer of the IDIOM system is made up of Java Server Pages,
which is translated into servlets by an Apache Tomcat J2EE
Web container and generates dynamic content for the brow-
ser. The service layer provides interfaces to access the IDIOM's
Web Services, and the client layer communicate with the
Server layer over the HTTP protocol through SOAP messages
encapsulating WSDL-formatted objects. The Server layer con-
sists of several modules that constitute the main architecture
blocks of the IDIOM system to handle the coming requests
from the service layer. The helper layer provides synchronized
timestamp values and handles the requests to be forwarded to



Fig. 7. Internet Documentation and Integration of Metadata (IDIOM) Architecture.

A.F. Mustacoglu, G.C. Fox / Information Systems 55 (2016) 20–36 29
Data Manager so that it can communicate with the data layer
through JDBC connection. Finally, the data layer is composed
of a MySQL system database.

Annotation tools are the integrated annotation tools into
the IDIOM system to store replica copies of the primary
copies referred as DEs stored in a MySQL system database of
the IDIOM system. The records kept at annotation tools
called DARs can be accessed via IDIOM system services and
user interfaces. Users can upload records from repository to
these tools, download records from these tools into a
repository, or transfer records between the integrated
annotation tools. In the current implementation, the IDIOM
system unifies and federates Connotea, CiteULike, and
Delicious annotation tools.
The IDIOMWeb Services provide access to modules and
their services via SOAP calls over HTTP protocol in current
implementation. The IDIOM Web Services can be accessed
via different protocols through the supported interfaces
as well.

The goal of session and event management sub-module
is to store user specific data such as cookie-based user
credentials (password/username), modifications to a DE as
minor events, and the “view options”, which control the
level of detail with respect to the metadata fields displayed
for each DE, into users' session. A session is a user's state
information, and maintained on the server side. From the
moment user logged in the IDIOM system, user credentials,
any changes made to a DE, and view options for metadata



Table 3
Summary of cluster nodes.

Cluster nodes

cluster1.ucs.indiana.edu cluster2.ucs.indiana.edu

Processor Intels Xeon™ CPU (E5345 2.33 GHz) Intels Xeon™ CPU (E5345 2.33 GHz)
RAM 8 GB (each node) 8 GB total
OS GNU/Linux (kernel release 2.6.9-5.ELsmp) GNU/Linux (kernel release 2.6.9-5.ELsmp

A.F. Mustacoglu, G.C. Fox / Information Systems 55 (2016) 20–3630
fields of a DE are all saved in the user session. It also serves
as a private workspace for the user and users can concur-
rently modify their copy of records. When a user logs out
from the IDIOM system, all unused minor events (modifica-
tions to a DE) for a dataset creation are removed.

The Digital Entity Management module is responsible
for: 1) providing a service for inserting a new DE into the
IDIOM system, and push the new entry to the integrated
annotation tools via Communication Manager; 2) imple-
menting the Events and Dataset Management services,
and providing a service to view detailed information about
a DE by utilizing Event Processing Engine; 3) providing
services for updating an existing DE, and it utilizes push-
based consistency maintenance approach by pushing the
updates immediately after they occur to the integrated
annotation tools via Communication Manager; 4) provid-
ing an access to the history of a DE and rollback mechan-
ism, from its entry into the IDIOM system to present; 5)
providing a service to retrieve and apply updates belong-
ing to other users on their DEs by the Periodic Update
Management service.

The Communication Manager transports the data
between the computing nodes. It is responsible for upload-
ing or downloading data from annotation tools through
their defined gateways. It retrieves the records from anno-
tation tools via HTTPClient native libraries by using either:
1) annotation tool's API and get the response in XML
format. Records are then parsed by using a DOM parser
and XPATH; or 2) HTTP GET, and POST method resulting in
getting the response in RSS or HTML format. In RSS type
responses, documents are parsed by using a DOM parser
and XPATH, and in HTML type responses, data is parsed
after cleaning faulty HTML by using JTidy native libraries.

The search tools submodule provides services and
interfaces to the web-based search tools including Google
Scholar, Google Scholar Advanced, and Microsoft Academic
Search. It also provides services for local folder search and
integrates the PubsOnline software [24] – “an open source
tool for management and presentation of databases of
citations via the Web” – into the IDIOM system and
providing an interface for searching the logical folders of
the IDIOM system database.

