Provided for non-commercial research and educational use only.
Not for reproduction or distribution or commercial use.

THE INTEBNATIONAL JOUBNAL OF

FIGICIS

GRID COMPUTING:

This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the
author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without
limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s
administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,
or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission
may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Available online at www.sciencedirect.com

*s“ ScienceDirect QuTURE

@®ENERATION
®OMPUTER

el s
YSTEMS
ELSEVIER Future Generation Computer Systems 23 (2007) 317-337 S
www.elsevier.com/locate/fgcs

Fault tolerant high performance Information Services for dynamic
collections of Grid and Web services

Mehmet S. Aktas®P* Geoffrey C. Fox ab.c Marlon Pierce?

& Community Grids Laboratory, Indiana University, 501 N. Morton Suite 224, Bloomington, IN 47404, United States
b Computer Science Department, School of Informatics, Indiana University, Bloomington, IN 47405, United States
€ Physics Department, College of Arts and Sciences, Indiana University, Bloomington, IN 47405, United States

Received 12 January 2006; received in revised form 16 May 2006; accepted 22 May 2006
Available online 21 July 2006

Abstract

E-Science Semantic Grids can often be thought of as a dynamic collection of semantic subgrids where each subgrid is a collection of a modest
number of services that are assembled for specific tasks. We define a Gaggle as a modest number of managed and actively interacting Grid/Web
Services, where services are put together for particular functionality. The information management requirements in Gaggles include both the
management of large amounts of relatively static services and associated semantic information as well as the management of multiple dynamic
regions (sessions or subgrids) where the semantic information is changing frequently. We design a hybrid, fault tolerant, and high performance
Information Service supporting both the scalability of large amounts of relatively slowly varying data and a high performance rapidly updated
Information Service for dynamic regions. We use the two Web Service standards: Universal Description, Discovery, and Integration (UDDI) and
Web Services Context (WS-Context). We evaluate our approach by applying various tests to investigate the performance and sustainability of the
centralized version of our implementation that is applied to sensor and collaboration grids. The experimental study on system responsiveness of the
proposed approach shows promising results. This study indicates that communication among services can be achieved with efficient centralized
metadata strategies, with metadata coming from more than two services. In contrast point-to-point methodologies provide service conversation
with metadata only from the two services that exchange information. In addition, our performance indicates that efficient mediator services also
allow us to perform collective operations such as queries on subsets of all available metadata in service conversation.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Information Services; Grid information systems; Web Service Architectures; Grid and Web services

1. Introduction together for particular functionality. A particular Semantic
Grid may consist of several Gaggles each featuring intense

E-Science Semantic Grids can often be thought of as a local activity with less intense inter-gaggle interactions. Each
dynamic collection of semantic subgrids where each subgrid is Gaggle maintains the dynamic information which is the session
a collection of a modest number of services that are assembled ~ related metadata generated as a result of interactions among
for specific tasks such as forecasting earthquakes [1] or Grid/Web Services. Gaggles are also termed Grid Processes
managing an audio/video collaboration session [3]. We definea in the China National Grid [27]. They are sessions in the
Gaggle as a modest number of managed and actively interacting field of collaboration. An infrastructure for the Semantic
(collaborating) Grid/Web Services, where services are put Grid is discussed in [2] where Grid Processes may be
defined as cooperative processes that support the definition,

management and integration of business processes. We also

* Corresponding address: Computer Science Department, School of note that Gaggles may be composed from other “sub” Gaggles
Informatics, Indiana University, IU Research Park 501, North Morton Street, hierarchically.

Suite # 222, Bloomington, IN 47405, United States. Tel.: +1 812 856 0755.
E-mail addresses: maktas@cs.indiana.edu (M.S. Aktas). Extensive metadata requirements of both the worldwide Grid

gcf@cs.indiana.edu (G.C. Fox), mpierce @cs.indiana.edu (M. Pierce). and smaller sessions or “gaggles of grid services” that sup-
URL: http://www.cs.indiana.edu/~maktas (M.S. Aktas). port local dynamic action may be investigated in diverse sets

0167-739X/$ - see front matter (© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2006.05.009

318 M.S. Aktas et al. / Future Generation Computer Systems 23 (2007) 317-337

of application domains such as sensor and collaboration grids.
For example, workflow-style Geographical Information Sys-
tems (GIS) Grids such as the Pattern Informatics (PI) appli-
cation [1] require information systems for storing both semi-
static, stateless metadata and transitory metadata needed to
describe distributed session state information. The PI appli-
cation is an earthquake simulation and modeling code inte-
grated with streaming data services as well as streaming map
imaginary services for earthquake forecasting. Another exam-
ple, collaborative streaming systems such as Global Multimedia
Collaboration System (GlobalMMCS) [3] involve both large,
mostly static information systems as well as much smaller, dy-
namic information systems. GlobalMMCS is a service-oriented
collaboration system which integrates various services includ-
ing videoconferencing, instant messaging and streaming, and
is interoperable with multiple videoconferencing technologies.
Zhuge defines Knowledge Grid in [30,31] as “an intelligent
and sustainable interconnection environment that enables peo-
ple and machines to effectively capture, publish, share and
manage knowledge resources and that provides appropriate on-
demand services to support scientific research, technological in-
novation, cooperative teamwork, problem solving, and decision
making”. To this end, Gaggles may also be thought of as dy-
namic sub-components of the Knowledge Grid. Each Gaggle
might be created in a dynamic fashion to support science and
engineering applications of the Knowledge Grid.

Fig. 1 illustrates a model of building a system hierarchy
where services are aggregated into atomic grids that perform
basic functionalities. The basic (atomic) grids include Geo-
graphical Information Systems (GIS), collaboration, sensor,
compute or knowledge grids. Composite grids are built recur-
sively from both atomic and other composite grids. In this pic-
ture, we need the core Grid Services at the bottom of the figure
with services like extended UDDI XML metadata service for
static information and WS-Context XML metadata service for
dynamic information. The atomic (basic) grids can be reused in
all critical infrastructure grids which in turn are customized,
compared and overlaid with other grids for different critical
infrastructure communities such as crisis grid, emergency re-
sponse and so forth. As an example, PI grid application can
be built in composite fashion from basic grids, such as GIS
and sensor grids. Given this picture, we expect that this Grid
of Grids concept [36] can be applied recursively and dynami-
cally to build grid applications with a modest number of ser-
vices gathered together at any one time to perform a particular
functionality.

The Grid Information Services support discovery and
handling of services through metadata and are vital components
of Grids [4]. In this research, we are particularly interested in
supporting discovery and handling of metadata for the Gaggles,
i.e. one of the sub-grids of the whole Grid, where semantic
information is changing frequently. Handling information
requirements of these applications requires high performance,
fault tolerant information systems. These information systems
must be decentralized, relocate metadata to nearby locations
of interested entities and provide efficient access, storage of

Earthquake Prediction Energy Emergency

Grid - PI Application Response Grid
gy == _,:,_(_ ===ttt
[/ Services: GPS | "ttt eS :/ Services: Power,
Stations I Gas, GPS Stations
\\\\ and Filters > SO0 0 : \ and Filters
Collaboration Grid 6’@ Knowledge Grid
Sensor Grid GIS Grid Compute Grid

It Extended UDDI " Data Access/Storage " w5, Context XML
i~ XML Metadata _~ o _
2 =i e
1 — — I B

: C‘St‘curidt—D @iﬁCﬂi;D @Jrkﬂib _‘y[‘css;lgﬂg
[}

1

1

‘ Physical Network |

. . Metadata
Core Grid Services \\\k

1
1
1
1
i
1
]
1
]
i
]
i
1
—— p—
i
1
]
i
]
i
1
]

Fig. 1. Gaggles may be built in a dynamic fashion as Grids of Grids
applications with a modest number of services involved at any one time for
a particular functionality.

the shared information, as the dynamic metadata needs to be
delivered on tight time constraints within a Gaggle.

1.1. Motivation

We identify the following problems in Information Services
supporting both traditional and Semantic Grids. First, Grid
Information Services need to be able to support dynamically
assembled service collections gathered at any one time to solve
a particular problem at hand such as calculating damages from
disruptions at the time of a crisis. Most of the traditional Grid
Information Services [5,6] however are not built along this
model. Second, Information Services should scale in numbers
and geographical area. Most existing solutions [5,6] however
have centralized components and do not address scalability and
high performance issues. Third, Information Services need to
be able to take into account user demand changes when making
decisions on metadata access and storage. Fourth, Information
Services need to be able to provide a uniform interface for
publishing and discovery of both dynamically generated and
static information. Existing Grid Information Services however
do not provide such capabilities. We therefore see this as
an important area of investigation. This paper presents our
design of an architecture and prototype to address the identified
problems above. We describe a novel architecture for fault
tolerant and high performance Information Services in order
to manage distributed, dynamic session related metadata while
providing a consistent, uniform interface to both static and
dynamic metadata.

1.2. Requirements

We design our architecture
requirements:

to meet the following

Uniformity: The types and update frequency of information
may vary in both traditional and Semantic Grids. This requires
a hybrid Information Service providing a uniform interface
to dynamic/static metadata and supporting both the scalability
of large amounts of relatively slowly varying information and

M.S. Aktas et al. / Future Generation Computer Systems 23 (2007) 317-337 319

a high performance rapidly updated Information Service for
dynamic regions.

Interoperability: Information should be accessible by a diverse
set of consumer services through standard interfaces to
increase usability. This requires leveraging existing Web
Service standards for service discovery and communication to
enable Information Services and consumer services to operate
effectively together.

Persistence: Archival of session metadata may provide a
metadata management system enabling session failure recovery
or replay/playback capabilities for collaboration grids. This
requires persistent metadata storage capability.

Dynamism: Dynamic metadata, i.e. rapidly updated and short-
lived information, need to be supported in both traditional and
Semantic Grids. Furthermore, metadata need to be reallocated
based on changing user demands and locations. This requires
Information Services that can support metadata for dynamic
regions and that can provide discovery of data-systems hosting
the metadata under consideration in a dynamic fashion.

Performance: The update frequency on short-lived metadata
may vary based on applications. Here, the system is required
to support dynamic changes with a fine granularity time delay
for the systems with a modest number of involved services (say,
up to a thousand services per session).

1.3. Contributions and organization

The main contributions of this paper are two-fold. First, we
present a novel architecture for a WS-Context [20] compliant
metadata catalog service supporting distributed and centralized
paradigms. We use an extended version of UDDI [21] for
slowly varying metadata and present a uniform and consistent
interface to both short-lived dynamic and slowly varying quasi-
static metadata. We explore the application of context (session
related dynamic metadata) management in Grid systems to
correlate activities in workflow-style applications, by providing
a novel approach for management of widely distributed, shared
session-related dynamic metadata. We investigate the problem
of distributed session management in Grid applications, by
providing an approach for distributed event (session metadata)
management system enabling session failure recovery or
replay/playback capabilities. We also address lack of search
capabilities in Grid Information Services, by providing a
uniform search interface to both interaction independent
and conversation-based metadata enabling service discovery
through events.

Our second contribution is the application of topic-
based publish/subscribe methods to the problems of dynamic
replication methodology to support dynamic metadata. We
utilize a multi-publisher, multicast communication middleware
and a topic-based publish/subscribe messaging system as a
communication middleware to exchange messages between
peers.

This paper is organized as follows. Section 2 reviews
the state of the art in existing information services and
replica hosting environments. Section 3 reviews our design

for information systems to support Gaggles paying particular
attention to distributed data management aspects of the system.
We discuss the status of the system in Section 4 and the
evaluation of our prototype in Section 5. In Section 6, we
summarize and discuss future work.

2. Background

Peer-to-Peer (P2P) systems may broadly be categorized as
pure and hybrid [32]. On the one hand pure systems endeavor
for total decentralization and self-organization: on the other
hand, hybrid systems have some form of centralized control
such as a lookup service. In this paper, we focus our study
on the Information Systems that adopt pure P2P networks
which may further be categorized as (a) structured and (b)
unstructured. In structured P2P architectures, system resource
placement at peers is enforced with strict constraints which in
turn create heavy overhead on the bootstrap of the network.
For an example, Globus Monitoring and Discovery System
(MDS4) [5] has a structured architecture where there is a
single top-level Information Service that presents a uniform
interface to clients to access data, while the data is collected by
lower-level information providers. Relational Grid Monitoring
Architecture (R-GMA) [6] presents a relational model where
users query/store/access metadata centrally and, if information
is found, to directly connect to information providers to retrieve
the data without intermediary nodes. Another example is the
structured P2P systems where the nodes in the systems are
equally enabled and controlled and service information is
disseminated to all nodes (CAN [7], Chord [8]). Unstructured
P2P architectures can be characterized as systems where there
is complete lack of constraints on the placement of resources
and the capabilities of the system nodes. An extensive survey
on Grid Information Services can be found at [9,35].

Architectures with pure decentralized storage models have
focused on the concept of distributed hash tables (DHT)
[7,8]. DHT approach assumes possession of an identifier
such as hash table that identifies the service that need to
be discovered. Each node forwards the incoming query to a
neighbor based on the calculations made on DHT. Although
the DHT approach provides good performance on routing
messages to corresponding nodes, it has various limitations
such as primitive query capabilities on the database operations.
Here, we design an architecture which can be defined as an
unstructured P2P approach to P2P/Grid environment. We use
multi-publisher message broadcasting through a topic-based
publish/subscribe messaging system, which supports access
and storage decisions among distributed nodes.

Well-defined descriptions of resources, services and data
constitute metadata. Metadata can be represented using varying
metadata models such as XML Schema or Semantic Web
languages (RDF [29], OWL [28], etc.). Here, we are mainly
concerned with managing the metadata and delivering to
clients, not with knowledge processing. We presume the
metadata models to be application-specific and not defined by
us. To this end, we are concentrating on distributed computing
problems of managing metadata in the Semantic Grid. See
Section 4 of this paper for more discussion.

320 M.S. Aktas et al. / Future Generation Computer Systems 23 (2007) 317-337

An approach to solve the problem of locating services
of interests is the UDDI Specifications [21] from OASIS
(http://www.oasis-open.org). The UDDI is WS-I compatible
and offers users a unified and systematic way to find service
providers through a centralized registry of services. We identify
the following limitations in UDDI Specifications. First, UDDI
introduces a keyword-based retrieval mechanism. It does
not allow advanced metadata-oriented query capabilities on
the registry. Second, UDDI does not take into account the
volatile behavior of services. So, there may be stale data
in registry entries. Third, UDDI does not support extensive
metadata requirements of rich interacting systems. For instance,
services may require an Information Service to publish and
discover session metadata generated by one or more services
as a result of their interactions. Fourth, since UDDI is
domain-independent, it does not provide domain-specific query
capabilities such as geospatial queries.

There have been some solutions introduced to provide bet-
ter retrieval mechanism by extending existing UDDI Spec-
ifications. UDDI-M [10] and UDDIe [11] projects intro-
duce the idea of associating metadata (name-value pairs)
and lifetime with UDDI Registry. UDDI-MT [12,13] im-
proves this approach in several ways such as improving the
metadata representation from attribute name-value pairs into
RDF triples to provide semantically rich service descrip-
tions and relevant information. The Grimoires registry project
(http://twiki.grimoires.org/bin/view/Grimoires/WebHome) ex-
tends the UDDI-MT to provide a registry which can support
multiple service description models by taking into account ro-
bustness, efficiency and security issues. Another approach to
leverage UDDI Specifications was introduced by METEOR-S
[14] project which also utilizes semantic web languages when
describing a service (such as data, functionality, quality of ser-
vice and executions) in order to provide more expressiveness
power and better service match-making process.

In our design, we too extend the UDDI information model
by providing an extension where we associate metadata with
service descriptions. We use (name, value) pairs to describe
characteristics of services similar to the UDDI-M and UDDlIe
projects. We expand on the capabilities that are supported by
these projects, by providing domain-specific query capabilities.
An example for domain-specific query capability could be
XPATH queries on the auxiliary and domain-specific metadata
files stored in the UDDI Registry. Another distinguishing aspect
of our design is the support for session metadata. Our design
supports not only quasi-static, stateless metadata, but also
more extensive metadata requirements of interacting systems.
UDDI-MT and METEOR-S projects are example projects
that utilize semantic web languages to provide better service
matchmaking in retrieval processes. This research has been
definitely investigated [12,14] and so not covered in our design.
We view dynamic and domain-specific metadata requirements
of sensor/GIS and collaboration Grids as higher priority.

We use replication, a well-known and commonly used
technique to improve the quality of metadata hosting
environments, in our architecture. Sivasubramanian et al. [15]
give an extensive survey on reviewing research efforts on

designing and developing World Wide Web replica hosting
environments, as does Robinovich in [16], paying particular
attention to dynamic replication. As the nature of our target
data is dynamic, we focus on data hosting systems that are
handling with dynamic data. These systems can be discussed
under the following important design issues: (a) distribution
of client requests among data replicas, (b) selection of
hosting environments for replica placement, and (c) consistency
enforcement.

Distribution of client requests is the problem of redirecting
a client to the most appropriate replica server. Most existing
solutions to this problem are based on DNS-Server such as
in [17,18]. These solutions utilize a redirector/proxy server that
obtains the physical location of a collection of data-systems
hosting a replica of the requested data, and choose one to
redirect client’s request.

Replica placement is another issue that deals with selecting
data hosting environments for replica placement and deciding
how many replicas to have in the system. Existing solutions,
that apply dynamic replication, monitor various properties of
the system when making replica placement decisions [18,19].
For instance, Radar [18] replicates/migrates dynamic content
based on changing client demands. Spread [19] considers the
path between the data-system and client and makes decisions to
replicate dynamic content on that path.

The existing solutions to dynamic replication assume all
data-hosting servers to be ready and available for replica
placement and ignore “dynamism” in the network topology. In
reality, data-systems can fail anytime and may present volatile
behavior. We use a pure Peer-to-Peer approach, which is based
on a multi-publisher multicast mechanism, when distributing
access and storage requests to data-systems.

The consistency enforcement issue has to do with ensuring
all replicas of the same data to be the same. Various techniques
have been introduced in consistency management. For instance,
the Akamai project [17] introduces versioning where a version
number is encoded to document identifier, so that the client
would only fetch the updated data from the corresponding data
hosting system. Radar [18] applies a primary-copy approach
where an update can be done only on the primary-copy of the
data.