The User Registration, The Username and Password
Recovery, The User's Profile Management, and The DE
Metadata View Options modules exist in the other modules
of the system architecture. These modules are responsible
for providing users with services to register with the
system, retrieve their forgotten username, reset their for-
gotten password, manage their profile such as name, email,
password etc., and define the view options of digital entities
to view or hide specific metadata fields of them.
The Timestamp Generator module is responsible for
producing unique timestamp values for the requesting
processes. In order to impose an order on events, each event
has to be time-stamped before it is generated and stored in
the session or the MySQL system database. Since, events are
processed by the Event Processing Engine by their ordered
timestamps. Timestamp values are also used by the consis-
tency mechanism to maintain consistency by imposing an
order on updates. To assign a unique timestamp value,
Timestamp Generator interacts with Network Time Protocol
(NTP) – based time service [6]. This service provides syn-
chronized timestamp values by synchronizing the distribu-
ted machine clocks with atomic time servers available across
the universe.

The Data Manager is responsible for executing the
coming requests on data items. The Data Manager uses
JDBC connection to connect to MySQL system database.

6. The evaluation of the proposed system

We performed extensive series of measurements to
evaluate the prototype implementation of the proposed
architecture and investigate its practical usefulness in real
life applications.

6.1. Testing environment

We tested the IDIOM prototype implementation by
using gf12–15 and gf16 Linux machines that are part of
clusters (cluster1 and cluster2) located at Community Grids
Laboratory at Indiana University. We have run our client
programs on gf12–gf15 Linux machines, we have deployed
the IDIOM system on gf16 Linux machine, and we have
installed our database on gf16 Linux machine. Summary of
these machine configurations are given in Table 3.

In our general experiments methodology, we have used
single-threaded and multi-threaded client programs. The
IDIOM system is also a multi-threaded service-enabled
system running on cluster node gf16.ucs.indiana.edu. We
have sent various requests from the client programs to our
proposed system implementation to test the performance,
and the scalability of our proposed system.

We have implemented the IDIOM system in Java Lan-
guage, using Java 2 Standard Edition compiler with version
1.5.0_12. In our experiments with the prototype implemen-
tation, we used Apache Tomcat Server as a container with
version 5.0.28 and Apache Axis technology for Web Service
technology with version 1.2. We set the maximum heap
size of Java Virtual Machine (JVM) to1024MB by using the
option – Xmx1024m. In our experiments, we also increased
the maximum number of threads from default value to



Fig. 8. Testing cases for system responsiveness experiment.

A.F. Mustacoglu, G.C. Fox / Information Systems 55 (2016) 20–36 31
1000 in Apache Tomcat Server to be able to test the system
behavior for the huge numbers of concurrent clients.

6.2. System responsiveness experiments

Our main goal in doing this experiment is to measure the
baseline performance of the IDIOM Framework implemen-
tation. We have tested the performance of our proposed
system by measuring the times necessary to download a
record from an annotation tool into a repository, and to
upload a new record from a repository to an annotation tool
(forms a DAR). Furthermore, we have investigated latency
values for More Info functionality with DB access and
memory utilization, and Update DE functionality. The per-
formance evaluation is done when there is no additional
traffic in the system. The primary interest for doing system
responsiveness experiment was to investigate the optimum
performance of the system for download, upload, more info
and update digital entity primary operations for the pro-
posed system. The client programs were running on a
cluster nodes gf12–gf15, while service-enabled IDIOM sys-
tem was running on a cluster node gf16. In this experiment,
we were exploring the performance of our methodology for
download, upload, more info and update digital entity
operations of the proposed system. We have conducted
the following test cases: a) a single client sends a request to
download a DAR from an annotation tool as a major event
required to access to the DB; b) a single client sends a
request to make a new DAR required to access to an
annotation tool; c) a single client sends a request to get a
more info on a digital entity from a repository required to
access to the DB; d) a single client sends a request to get a
more info on a digital entity from the cache required to
access to the memory; and e) a single client sends a request
to update a digital entity existed in a repository. In our each
testing case, the clients send 400 sequential requests for
download, upload, more info and update digital entity
standard operations. We recorded the average execution
time, and this experiment was repeated 5 times. Fig. 8
shows the design of these experiments.



Fig. 9. Depiction of downloading and uploading a record.

Fig. 10. Latency and STDev values for update DE and More Info standard operation (with DB and memory utilization).