In our design, we employ a strategy which suggests
propagation of updates only if it is necessary. Our main
approach is to provide client-centric consistency which
provides guarantees for a single client’s access to a replicated
data store. We use Network Time Protocol (NTP) clients to
achieve synchronized timestamps to give labels, i.e. versions,
to each context stored in the system.

Our architecture differs from web replica hosting systems
as the intended use of our architecture is not to be a web-
scale hosting environment. The scale of our target systems
is in the order of a few dozen to at most a thousand
entities participating in a session. Our target domains range
from collaboration systems such as GlobalMMCS project to
geographical information systems such as Pattern Informatics
GIS-Grid. The participant entities of these systems might
dynamically generate metadata during a session. Such metadata

M.S. Aktas et al. / Future Generation Computer Systems 23 (2007) 317-337 321

Hybrid FTHPIS-WSContextService
interface combining Extended UDDI
and WS-Context WSDL Descriptions
uddi_wscontext.wsdl

FTHPIS Client FTHPIS Client
LS Extended UDDI WSDL
Service Interface
_______________ Descriptions
H ! uddi_extended.wsdl
: WSDL i
i L HTTP
! i
H FTHPIS-WSContext H
: Service =]
i $ JDBC i i —, i
i e —— P el
! 3 i | Extended UDDI| !
! Database | i | Service i
i : : :
! | | :
""""""""""""""""""""""""""" i JoBC i
e ——

|

Fig. 2. Our design integrates both UDDI and WS-Context Web Service Interfaces to provide a uniform programming interface to service metadata. This figure
illustrates the centralized version of FHTPIS-WSContext Service interacting with two clients. The service also interacts with an external extended UDDI service

when the incoming inquiry requests require static metadata.

can be expected to be small in size and big in the volume
depending on the Grid application.

3. Information Services

We have designed a novel architecture to Information
Services presenting a uniform interface to support handling and
discovery of not only quasi-static, stateless metadata, but also
session related metadata. Our approach is to utilize the existing
state-of-the-art systems for handling and discovering static
metadata and address the problems of distributed management
of dynamic metadata. In order to be compatible with existing
Grid/Web Service standards, we based the interface of our
system on the WS-Context [20] and UDDI [21] Specifications.
We have extended and integrated both specifications to provide
a uniform and consistent service interface to both dynamic and
static metadata. A centralized version of our architecture is
depicted in Fig. 2.

In our design, we use replication technique to provide
fault tolerance, load balancing, reduced access latency and
bandwidth consumption. In order to enable communication
between replica hosting servers, we utilize a topic based
publish—subscribe mechanism to provide message-based com-
munication as depicted in Fig. 3. In this scenario, on receiving
the client requests, the system first extracts dynamic and static
portions of the query. The static portion of the query is sim-
ply forwarded to UDDI XML metadata service, while the dy-
namic part is handled by the Information Service itself. If the
query asks for external metadata, then the query is multicast
to available replicas through a topic-based publish—subscribe
mechanism. On receiving the responses from both dynamic and
static metadata spaces, the system returns the results to query-
ing clients. In the following subsections, we discuss different
aspects of our architecture as follows. First, we discuss the de-
tails of how we have extended and combined UDDI and WS-
Context specifications. Then, we describe the fault-tolerant as-

pects of our design in detail. Next, we discuss the software mul-
ticast communication mechanism followed by the architectural
components of the proposed system.

3.1. Extended UDDI XML metadata service

We have extended existing UDDI Specifications to annotate
service descriptions with metadata describing characteristics of
services.

We designed a data model for service metadata by extending
UDDI Data Structure Schema. Detailed design documents can
be found at http://www.opengrids.org/extendeduddi/index.html.
Based on this model each service entry is associated with an
XML tag called “metadataBag” which consists of one or more
“serviceAttribute” sub-elements. Here, each “serviceAttribute”
corresponds to a piece of metadata and it is simply expressed
with (name, value) pairs. The value type of a “serviceAttribute”
can either be string or integer. As an example, we can illus-
trate a “serviceAttribute” as in (throughput, 0.9). A “serviceAt-
tribute” can be associated with a lifetime and categorized based
on custom classification schemes. A simple classification could
be whether the “serviceAttribute” is prescriptive or descriptive.
In the aforementioned example, the “throughput” service at-
tribute can be classified as descriptive. In some cases, a service
attribute may correspond to a domain-specific metadata where
service metadata could be directly related with functionality of
the service. For instance; OGC compatible GIS services provide
a “capabilities.xml” metadata file describing the data coverage
of geospatial services. We use an “abstractAttributeData” ele-
ment to represent such metadata and store/maintain these do-
main specific auxiliary files as-is. Here, the abstract attribute
data could simply be in any representation format such as XML
or RDF.

In order to support/integrate quasi-static stateless metadata
in UDDI Registries, we also extended existing UDDI XML

322 M.S. Aktas et al. / Future Generation Computer Systems 23 (2007) 317-337

FTHPIS Client

FTHPIS Client

WSDL

WSDL

[wsoL

FTHPI

S-WSContext |5 | ! HTTP
Service =

O Subscriber

. Publisher

'opic Based Publish-Subscri

FTHPIS-WSContext |

- XYY XY

{ JoBC

be i WSDL

_______ ! |Extended UDDI
H Service

e i JOBC

i i i
P : Database | !
I H |

FTHPIS-WSContext
Service

Fig. 3. This figure illustrates decentralized Fault Tolerant High Performance Information Services (FTHPIS) from the perspective of a single FTHPIS-WSContext
Service interacting with two clients. The FTHPIS system uses a topic based publish—subscribe messaging system to enable communication between the services.

API Schema and implemented it as a web service. We in-
troduced metadata-oriented publishing/discovery capabilities
by expanding on existing UDDI API such as “save_service”,
“find_service” and ‘“get_serviceDetail”. We also introduced
additional API to let third party users of services a) attach
additional metadata and b) pose queries for particular meta-
data to already published service entries. These additional
API are “get_serviceAttributeDetail”, “save_serviceAttribute”,
“find_serviceAttribute” and “delete_serviceAttribute”. Fur-
ther design documentation on XML APIs is available at
http://www.opengrids.org/extendeduddi/index.html.

Our design may also support discovery of domain-specific
prescriptive metadata as in the following scenario. A querying
user constructs a query “metadataBag” consisting of a list
of “serviceAttribute”’s. Each “serviceAttribute” forms a search
criterion. The constructed “metadataBag” is passed to UDDI
Registry as an argument of the extended “find_service”
function. We implement “find_service” functionality in a way
to support XPATH query capabilities on the UDDI Registry.
Say, in a given “serviceAttribute” element, one could indicate
(a) XPATH query statement and (b) name of the prescriptive
metadata file. If the search criterion is a XPATH query, then the
query is applied on the corresponding auxiliary file stored in the
UDDI Registry. The results will be a list of services that satisfy
a user’s query. This way, we can apply domain-specific queries
such as geospatial queries on the metadata services.

Given all these capabilities, one can simply populate
the registry with metadata as in following scenario. Say,
a user publishes a new service into UDDI Registry.
In this case, the user constructs a “metadataBag” filled
with “serviceAttributes” where each “serviceAttribute” has
(name, value) pairs. Each pair may describe one generic
descriptive characteristics of the service such as throughput,
or usage cost. If a service metadata is domain-specific,
we use an “abstractAttributeData” element and express the

serviceAttribute as a (name, abstractAttributeData) pair. As
the “metadataBag” is constructed, it can be attached to the
new service entry which can then be published with extended
“save_service” functionality that we introduced.

As we research UDDI Specifications to integrate with
our system, we have encountered various limitations in its
capabilities which we address in a separate paper [22]. Our
work on UDDI is for a specific type of metadata: semi-static
and context-free. UDDI is appropriate for data that is long-lived
(i.e. should be true for months or years) and that is independent
of the client interaction (i.e. all clients issuing the same requests
get the same responses). We discuss the parts of our architecture
that supports dynamic information in the short-lived service
collections in the following section.

3.2. Extended WS-context XML metadata service

We have extended the WS-Context Specification [20] to
manage session metadata between multiple participants in Web
Service interactions.

We designed a data model for managing dynamic metadata
by extending existing WS-Context XML Schema. Detailed
design documents can be found at http://www.opengrids.org/
wscontext/index.html. Based on this model, we define a session
entity which may be considered an information holder; in other
words, a directory where context with similar properties are
stored. Each session entry is associated with an XML tag called
“contextBag” which consists of one or more “Context” sub-
elements. Here, a context entity is used to represent dynamic
metadata and “contextBag” is considered as metadata collection
associated with a session. Each context has both system-defined
and user-defined identifiers. The uniqueness of the system-
defined identifier is ensured by the system itself, whereas the
user-defined identifier is simply used to enable users to manage
their memory space in the context service. As an example,

M.S. Aktas et al. / Future Generation Computer Systems 23 (2007) 317-337 323

we can illustrate a “context” as in (system-defined-uuid, user-
defined-uuid, “Job completed”). A complete example of a
context is given in Appendix A. The value of a context is stored
as SQL BLOB type in the MySQL database. A “context” can
also be associated with service entity and it has a lifetime.

Contexts may be arranged in parent—child relationships. One
can create a hierarchical session tree where each branch can
be used as an information holder for contexts with similar
characteristics. This enables the system to be queried for
contexts associated to a session under consideration. Each
session entity has a “session-directory-metadata”. Session
directory metadata describes the child and parent nodes of
a session. This enables the system to track the associations
between sessions.