A.F. Mustacoglu, G.C. Fox / Information Systems 55 (2016) 20–3632
6.2.1. System responsiveness experiment results
We conduct experiments where we investigate the base

performance of the proposed system. Figs. 9 and 10, and
Table 4 and Table 5, represent basic responsiveness results
of our system. In this experiment we first recorded execu-
tion times for: a) calling the download service to measure
the processing time of our implemented service; b) calling
the upload service to measure the processing time of our
implemented service. Next, we recorded round trip times
for: a) calling the More Info service with database access to
measure the latency of our implemented service; b) calling
More Info service with memory utilization to measure the
latency of our implemented service; c) calling Update DE
service to measure the latency of our implemented service.
Downloading a new entry requires to store this entry as a
major event in the database and it is one of the major
services provided by the prototype IDIOM system. Further-
more, the IDIOM propagates the updates via push mechan-
ism by using upload service of the system in order to
maintain consistency. This experiment shows the necessary
time requirements for these major services to download or
to upload a digital entity between database and annotation
tools (replicas).

6.3. Scalability experiment

The primary interest in doing this experiment was to
investigate the scalability of the IDIOM prototype implementa-
tion. We conducted three testing cases and tried to answer the
following research questions: a) how well does the system



Table 4
Statistics of the experiment depicted in Fig. 9.

Repeated test cases 1 2 3 4 5

Download Process time (m s) 145.44 146.49 145.72 147.77 147.37
Download STDev 12.74 13.64 13.09 14.54 13.94
Upload Process time (m s) 146.24 144.23 144.75 146.33 144.3
Upload STDev 6.61 5.52 7.11 7.6 7.24

Table 5
Statistics of the experiment depicted in Fig. 10.

Repeated test cases 1 2 3 4 5

Latency-MoreInfo with DB access 2.58 2.55 2.56 2.54 2.54
STDev-MoreInfo with DB access 0.49 0.49 0.50 0.49 0.49
Latency-MoreInfo with cache utilization 1.62 1.61 1.63 1.62 1.64
STDev-MoreInfo with cache utilization 0.49 0.48 0.48 0.48 0.48
Latency-Update DE 4.46 4.45 4.49 4.43 4.48
STDev-Update DE 0.49 0.51 0.50 0.49 0.51

A.F. Mustacoglu, G.C. Fox / Information Systems 55 (2016) 20–36 33
perform when the message rate per second is increased for
More Info standard operation request on a DEwith DB access?;
b) how well does the system performs when the message rate
per second is increased for More Info standard operation
request on a DE with memory utilization?; c) how well does
the system perform when the message rate per second is
increased for Update DE standard operation request?

In first experiment, our main goal is to identify the number
of concurrent requests requiring DB access that can be
handled by the proposed system when message rate
per second are increased in the IDIOM system. We have
completed this test case by increasing the message rate/s until
the response time degrades. In this testing case, we recorded
round trip time at each MoreInfo request on a DE with DB
access. In the second testing case, we have applied the same
technique as previous experiment except that each request is
responded by using memory utilization. In the third experi-
ment, we have investigated the concurrent requests for an
Update DE main operation that can be serviced by the IDIOM
while message rate per second are increased. The designs of
these testing cases are depicted in Fig. 11.
6.3.1. Scalability experiment results
Based on the results depicted in Fig. 12, we determined that

concurrent inquiry requests may be well responded by the
IDIOM prototype implementationwithout any error. According
to the experiment result, we identified that IDIOM's major
operations performed well for the increased message rate.

However, after a certain number of messages per second,
performance starts to degrade due to high message rate. We
observe that after around 1060 inquiry messages per second
for More Info with DB access, after around 2068 inquiry
messages per second for More Info with memory utilization,
after around 533 inquiry messages per second for Update DE,
the system performance degrades due to high message rate.
This threshold is mainly due to Apache Tomcat (thread
scheduling and context switches) as explained in the follow-
ing sub-section. Experiment results are depicted in Fig. 12.
6.4. Investigation of the threshold value in scalability graphs

To investigate the reasons of the threshold value, we
have investigated the possible causes for the threshold
value: a) network bandwidth investigation; b) limitation
on open sockets in Linux; c) tomcat limitations such as
thread scheduling and context switches.
6.4.1. Network bandwidth investigation
In this section, we have measured a message size and

calculated the total network need to see whether this
threshold value is due to the network bandwidth or not.
—
 Message size in empty service method call is 466 bytes.
Message size in bits 466 bytes n 8¼3728 bits. A total
network is needed at the threshold value is: 3738 bits/
message n 3693 message/s¼13.8 Mbits/s.
—
 Message size in More Info request is 879 bytes. Message
size in bits 879 bytes n 8 bits¼7032 bits. A total net-
work is needed at the threshold value is: 7032 bits/
message n 2068 message/s¼14.5 Mbits/s.
—
 Message size in Update metadata request is 3700 bytes.
Message size in bits 3700 bytes n 8 bits¼29,600 bits. A
total network is needed at the threshold value is:
29,600 bits/message n 533 message/s¼15.8 Mbits/s.
Our network capability in CGL is 1 GBits/s. In the first
case, its value is almost 1% of the network capacity. So, this
cannot be the reason for this threshold value. In the
second case, its value is also almost 1% of the network
capacity. So, this cannot be the reason for this threshold
value as well. In the third case, its value is also almost 1%
of the network capacity. So, this cannot be the reason for
this threshold value as well. So, finally we concluded that
the network bandwidth cannot be the cause for the
threshold value in these figures.



Fig. 11. Testing cases of scalability experiment for More Info and update DE requests.

A.F. Mustacoglu, G.C. Fox / Information Systems 55 (2016) 20–3634
6.4.2. Limitation on open sockets in Linux
As default, each user has 1024 open socket connections

in Linux. We have performed our scalability tests with the
increased open sockets from 1024 to 2048, and we have
retrieved the similar results that we obtained with the
1024 open socket connections. So, we have concluded that
the numbers of allowable open sockets are not the cause
for our threshold value in our graphs.
6.4.3. Apache Tomcat limitations
In this section, we have investigated that the threshold

value is occurring due the tomcat limitations. To test
whether tomcat causing this threshold value or not, we
have implemented an empty service method that has
nothing in it with no parameters. We have measured the
round trip time while we increase the message rates with
this empty service method calls. Fig. 13 represents our
investigation results.
Finally, we have concluded based on the results that we
obtained in Fig. 13 that the reason for the threshold value
is due to Apache Tomcat limitations (thread scheduling
and context switches to satisfy the coming requests at high
message rates) since we are obtaining the same pattern
with empty service call measurements.

7. Conclusion and future work

In this research, we introduced a novel Digital Information
Service architecture for a Collaborative Framework for Dis-
tributed Digital Entities that supports handling metadata
coming from different sources. The proposed Digital Informa-
tion Service provides unification, federation, and interoper-
ability of different annotation and academic search tools by
using Web Services technology. The proposed study deploys
an event-based infrastructure and adopts a consistency tech-
nique for distributed systems to maintain consistency among
distributed annotation records and their primary copies stored



Fig. 12. Update DE and MoreInfo Message Rate with DB and Memory Access.

Fig. 13. Verification of the Service Message Rate.

A.F. Mustacoglu, G.C. Fox / Information Systems 55 (2016) 20–36 35
at a central repository. It introduces an event-based infra-
structure and utilizes optimistic replication approach to
ensure eventual consistency between distributed annotation
records representing scholarly publications. The proposed
system also plays a crucial role in protecting and keeping
users' data synchronized with other sources. Furthermore, it
makes data accessible for users when an integrated service
retires and/or discontinues its services. Even though an
analyzed service (Connotea) stopped its services in March,
2013, we have provided analysis results pertaining to that
specific service for sake of comparison. Also, we think that our
analyses would provide helpful pointers and results if the new
versions of the service are made operational again in the
future.

To achieve unification, the Digital Information Service is
designed as a generic system with front and backend
abstraction layers supporting one-to-many local informa-
tion systems and their communication protocols. To achieve



A.F. Mustacoglu, G.C. Fox / Information Systems 55 (2016) 20–3636
federation, the Digital Information Service is designed to
support information integration technique in which meta-
data from several heterogeneous sources are transferred
into a global schema referred asMerged Schema and queried
with a uniform query interface.

We performed a set of experiments to evaluate the
performance and scalability of the prototype implementa-
tion of the Digital Information Service to understand
whether it can achieve information federation with accep-
table costs. This evaluation pointed out the following
results. First, the Digital Information Service achieves infor-
mation federation with negligible processing overheads for
accessing/storing metadata. Second, the proposed study
achieves noticeable performance improvements in standard
operations by employing in-memory storage while preser-
ving persistency of information. Third, the Digital Informa-
tion Service scales to high message rates and message sizes
while supporting information integration where metadata
coming from different data storing systems.