In order to support/integrate dynamic metadata, we
also extended existing WS-Context XML API and im-
plement it as a web service. We introduced various
additional publishing/discovery capabilities to enable the
system to track the associations between sessions and con-
texts by expanding on primary functionalities of WS-Context
XML API such as “setContext” and “getContext”. Here
each context is stored and retrieved associated with a
session. The additional XML API is designed to let third
party users (a) to locate/retrieve/save/delete contexts asso-
ciated to a session and (b) to locate/retrieve/save/delete
particular sessions with given contexts and/or participating
session-entities. Extended version of WS-Context XML API
include “find_context”, “get_contextDetail”, “save_context”,
“delete_context”, “find_session”, “get_sessionDetail”, “save_
session”, and “delete_session”. Further design documenta-
tion on WS-Context XML API is available at http://www.
opengrids.org/wscontext/index.html.

3.3. An hybrid Information Service interface combining both
extended UDDI and WS-Context functionalities

We combine both extended UDDI and WS-Context imple-
mentations within a hybrid service (see Fig. 2). Our aim is
to provide a uniform service interface to service metadata. To
this end, we introduced hybrid publishing/discovery capabil-
ities, such as “save_service”, “find_service”, “delete_service”
and “get_serviceDetail”, supporting both dynamic and quasi-
static, stateless service metadata.

Given these capabilities, one can simply populate this hybrid
information service with service metadata as in the following
scenario. Say, a user publishes a new service into the system. In
this case, the user constructs both “metadataBag” filled with
“serviceAttributes” and ‘“contextBag” filled with “contexts”
where each context describes the sessions that this service will
be participating. As both the “metadataBag” and “contextBag”
is constructed, they can be attached to a new ““service” element
which can then be published with extended “save_service”
functionality of the hybrid Information Service. On receiving
a publishing service metadata request, the system applies the
following steps to process service metadata. First, the system
separates the dynamic and static portions of the metadata.
Then, the system delegates the task of handling discovery

of the static portion (“metadataBag”) to extended UDDI
service. Next, the system itself provides handling and discovery
using dynamic portions of the metadata in the metadata
replica hosting environment. Further design documentation
on hybrid Information Service XML API is available at
http://www.opengrids.org/extendeduddi/index.html.

The intended use of our approach is to support information
in dynamically assembled Semantic Grids where ‘“real-time”
decisions are being made on which services to tie together in a
dynamic workflow to solve a particular problem. One may think
of WS-Context compliant Information Services as the metadata
catalog for semantic metadata as in an RDF triple store.
The semantic metadata expresses the relationships between
resources, while the applications that access the metadata
catalog deduct further (inferred) information. In our design, the
distinctive semantic richness comes from the highly dynamic
architecture with metadata from more than two services (in
contrast WS-Transfer, WS-Metadata Exchange Specifications
that only easily get semantic enhancement from the two
services that exchange metadata). We discuss various research
issues in building Information Services for dynamically
assembled Semantic Grids in the following section.

3.4. Fault tolerant high performance Information Services

We have considered two application domains from collabo-
ration and sensor/GIS grids to demonstrate the use of our sys-
tem: GlobalMMCS and PI GIS-Grid. GlobalMMCS is a peer
to peer collaboration environment where videoconferencing
sessions can take place. Any number of widely distributed
services can attend to a collaboration session. GlobalMMCS
requires persistent archival of session metadata to provide re-
play/playback and session failure recovery capabilities. The PI
GIS-Grid is a workflow-style Grid application which requires
storage of transitory metadata needed to correlate activities of
participant entities. Both application domains require a decen-
tralized metadata hosting environment which can support both
scalability (of large amounts of information) and performance
requirements (of rapidly updated dynamic information). To this
end, we identify two important research issues that need to be
answered in our design: fault tolerance and high performance.

We use replication technique to provide fault tolerance,
which improves the quality of our data hosting environment.
If one of the redundant storage elements goes down, it
automatically consults remaining elements to restore itself. The
replication technique can also lead into high performance by
reducing (a) bandwidth consumption and (b) the time between
a client issuing a request and receiving the corresponding
response.

One approach to replication is replicating context in every
node in the distributed system architecture. This full-replication
method could surely provide best fault-tolerance in terms of
availability. However, this approach doesn’t scale. The more
replicas need to be kept consistent, the higher quantity of
exchanged messages and time required. The other approach
is partial-replication which suggests replication of contexts
only if it is necessary to minimize the cost needed to keep

324 M.S. Aktas et al. / Future Generation Computer Systems 23 (2007) 317-337

""""""""""""""""""""""""""""""" Gaggle

... Boundary

Fig. 4. An eleven-node based FTHPIS replica hosting environment. Numbered
callout shapes represent replica servers. Letters ranging from A to O correspond
to contexts replicated on the replica servers ranging from 1 to 11.

replicas consistent. So, we choose partial-replication over full-
replication.

Replication can also be categorized by the manner in which
the replicas are created and managed. On the one hand,
static replication suggests a strategy where replicas are to be
manually created and managed. In a dynamically assembled
Gaggle environment, it is not feasible to manually replicate
dynamically generated metadata. On the other hand, dynamic
replication suggests replication of contexts based on changing
user behavior. To this end, as the nature of our data is very
dynamic, we use dynamic data replication technique, where
data replicas may be created, deleted, or migrated among
hosting data-systems based on changing user demands [16].

An example of 11-node based FTHPIS replica hosting
environment is depicted in Fig. 4 where dynamic metadata
(contexts ranging from A to O) replicated on the FTHPIS nodes
ranging from 1 to 11. Our main interest in dynamic replication
is to place context replicas in the proximity of requesting
clients by taking into account changing demand patterns to
minimize the response latency. The number and the placement
of replicas may change due to demand changes. In the example,
the quantity of context replicas D, E and F is shown more
than the quantity of others because of high demand for these
replicas. Our aim is not to replicate the context space, but the
individual contexts based on their demands. Next, we discuss
the two important aspects of dynamic replication: access and
storage algorithms.

3.5. Access algorithm

The access algorithm distributes client requests to appropri-
ate replica hosting data-systems. Our model is based on pure
Peer-to-Peer approach where each node can probe all other
nodes in the network to look up metadata. A primary role of the
access algorithm is the discovery of one or more data-systems
hosting the requested metadata. This discovery process consists
of two steps: data-system discovery and access. The first step is

concerned with selection of data-systems that can answer the
client requests. The second step is to inform the data-system
that is most appropriate for handling the request. In the first
step, to find metadata, a node sends a probe message to all other
nodes through a software multicast mechanism; target data-
systems that host the metadata matching the probe to send a re-
sponse directly to the requestor node. Here, a response message
consists of information regarding how well the data-system can
handle this query. For instance, such information may include
proximity information between the client and the data-system.
On receiving response messages, the requestor node chooses
the most appropriate data-system that can handle the request.
In the second step, the requestor node sends the client request
to the chosen data-system particularly asking to handle the
request.

3.6. Storage algorithm

Storage algorithm selects data-systems for replica placement
and decides how many replicas to have in the system. In
our design, storage decisions are made autonomously at each
node without any knowledge of other replicas of the same
metadata. The storage decision is made based on the client
requests served by that node. Storage process consists of
two separate steps such as metadata placement and metadata
creation. The first step has to do with selection of data-systems
that should hold the replica and the second step has to do with
metadata replica creation. In the first step, each node (data-
system) runs the storage algorithm which defines client request
thresholds for replica creation and deletion. If a metadata entry
is in high demand which is above a pre-defined threshold,
then the metadata is replicated. If a metadata entry is in
low demand which is below a pre-defined threshold, it will
be deleted. To replicate metadata, a node sends a “storage”
message to all other nodes through a software multicast
mechanism; target data-systems, that have available space,
send a respond directly to requestor node. Here, the response
message consists of various decision metrics such as client
proximity information. On receiving the response messages,
replica placement algorithm chooses the most appropriate data-
system to replicate the metadata. In the second step, the
requestor node sends a replica creation message directly to the
chosen data-system asking to store a replica of metadata in
consideration. This process creates a dynamic metadata storage
in which metadata is moved based on changing client demands.

3.7. Multi-publisher multicasting communication middleware

An importing aspect of our system is that we utilize software
multicasting capability which is an important communication
medium supporting the ability to send out access and storage
requests to the nodes of the system. Any node can publish
and subscribe to topics which in turn create a multi-publisher
multicast broker network as communication middleware. Here,
the publisher does not need to know the location and identities
of receivers. It publishes a message to a topic to which all nodes
subscribe.

M.S. Aktas et al. / Future Generation Computer Systems 23 (2007) 317-337 325

Extended
UDDI Registry
Service
WSDL

TP
HTTP(S) Detailed architecture of a FTHPIS

WSDL o
== .

JDBC

Expeditor i

N
.

Jo%3
L'K,'/f)

AN

WSDL
Client

N Gaggle
.. Boundary

Fig. 5. An example eleven-node based FTHPIS replica hosting environment where each node is connected with a publish—subscribe based overlay network.
Numbered squares represent nodes running FTHPIS-WSContext Service (see Fig. 2 for centralized version of the service) whose detailed architecture is also
illustrated in the figure. The tick lines on the figure are used to show different message delivery routes between peers 2 and 7.

The architectural design of the proposed system is built on
top of such a publish/subscribe based multicast broker network
system as depicted in Fig. 5. In this illustration, each peer
runs a FTHPIS-WSContext Service whose detailed architecture
is also given in Fig. 5. We use NaradaBrokering (NB) [23]
publish/subscribe system as a communication middleware
for message exchanges between peers. NaradaBrokering
establishes a hierarchy structure at the network, where a peer
is part of a cluster that is a part of a super-cluster which is in
turn part of a super-super-cluster and so on.

The organization scheme of this scenario is small world
network [37,38] where the communication between peers
increases logarithmically with geometric increase in network
size, as opposed to exponential increase in uncontrolled
settings [23]. We particularly use NaradaBrokering software
in our design, since it provides efficient message delivery to
the targeted peer en route to intended clients. For example,
in Fig. 5, we observe various message delivery routes from
peer-2 to peer-7. The NaradaBrokering software is able to make
decision to choose most efficient message delivery route, i.e.,
2-6-7, as opposed to inefficient delivery routes such as 2-3-
5-6-7 or 2-3-4-10-9-8-6-7. Here, every peer, either targeted
or en route to one, computes to shortest path to reach target
destinations.

3.8. System components

Our proposed architecture consists of various modules such
as Query and Publishing, Expeditor, Access, Storage and
Sequencer Modules. Architectural design of our system is
illustrated in the upper-left corner of Fig. 5.

3.8.1. Context query and publishing modules

These modules receive client requests through a uniform
service interface for publishing/discovering dynamic and static
metadata. The client query/publishing requests are processed
and dynamic metadata parts of the queries are extracted. Then,
the request is forwarded to Expeditor Module to find the results.
Likewise, the static metadata portion of the requests is relayed
to external UDDI Service to publish/discover services through
static metadata.

3.8.2. Expediter module

This is a generalized caching mechanism. Each node
has a particular expediter. One consults the expediter to
find how to get (or set) information about a dataset in an
optimal fashion. The expediter is roughly equivalent to a
replica catalog in classic Grids. Expeditor forms a built-in
memory and it maintains Context metadata objects in Context
Spaces. A Context Space is an implementation of Tuple-Spaces
concept [24]. Context Spaces allow us to apply space based
programming to provide mutual exclusive access, associative
lookup and persistence.

3.8.3. Access module

This module runs the access algorithm mentioned above. It
support request distribution by publishing messages to topics
in the NB network. It also receives messages (in respond to
client request) coming from other peers and forward these query
messages to Expediter Module. The Access Module locates the
nodes that are closest in terms of network distance with lowest
load balance from the node requesting access to the communal
node in question. It also takes into account the load balance
of each responding data-system when choosing the right data-
system.

326 M.S. Aktas et al. / Future Generation Computer Systems 23 (2007) 317-337

3.8.4. Storage module

This module runs the storage algorithm. It interacts with
the Expediter Module and applies the storage algorithm
to all local Context metadata. If the metadata is decided
to be replicated, then the storage module advertises this
replication by multicasting it to available peers through the
NB publish/subscribe mechanism. The storage module also
interacts with the Sequencer module in order to label each
incoming metadata with a time stamp.

3.8.5. Sequencer module

This module ensures that an order is imposed on
actions/events that take place in a session. The Sequencer
Module interacts with the Storage Module and labels each
metadata which will be replicated in this replicated metadata
hosting environment. The Sequencer Module interacts with
Network Time Protocol (NTP) clients to achieve synchronized
timestamps among the distributed nodes.

When receiving a query, the Query Module first processes
the query and extracts the dynamic metadata portion of
the query. Then, the Query Module forwards the query to
Expediter, where the Expeditor Module checks whether the
requested data is in Context Spaces. If the Expeditor Module
cannot find the result in Context Space or if the requested
metadata is expired, then the query is forwarded to the JDBC
Handler to query the data in a local database. If the query
asks for external metadata, then the Expediter will forward the
query to Access Module, where the Access Module multicast
a probe message to available Information Services through
NaradaBrokering and communicates with the Information
Services that are the original data sources for this query. The
query is responded by an Information Service which may be
the best qualified Information Service to handle this query.

4. System status
4.1. Extended UDDI XML Metadata Services

We have implemented extended UDDI XML Metadata Ser-
vices [25] handling and discovery of static metadata based on
the WS-I standard Uniform Description, Discovery, and Inte-
gration (UDDI) Specifications. We base our implementation on
jUDDI (version 0.9r3), a free, open source, and Java imple-
mentation of the specification. (More at http://www.juddi.org.)
jUDDI has been architected to act as the UDDI front-end on top
of existing databases.

In our design, we only use a portion of the jUDDI library as
the UDDI-front end in order to implement an extended version
of UDDI XML API. We have discarded jUDDI servlet-based
architecture and implemented Grid/Web Services interfaces as
front access to UDDI Registries. We have enhanced jUDDI
in the following ways. First, we expanded on UDDI XML
Data Structure and implemented extensions to UDDI XML
API to associate metadata with service entries. Second, we
implemented a leasing capability. This solves a problem
with UDDI repositories: information can become outdated,
so we automatically clean up entries by assigning them an

expiration date. Leases on metadata may be extended. Third, we
implemented GIS-specific taxonomies to describe Open GIS
Consortium (OGC) compatible services such as Web Feature
Services and their capabilities files. The “capabilities.xml” file
is (in effect) the standard metadata description of OGC services.
Finally, we implemented a more general purpose extension
to the UDDI data model that allows us to insert arbitrary
XML metadata into the repository. This may be searched
using XPATH queries, a standard way for searching XML
documents (http://www.w3.org/TR/xpath). This allows us to
support other XML-based metadata descriptions developed
for other classes of services besides GIS. The Web Services
Resource Framework (WSRF), a Globus/IBM-led effort, is
an important example. Our approach allows users to insert
both user-defined and arbitrary metadata into the UDDI XML
metadata repository.

4.2. WS-Context compliant XML Metadata Services

We have implemented a centralized version of WS-Context
compliant XML Metadata Services [25] handling discovery
of dynamic, session related metadata. Here, session related
metadata is short-lived and dependent on the client [26].
The WS-Context metadata service keeps track of context
information shared between multiple participants in Web
Service interactions. The context here has information such
as unique ID and shared data. It allows a collection of
action to take place for a common outcome. We utilize WS-
Context Specification to maintain user profiles and preferences,
application specific metadata, information regarding sessions
and their participating entities. Each session is started by the
coordinator of an activity. The coordinator service publishes
the session metadata to Information Service and gets a
unique identifier in return. The uniqueness of the session-id
is ensured by the Information Service. Sessions can obviously
be composed from other “sub” sessions hierarchically. Here,
each session is associated with the participant services of
that session. Dynamic session information, i.e. context, travels
within the SOAP header blocks among the participant entities
within the same activity. Our implementations of UDDI and
WS-Context Metadata Services do not use XML databases but
for efficiency convert the XML to SQL and store in a MySQL
database.

4.3. Hybrid Information Service Interface combining extended
UDDI and WS-Context functionalities

We assume a range of applications which may be interested
in integrated results from two different metadata spaces; UDDI
and WS-Context. When combining the functionalities of these
two technologies in one hybrid service, we may enable uniform
query capabilities on context (service metadata) catalog. To
this end, we have implemented a uniform programming
interface, i.e. a hybrid information service combining both
extended UDDI and WS-Context. On receiving service-
metadata publishing/inquiry requests, the hybrid service simply
delegates the task of handling metadata to an appropriate end.

M.S. Aktas et al. / Future Generation Computer Systems 23 (2007) 317-337 327

5. System evaluation

We designed various experiments to investigate the
performance of the centralized version of the FTHPIS-
WSContext Service (see Fig. 2). In the system evaluation
section, we are particularly addressing the following research
questions:

e What is the baseline performance of the FTHPIS-
WSContext Service implementation for given standard
operations?

e What is the effect of the network latency on the baseline
performance of the system?

e What is the performance degradation of the system for stan-
dard operations when processing more users/transactions
simultaneously at various loads?

e What is the performance of the system in a testing
environment that is designed based on targeted application
use domains where there are both multiple clients and
providers running simultaneously at various loads?

e What is the effect of Operating System CPU thread
scheduling interference on the system performance?

To evaluate the performance of the system, we used
response time as the performance metric. The response time
is the average time from the point a client sends off a
query till the point the client receives a complete response.
Although there is much functionality introduced by the
FTHPIS-WSContext system, we focus our experiments on the
publication and inquiry capabilities. We test the performance
of our implementation with respect to response time at both
the querying client and publishing provider applications. In the
following section, we give details of the environment of our
experiments.

5.1. Environment

We tested our code using various nodes of a cluster located
at the Community Grids Laboratory of Indiana University. This
cluster consists of eight Linux machines that have been setup
for experimental usage. In addition to these nodes, we also used
a desktop machine (kilimanjaro.ucs.indiana.edu) where we ran
our client application. The cluster computers were equipped
with Intel®Xeon™CPU (2.40 GHz) and 2 GB RAM. Each of
the machines ran Linux kernel 2.4.22. The desktop machine ran
Windows XP and was equipped with Intel Pentium 4 CPU (3.4
GHz) and 1 GB RAM. The network bandwidth between these
machines was 900 Mbits/s.!