With this research, we revisited distributed data manage-
ment techniques to achieve integrated access to annotation
metadata coming from a different number of annotation
tools. We intend to further improve this approach to be able
to scale up to a high number of distributed metadata sources
such as video collaboration domain (YouTube etc.) and social
networking domain (Facebook etc.). An additional area that
we intend to research is an information security mechanism
for the distributed Digital Information Service and machine
learning techniques to identify typing errors within the
documents.
Appendix A. Supporting information

Supplementary data associated with this article can be
found in the online version at http://dx.doi.org/10.1016/j.is.
2015.07.007.
References

[1] S.V. Adve, K. Gharachorloo, Shared memory consistency models: a
tutorial, Computer 29 (12) (1996) 66–76.

[2] J.F. Allen, G. Ferguson, Actions and events in interval temporal logic,
J. Log. Comput. 4 (5) (1994) 531–579.

[3] R. Alur, T.A. Henzinger, Reactive modules, Form. Methods Syst. Des.
15 (1) (1999) 7–48.

[4] P. Atzeni, F. Bugiotti, L. Rossi, Uniform access to NoSQL systems, Inf.
Syst. 43 (2014) 117–133.

[5] J. Bates, J. Bacon, K. Moody, M. Spiteri, Using events for the scalable
federation of heterogeneous components, in: Proceedings of the
Eighth ACM SIGOPS European Workshop on Support for Composing
Distributed Applications, ACM, 1998, pp. 58–65.

[6] H. Bulut, S. Pallickara, G. Fox, Implementing a NTP-based time
service within a distributed middleware system, in: Proceedings of
the Third International Symposium on Principles and Practice of
Programming in Java, Trinity College Dublin, 2004, pp. 126–134.

[7] G. Coulouris, J. Dollimore, T. Kindberg, Distributed Systems: Con-
cepts and Design, 3rd ed., Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2001, ISBN:0-201-61918-0.

[8] K.R. Dittrich, S. Gatziu, Time issues in active database systems, in:
Proceedings of the International Workshop on Infrastructure for
Temporal Databases, Arlington, TX, 1993.
[9] G.C. Fox, Collaboration within an Event based Computing Paradigm.
Retrieved January 23, 2015, from 〈http://aspen.ucs.indiana.edu/col
labtools/extras/indianafeb01_files/v3_document.htm〉, 2001.

[10] G.C. Fox, S. Pallickara, A Scalable Durable Grid Event Service. Retrieved
January 23, 2015, from 〈http://surface.syr.edu/eecs/123/〉, 2001.

[11] G. Fox, S. Pallickara, Deploying the naradabrokering substrate in
aiding efficient web and grid service interactions, Proc. IEEE 93 (3)
(2005) 564–577.

[12] S. Gatziu, K.R. Dittrich, Events in an Active Object-Oriented Database
System, Springer, London, 1994, 23–39.

[13] P.S. Kam, A.W.C. Fu, Discovering Temporal Patterns for Interval-
Based Events, Springer, Berlin Heidelberg, 2000, 317–326.

[14] T. Kindberg, G. Coulouris, J. Dollimore, J. Heikkinen, Sharing objects
over the Internet: the Mushroom approach, in: Proceedings of
the Global Telecommunications Conference, 1996. GLOBECOM'96.
‘Communications: The Key to Global Prosperity, IEEE, 1996,
November, pp. 67–71.

[15] R. Kowalski, F. Sadri, Towards a unified agent architecture that
combines rationality with reactivity, in: Dino Pedreschi,
Carlo Zaniolo (Eds.), Logic in Databases, Springer, 1996,
pp. 135–149.

[16] H.T. Kung, J.T. Robinson, On optimistic methods for concurrency
control, ACM Trans. Database Syst. 6 (2) (1981) 213–226.

[17] L. Lamport, Time, clocks, and the ordering of events in a distributed
system, Commun. ACM 21 (7) (1978) 558–565.

[18] R. Li, D. Li, C. Sun, A time interval based consistency control
algorithm for interactive groupware applications, in: Proceedings
of the 10th International Conference on Parallel and Distributed
Systems, ICPADS 2004, IEEE, 2004, pp. 429–436.

[19] C. Liebig, M. Cilia, A. Buchmann, Event composition in time-
dependent distributed systems, in: Proceedings of the IFCIS Inter-
national Conference on Cooperative Information Systems, CoopIS'99,
IEEE, 1999, pp. 70–78.

[20] G. Liu, A.K. Mok, P. Konana, A unified approach for specifying timing
constraints and composite events in active real-time database
systems, in: Proceedings of the Fourth IEEE Real-Time Technology
and Applications Symposium, 1998, pp. 199–208.

[21] G. Lodi, L. Aniello, G.A. Di Luna, R. Baldoni, An event-based platform
for collaborative threats detection and monitoring, Inf. Syst. 39
(2014) 175–195.

[22] D. Mosberger, Memory consistency models, ACM SIGOPS Oper. Syst.
Rev. 27 (1) (1993) 18–26.

[23] A.F. Mustacoglu, G.C. Fox, Performance of a collaborative framework
for federating distributed digital entities, in: Proceedings of the
International Symposium on Collaborative Technologies and Sys-
tems (CTS), IEEE, 2010, May, pp. 603–610.

[24] S.A. Myron, R. Knepper, M. Link, C. Stewart, PubsOnline: open source
bibliography database, in: Proceedings of the 33rd Annual ACM
SIGUCCS Fall Conference, 2005, pp. 247–249.

[25] S. Pallickara, G. Fox, NaradaBrokering: a distributed middleware
framework and architecture for enabling durable peer-to-peer grids,
in: Markus Endler, Douglas Schmidt (Eds.), Middleware, Springer,
Berlin Heidelberg, 2003, pp. 41–61.

[26] P.R. Pietzuch, B. Shand, J. Bacon, A framework for event composition
in distributed systems, in: Proceedings of the ACM/IFIP/USENIX
2003 International Conference on Middleware, Springer-Verlag
New York, Inc. 2003, pp. 62–82.

[27] E. Rahm, P.A. Bernstein, A survey of approaches to automatic schema
matching, VLDB J. 10 (4) (2001) 334–350.

[28] D.S. Rosenblum, B. Krishnamurthy, An event-based model of soft-
ware configuration management, in: Proceedings of the Third
International Workshop on Software Configuration Management,
ACM, 1991, pp. 94–97.

[29] Y. Saito, M. Shapiro, Optimistic replication, ACM Comput. Surv. 37
(1) (2005) 42–81.

[30] M. Scott, R.P. Boardman, P.A. Reed, T. Austin, S.J. Johnston, K. Takeda,
S.J. Cox, A framework for user driven data management, Inf. Syst. 42
(2014) 36–58.

[31] A.S. Tanenbaum, M. Van Steen, Distributed Systems: Principles and
Paradigms, 2nd Ed., Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
2002.

[32] R. Tolksdorf, Laura: a coordination language for open distributed
systems, in: Proceedings of the 13th International Conference on
Distributed Computing Systems, IEEE 1993, pp. 39–46.

[33] P. Wyckoff, S.W. McLaughry, T.J. Lehman, D.A. Ford, Tspaces, IBM
Syst. J. 37 (1998) 454–474.

http://dx.doi.org/10.1016/j.is.2015.07.007
http://dx.doi.org/10.1016/j.is.2015.07.007
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref1
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref1
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref2
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref2
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref3
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref3
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref4
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref4
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref5
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref5
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref5
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref5
http://aspen.ucs.indiana.edu/collabtools/extras/indianafeb01_files/v3_document.htm
http://aspen.ucs.indiana.edu/collabtools/extras/indianafeb01_files/v3_document.htm
http://surface.syr.edu/eecs/123/
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref6
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref6
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref6
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref7
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref7
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref8
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref8
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref151
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref151
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref151
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref151
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref9
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref9
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref10
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref10
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref11
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref11
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref11
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref12
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref12
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref152
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref152
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref152
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref152
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref13
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref13
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref14
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref14
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref15
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref15
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref15
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref16
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref16
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref16
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref17
http://refhub.elsevier.com/S0306-4379(15)00135-0/sbref17

	A novel digital information service for federating distributed digital entities
	Introduction
	Background
	Event systems
	Event representation
	Consistency maintenance
	Data-centric consistency models
	Client-centric consistency models


	Digital Information Service
	Semantics of the Digital Information Service
	Unified Access Interface
	Event-based infrastructure and consistency maintenance
	Event Processing Engine

	Architecture
	The evaluation of the proposed system
	Testing environment
	System responsiveness experiments
	System responsiveness experiment results

	Scalability experiment
	Scalability experiment results

	Investigation of the threshold value in scalability graphs
	Network bandwidth investigation
	Limitation on open sockets in Linux
	Apache Tomcat limitations


	Conclusion and future work
	Supporting information
	References