We tested the performance of the FTHPIS-WSContext
Service with a client program called WSContextClient (a
program for sending queries to FTHPIS-WSContext Service)
and a provider program WSContextProvider (a program for
publishing context to FTHPIS-WSContext Service). Both
WSContextClient and WSContextProvider are multithreaded
programs. These applications take the following arguments: (a)

! The bandwidth measurements were taken with Iperf tool for measuring
TCP and UDP bandwidth performance (http://dast.nlanr.net/Projects/Iperf).

the number of threads, (b) the number of queries/publications
to be executed, and (c) the time to wait after each transaction.
When creating multiple threads we use a barrier to stop the
threads until a specific number of threads is at hold. Then
the threads are released and can continue. This allowed us to
simulate concurrent querying/publishing accesses to the server.
We illustrate timing methodology in the pseudo code below.

SET the number of threads to N
SET the number of transaction to be executed to T
SET the time to wait after each transaction to S

CREATE N number of threats
STOP the threads until N threads is created and ready

FORX=1toT
SET start to 0, stop to 0
SET start to getTimeMicroseconds()
saveContext(...) or getContext(...)
SET stop to getTimeMicroseconds()
PRINT (stop — start)
IF S is set THEN
WAIT for S time interval before next transaction
END IF
END FOR

In the experiments, the FTHPIS-WSContext Service was
running on cluster node-6, while the WSContextClient
was running on kilimanjaro.ucs.indiana.edu. We ran the
WSContextProvider applications across the cluster nodes
1-5. One should keep in mind that the given client/server
architecture, with all machines on the same network, is setup to
measure an approximation of the optimal system performance.
We expect that the results measured in this environment will be
the optimal upper-bound of the system performance.

In the experiments, we used metadata samples (which
were actually used in the aforementioned Pattern-Informatics
application use domain) with a fixed size of 1.2 KB. We
illustrate the WS-Context and UDDI XML metadata samples
in Appendices A and B respectively. In this work, we
assumed XML metadata as flat contexts, i.e. no parent—child
relationships existed between contexts stored in the system.
We wrote all our code in Java, using the Java 2 Standard
Edition compiler with version 1.4.2. In the experiments,
we used Tomcat Apache Server with version 5.5.8 and
Axis software with version 1.2beta3 as a container for
deployment of FTHPIS-WSContext Service. We choose to
use getTimeMicroseconds() function which is provided by
NaradaBrokering [23] software because of its high resolution.
As backend storage, we use MySQL database with version 4.1.

5.2. Experiment I — responsiveness experiment

Our primary interest in doing this experiment is to
understand the baseline performance of the implementation of
FTHPIS-WSContext Service. We also investigated the effect of
network latency on the system performance. We evaluated the
performance of the service for inquiry and publication functions
under normal conditions, i.e., when there is no additional traffic.

328

1 user/100

M.S. Aktas et al. / Future Generation Computer Systems 23 (2007) 317-337

1 user/100

I s :
transactions N transactions (3 -
= &3 o0
Publishing . Publishing /(.
- L4 L d -
Querying - / Querying Y
Module (‘7/\‘" Module -
\ E j \
4 /

WS-Context Client FTHPIS Server WS-Context Client FTHPIS Server
Test A. FTHPIS-WSContext inquiry without database access Test B. FTHPIS-WSContext inquiry with database access

I's 1 user/100 ™
transactions
single JUDDI Registry
threaded Server Engine
‘ 4
UDDI Client UDDI Server

Test C. jUDDI based UDDI inquiry

|1 user/100
transactions

Dummy
Server

Client Dummy Server

Test D, Dummy Server inquiry

Fig. 6. Testing cases of responsiveness experiment for inquiry functionality.

® o
single 5 lalh:gh,':gg .. ®
threaded =] il
" ©| Module "

1 user/100

transactions |7

WS-Context Client FTHPIS Server

Test A. FTHPIS-WSContext publication without database access

-
single jUDDI Registry
e Server
Engine
1 user/100
transactions
UDDI Client UDDI Server

Test C.jUuDDI based UDDI publication

Publishing
Querying
Module

single
threaded

Jasm £

1 user/100
transactions 7

WS-Context Client

FTHPIS Server

Test B. FTHPIS-WSContext publication with database access

Dummy
Server

1 user/100

transactions
\ /J /
Client Dummy Server

Test D. Dummy Server publication

Fig. 7. Testing cases of responsiveness experiment for publication functionality.

In this experiment, we investigated four different testing
cases: (a) a single client sends queries to a FTHPIS-WSContext
node where there is a cache hit in the Expeditor module (which
is explained in Section 3.8.2) and the query is responded
without database access, (b) a single client sends queries to
a FTHPIS-WSContext Service where there is a cache miss
and the query is responded with database access, (c) a client
sends queries to a UDDI Service, and (d) a client sends
queries to a dummy service where the round trip message is
extracted to and from container but no processing is applied.
The dummy service receives the query/publication request
message that is used in previous testing cases and then sends
it back to the client without processing it. This test is done
to measure the pure network latency of a given operation.
At each testing case the client sent 100 sequential queries
and average response time was recorded. We repeated the
same testing cases for publication function as well. In this
experiment, we investigated the system performance compared
with UDDI registry for given standard operations. In evaluating

the UDDI performance, we used the jUDDI registry with the
following exception. We have discarded jUDDI servlet-based
architecture and implemented a Web Service WSDL interface
as front-end access to investigate UDDI in a similar set up to
FTHPIS-WSContext for basic performance. We assume that
the underlying structure of jUDDI is similar to any other
UDDI registry implementation as they all are implementing
the same specification. We tested UDDI inquiry/publication
functionalities with an XML metadata size of 1.2 KB (see
Appendix B) which is the same message size used in FTHPIS-
WSContext testing cases. The designs of these experiments are
depicted in Figs. 6 and 7. Figs. 8 and 9 illustrate the system
performance when the FTHPIS-WSContext inquiry function
was executed (based on Test-A and Test-B depicted in Fig. 6),
while Figs. 11 and 12 illustrate the same when the FTHPIS-
WSContext publication function was executed (based on Test-
A and Test-B depicted in Fig. 7) 120 times sequentially. The
detailed statistics corresponding to these tests are listed in
Tables 1 and 2 respectively. When we investigated the resulting

M.S. Aktas et al. / Future Generation Computer Systems 23 (2007) 317-337 329

60 17
: —s— Observed times
1 1 | |

S50Hk -t +--F----+—-=1m== -~ o mlmimit e

I | | |
————— Fmmlm == ==

P
o

Times (msec)
N w
(=} o

—_
o

0

0 10 20 30 40 50 60 70 80 90 100 110 120
Run

Fig. 8. FTHPIS-WSContext inquiry without database access.

0 10 20 30 40 50 60 70 80 S0 100 110 120
Run

Fig. 9. FTHPIS-WSContext inquiry with database access.

round trip times, we observed two working modes: startup and
initialized. We note that both inquiry and publication functions
require more cost at the startup mode. To this end, we only
took into account the initialized mode in calculating the average
response time for each function. Here, we measured the average
response time by considering the last hundred observation time
samples. We repeated these tests in five different test sets.

5.2.1. Results of the responsiveness experiment

Fig. 10 shows the performance results of inquiry function,
while Fig. 13 shows the performance results of publication
function. It was anticipated that the memory built-in caching
mechanism (the Expeditor Module) would improve the
performance of the inquiry and publication functions. The
empirical results show that (a) for inquiry function, we
gain around 18% performance increase (on average) and (b)
for publication function, we gain around 22% performance
increase (on average) by employing a cache mechanism in our
design. We observe that UDDI inquiry function executed at
an average of 39 ms. A similar performance baseline test has
been applied on jUDDI registry for inquiry function in [33]
in which the average responsiveness of the inquiry function
was measured around 40 ms which in turn helps validating
our findings. Based on the experiments performed, we
note that cache-enabled FTHPIS-WSContext inquiry function
performed with 21% performance increase compared to UDDI-
inquiry function. Likewise, cache-enabled FTHPIS-WSContext

Table 1

Statistics for initialized mode of inquiry requests (last 100 observed times)
Statistics (ms) Fig. 8 Fig. 9
Maximum 38.185 45.241
*Average 30.659 38.073
Minimum 24.348 30.824
Standard deviation 3.191 9.315
Table 2

Statistics for initialized mode of publication requests (last 100 observed times)
Statistics (ms) Fig. 11 Fig. 12
Maximum 41.204 56.51
*Average 34.789 45.304
Minimum 29.968 38.925
Standard deviation 3.009 3.613

publication function performed with 30% performance increase
compared to UDDI-publication function.

By comparing the results of Test-A (depicted in Figs. 6
and 7) for inquiry and publication functions, we observe
that publication function requires more time compared to
inquiry function. (As mentioned earlier in Section 3.8.2, we
implemented the cache based on Tuple-spaces paradigm [24].)
This is because the “read” operation can return the value of the
context while the context is in the Expeditor module. However,
the “write/update” operation requires a process to look up for
context, physically remove the entry, modify its value, and
place the copy back into the Expeditor. This in turn increases
the time for publication. By comparing the results of Test-B
(depicted in Figs. 6 and 7) for inquiry and publication functions,
we observe that publication requires more time because of the
database commit that must take place. By comparing the results
of Test-D and Test-A (depicted in Fig. 6) of inquiry function, we
note that the network latency costs more than the actual time
needed to complete the operation in the server-end. One should
keep in mind that the performance measurement was taken on
a tight cluster. In a wide area network, one could expect higher
network latency which might have further impact on the system
performance. So, we determined that network latency may have
a significant impact on the centralized version of FTHPIS-
WSContext system performance. We conclude that having a
built-in caching mechanism provides significant performance
increase for given standard operations.

5.3. Experiment 2 — overloading experiment

In the second experiment, we want to determine how
well the number of users anticipated can be supported by
the system for constant loads. Our goal is to quantify the
degradation in response time at various levels of simultaneous
users. In order to understand such performance degradation, we
evaluate standard FTHPIS-WSContext Service functionalities
with additional concurrent traffic. One should keep in mind that
we want to test sustainability of the system under the worst case
which is the testing of the system by sending queries at the same
time from concurrent users with a constant load.

330 M.S. Aktas et al. / Future Generation Computer Systems 23 (2007) 317-337

Round Trip Time Chart for Inquiry Requests with message size of 1.2 KB

45

—+— WS-Context inquiry %100

cache hit
—=®— WS-Context inquiry with
%100 cache miss

average response time (msec) per request

80 1 smdg - - - - STDiass —— ~ - STD883~ ~ =~ §T0i68d & 807373 ~ 7 7]

24 —— —— m mmmmm e e e e mmmmm——— - = — web service front end

L

— Dummy Service inquiry

—&— UDDI inquiry - jUDDI with

setl set2 set3

setd setS

Each test set represents 100 iterations

Fig. 10. Round trip time chart for inquiry requests.

60

| + Oi:sewe:i times |

|
50 1
1
|

40

80~ -4 --k----

Times (msec)

0 10 20 30 40 50 60 70 80 90 100 110 120
Run

Fig. 12. FTHPIS-WSContext publication with database access.

We have done this by gradually ramping-up the number
of querying WSContextClients until the system response time
degrades. In this experiment, the inquiry function was executed
with constant frequency (5 sequential inquiries per second)
by each client and average service time was recorded at
various levels of simultaneous clients. We applied the same
testing methodology for publication function to investigate
system performance against simultaneous publication requests.
The Tomcat Apache Server uses multiple threads to handle
concurrent requests. In this experiment, we increased the
default value for maximum number of threads from 150 to

500 to be able to test the system behavior for high number of
concurrent clients. The design of this experiment is depicted in
Fig. 14, while the results are depicted in Figs. 15 and 16.

5.3.1. Results of the overloading experiment

Based on the results depicted in Fig. 15 and Table 3, we
determine that the large number of concurrent inquiry requests
may well be responded without any error by the system and do
not cause significant overhead on the performance. However,
we observe that after 100 concurrent users, response time
degradation becomes noticeable. We applied the similar testing
methodology, i.e. Test-B depicted in Fig. 14, to publication
function under two conditions: (a) concurrent publishers send
their requests when request was handled with database access
and (b) concurrent publishers send their requests when request
is handled in Expeditor module (explained in Section 3.8.2)
without database access. Having too many concurrent queries
on MySQL typically decreases response times for all users [34].
It reduces overall system performance by making disk access
more random, by making CPU and file caches less efficient,
and so forth. To this end, we executed first condition of this
testing case to identify the system limits for optimal number of
concurrent publication requests when using MySQL database
as primary storage.

We observed that when we have more than two concurrent
publication requests aiming to update the same context, the
system fails to satisfy 23% publication requests. The results
for the first test condition are shown in Table 4. These results
indicated significant decrease in system performance as well as
high failure rate. This led us to execute the second condition,
when we grant publication request within the cache (Expeditor
Module), as the primary storage, without having database
access. Here, we stored the updated contexts offline, i.e. outside
of the time interval during which the query is executed, into
the MySQL database (as the secondary storage). Based on the
results depicted in Fig. 16 and Table 5, we determine that the
large number of concurrent publication requests may also well
be responded without any error by the system, when the system
does not require database access in granting the concurrent

average response time (msec) per request

M.S. Aktas et al. / Future Generation Computer Systems 23 (2007) 317-337

Round Trip Time Chart for Publication Requests with message size of 1.2 KB

55
STD:17.87 X STD: 15.28
3 » SJD:17.16 %
1. e +
50 STD: 16.309 “STD:525
i et e T T e s e S s
STD: 3.61 STD: 2.85 STD:5.65 SIG4T2 —a— WS-Context publication
T 0 G U S without database access
Dummy Service publication
W e BIDBEE - BIDRNE T BT 4E STO A 18~ = =
STD: 3.009 —%— WS-Context publication with
O o A e T A T e T e N e e e database access
25 - —&— UDDI publication - jUDDI with
web service front end
) o T T T T T T T T T o T T T e Ty]
15
10 . - : -
sett set2 set3 setd seth

Each test set represents 100 iterations

Fig. 13. Round trip time chart for publication requests.

2,4, 6, 8, 10, 50, 100, 1530 simultaneous clients

5 transactions

x. by each client

Publishing
Querying
Module

WS-Context Client

FTHPIS Server

Test A. FTHPIS-WSContext inquiry at various levels of simultaneous clients

2.4, 6,8, 10, 50, 100, 150 simultaneous providers

5 transactions

Publishing
Querying
Module

by cach provider

—

WS-Context Provider

FTHPIS Server

Test A, FTHPLIS-WSContext publication at various levels of simultancous providers

Fig. 14. Testing cases of overloading experiment.

2200

—+— Average Response Time

2000‘ === Errorbars 7""""”’77”’7”””77”"%7”

1800 -
1600
1400
1200 A
1000
800 1
600 1
400 1
200 1
0

avg response time (msec) per request

0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Number of simultanous WS-ContextClients with fixed rate of 5 reg/sec

Fig. 15. Average FTHPIS-WSContext inquiry response time chart — making constant load of 5 requests/s by each client.

331

332 M.S. Aktas et al. / Future Generation Computer Systems 23 (2007) 317-337

Table 3

Statistics of the experiment depicted in Fig. 15

of simultaneous users 2 4 6 8

Fail status No fail No fail No fail No fail
Statistics (ms)

Maximum 59.196 140.099 183.847 288.999
*Average 46.039 88.547 115.309 157.766
Minimum 31.268 41.477 47.711 48.999
Standard deviation 9.894 35.048 40.344 59.699
of simultaneous users 10 50 100 150

Fail status No fail No fail No fail No fail
Statistics (ms)

Maximum 465.483 1647.908 1788.579 3100.219
*Average 221.417 704.325 1263.355 1821.024
Minimum 49.042 265.762 821.708 1070.225
Standard deviation 116.029 179.784 187.987 306.738
These measurements were taken with FTHPIS-WSContext Service without database access. Performance of single client is given in Table 1.

Table 4

Statistics for the condition where concurrent publishers send their requests to FTHPIS-WSContext Service with database access

of simultaneous users 1 2 3 4 5

Fail status No fail No fail 23% fail 30% fail 349% fail
Statistics (ms)

Maximum 67.871 497.097 646.622 563.133 621.713
*Average 59.689 135.779 150.843 173.894 178.494
Minimum 54.407 47.785 50.689 64.796 66.604
Standard deviation 4.906 152.009 152.316 135.169 139.115
Table 5

Statistics of the experiment depicted in Fig. 16

of simultaneous users 2 4 6 8

Fail status No fail No fail No fail No fail
Statistics (ms)

Maximum 53.999 123.238 289.952 715.851
*Average 46.844 88.391 122.864 170.131
Minimum 40.867 46.097 47.361 65.008
Standard deviation 4.459 21.009 53.344 114.401
of simultaneous users 10 50 100 150

Fail status No fail No fail No fail No fail
Statistics (ms)

Maximum 890.162 1960.656 4248.285 10880.92
*Average 231.808 835.487 1788.542 2725.265
Minimum 55.63 217.192 298.702 66.184
Standard deviation 144.815 310.215 886.146 1675.578

These measurements were taken with FTHPIS-WSContext Service without database access. Performance of the single provider is given in Table 2.

requests. The measurements presented here were taken on a
local area network. One should also keep in mind that the
large number of concurrent inquiry or publication requests
is less likely to happen and exceptional cases in a real-life
grid application deployed on a wide area network from the
perspective of network latency, message delivery failures and
data-loss.

5.4. Experiment 3 — experiment designed based on application
use case scenarios

The main goal of this experiment is to investigate how
the system performs in a real application case scenario such
as Pattern Informatics workflow-style GIS application [1]. In
this motivating scenario: GPS, Fault, and Seismic databases,

M.S. Aktas et al. / Future Generation Computer Systems 23 (2007) 317-337 333

4400
4000

—=+— Average Response Time
pamisss Error bar

2800
2400 1
2000 -
1600 1 -
1200 4

800 4

400

avg response time (msec) per request

0

3600 « - - oo

32004 - ---=--mmmm e e

0 10 20 30 40

50 60 70 80 90 100 110 120 130 140 150 160

Number of simultanous WS-ContextProviders with fixed rate of 5 pub/sec

Fig. 16. Average FTHPIS-WSContext publication response time chart — making 5 publication request/s by each context provider.

wrapped by OpenGIS web services, filtering and geo-
processing services are distributed across various institutions.
All these services interact with each other within a dynamically
generic workflow to produce a common goal such as predicting
an earthquake. The Pattern Informatics workflow-style grid
application requires a session metadata manager to manage
activities of the workflow. A session metadata manager is
used to provide access/storage/search interface to metadata
generated by the participating entities of the session. Here,
we investigate the applicability of the FTHPIS-WSContext
Information Service as a session metadata manager in Pattern
Informatics domain.

In this motivating scenario, an example state-metadata might
have information about the state of the workflow, such as
“executing”, “completed” and so forth. We expect the size of
shared state-metadata to be around 1.2 KB. We illustrate such
context example in Appendix A. As the session-state metadata
is shared and highly updated, it has both multiple readers and
writers. To this end, we expect concurrent publication requests
as well as concurrent inquiry requests. We consider an example
workflow session where there are numerous client web services
(ranging from 50 to 100) polling information, while context
provider web services (ranging from 1 to 25) publish the state
changes of the workflow with varying frequencies.

We set up an environment where we have multiple-readers
and multiple-writers which communicate through the FTHPIS-
WSContext system. We investigate the performance of the
FTHPIS-WSContext Service implementation under both light
and heavy loads with varying concurrent publication and
inquiry requests. In this picture, there are WSContextProviders
(corresponding to a context provider) and WSContextClients
(corresponding to a context client) that have access to shared
data containing statistics for up to 20 contexts where each
context has multiple-reader/single writer access. The design of
this experiment is depicted in Fig. 17.

We performed two separate testing cases in this experiment:
we measure the performance of the FTHPIS-WSContext
system from the WSContextClient perspective under (a) light
and (b) heavy loads. For case (a), we look at the performance of
the system with 50 query threads each issuing 10 queries to the

FTHPIS-WSContext node. We timed the complete round trip
of all 500 queries issues by the WSContextClient for varying
WSContextPublishers (1, 5, 10, 15, 20, and 25) each issuing
one update request per second.

For case (b), we measure the system performance under
heavier loads. We increase the number of querying threads
to 100 and had each issue 10 queries. We also increased
the frequency of updates to five per second for each
WSContextPublisher. The average response time for light and
heavy load with 1, 5, 10, 15, 20 and 25 publishers is presented
in Fig. 18.

5.4.1. Results of the experiment 3

As anticipated, the system showed better response times
under light load compared with the system being under heavy
load. It should be noted that the standard solution to multiple-
reader/single-writer access at both levels of synchronization
gives the readers priority. In severe cases the writes can suffer
from starvation. We observe this reader-bias behavior in the
results. As the number of querying clients increased, the system
presents noticeable performance degradation. Based on the
results, we conclude that the FTHPIS-WSContext Service is
an applicable session manager service for workflow style grid
applications that are tolerable to (a) average response times
ranging between 100 and 160 ms under light loads and (b)
average response times ranging between 0.5 and 1 s under
heavy loads.

5.5. Experiment 4 — CPU thread scheduling latency experi-
ment

In order to have better understanding of the system
performance without the effect of the time spent for CPU
thread scheduling interference, we measure the actual CPU
processing time for varying transactions. We performed two
separate testing cases in this experiment: we measure average
turn around time and the actual CPU processing time for (a)
inquiry and (b) publication functions over varying transactions.
Whereas in previous experiments we started our times just
before sending off a query and stopping it once a complete

334

M.S. Aktas et al. / Future Generation Computer Systems 23 (2007) 317-337

I transactionfsec

by each provider 1.2 KB o
. il
10 transactions T 2
by cach client K o o =
Publishing j\ e ® e " |Publishing| |
Querying [_, @ /™3 Querying |2 a
Module (“,)" = Module |2 n
1.2 KB o
< — :
: i - 4
50 WS-Context Clients FTHPIS Server é
=
1, 5,10, 15, 20, 25 WS-Context
Providers
Test A. FTHPIS-WSContext performance test bed under light loaded scenario
5 transaction/sec 1.2 KB
by each provider
— |
e =1
g A 10 transactions ¢ .f A Z
by each client 7 o
Thread = [Publishing [@ ® e Publishing | 2
Pool B | Quening ® ™ Querying |8 n
= | Module - Module |= =
12 KB =
< — :
/
A 4
100 WS-Context Clients FTHPIS Server §
=

Test B, FTHPIS-WSContext performance test bed under heavy loaded scenario

1, 5,10, 15, 20, 25 WS-Context
Providers

Fig. 17. Experiments with varying number of concurrent clients and providers at various loads.

.. 1400
7]
S
g 1200 = mimim i i s i e e e i
& . 3 .
© " : -
1000 - H B :
= T : —+—Light load
@ e
E 800 -----~---- — === - --------F=-----2%-| —=—HeavyLoad
‘; ’)))‘,,»"" -+~ Error bar for
E B0 et i i e e S e e e] heavy load
‘u'; : 45 Error bar for
& qool] light load
a
@
o o0+ . = - = 1 -
g E—m1 X T | {
0 T T T T r
0 5 10 15 20 25

Number of WS-Context Providers

Fig. 18. Average WSContext Client round trip time (RTT) chart for light and heavy load.

response was received from the server, we now measured just
the time necessary to query or write context into the server.
Here, we wanted to determine what the actual performance
of the system was independent from network latency. We
used a commercial profiler program called “Optimizelt” (more
at http://www.borland.com/optimizeit) to measure the actual
CPU processing time. We use the testing case A depicted in
Fig. 6 for inquiry function and testing case B depicted in
Fig. 7 for publication function with the following exceptions.
For both test cases we measure the average turn around
time and CPU latency with 50, 200, 400, 600, 800 and
1000 transactions. In this experiment, we ran the FTHPIS-
WSContext server on the lightly loaded Windows XP machine
(kilimanjaro.ucs.indiana.edu), while the client application was
running on cluster node-5. In this experiment, we used the
default value, 150, for the maximum number of threads in
Tomcat Apache Server. The results of the experiment for

inquiry and publication functions are depicted in Figs. 19 and
20 respectively.

5.5.1. Results of experiment 4

Based on the results, we observe two working modes: startup
mode and initialized mode. The histogram of the average
turnaround time, i.e. the time difference between the method
entry and exit, is the sum of the other two histograms: actual
CPU processing time and CPU thread scheduling latency. We
note that the CPU thread latency is not an actual overhead for
inquiry function of the system and the latency decreases on
average as the number of transactions increases. However, we
observe a noticeable startup CPU scheduling latency (8.5 ms)
for the publication function. We also note that the CPU latency
decreases on average for publication function as the number of
transactions increases. We conclude that CPU latency impact
factor on system performance might be negligible if the system
is in initialized mode.

M.S. Aktas et al. / Future Generation Computer Systems 23 (2007) 317-337 335

)
QT et e e e e e]
@
E
0
[}
E e ——— -
10
5
0 = Apososomnotoronnonoes A= Feaasaiy i e A
0 100 200 300 400 500 600 700 800 900 1000

number of transactions per user

—+— avg turnaround time per transaction

- -=- - avg actual CPU processing time per transaction
---a--- avg CPU thread scheduling overhead per transaction

Fig. 19. Measuring CPU scheduling latency spent in internal sub-activities of FTHPIS-WSContext inquiry function for 1 querying client under varying loads.

)

(7]

w0

=

@

£

= 204
1 Qrpe s s S S e e e e S]
0 : - S - —_— : -

0 100 200 300 400 500 600 700 8O0 900 1000

number of transactions per user

—e— avg turnaround time per transaction
- -~ - avg actual CPU processing time per transaction
avg CPU thread scheduling overhead per transaction

SRR

Fig. 20. Measuring CPU scheduling latency spent in internal sub-activities of FTHPIS-WSContext publication function for 1 publishing client under varying loads.

6. Conclusions and future work

In this paper, we have identified an important gap in
Information Services for Grids that is lack of support for
dynamic information in dynamically assembled traditional
and Semantic Grids. We have presented an architecture that
addresses key issues of managing dynamic metadata such
as (a) providing an efficient metadata access and storage
methodology by taking into account changes in user demands
and (b) providing a P2P approach for access/storage request
distribution among the peers of the system to capture
the dynamic behavior both in metadata and the network
topology. We perform an extensive set of experiments to
evaluate the performance of the centralized version of the
FTHPIS-WSContext Service. The performance results show
the FTHPIS-WSContext architecture can provide performance
improvement over 18% for inquiry function and 22% for
publication function by employing an expeditor module in

its internal architecture. The promising low response latency
results of experimental study on responsiveness indicates that
high performance service conversation can be achieved with
centralized metadata strategies with metadata coming from
more than two services as opposed to service conversation with
metadata only from the two services that exchange metadata.
In addition, the performance indicates that efficient mediator
services also allow us to perform collective operations such as
queries on subsets of all available metadata.

The experimental studies on sustainability of the system
shows that the large number of concurrent operations may well
be responded without any error by the system. By comparing
the results from studies conducted on latencies, we determine
that CPU thread scheduling latency impact factor on system
performance might be negligible if the system is in initialized
mode, while the network latency may have a significant impact
on the centralized version of FTHPIS-WSContext system
performance.

336 M.S. Aktas et al. / Future Generation Computer Systems 23 (2007) 317-337

We have discussed the status of our implementation and
report performance results from a prototype that is applied to
sensor and collaboration grids.

Work remains to further develop a distributed metadata
hosting environment by employing novel dynamic replication
techniques and to evaluate the system as a whole through
extensive performance tests.

Acknowledgement

We thank Dr. Beth Plale for her feedback and discussions
on this research. This work is supported by the Advanced In-
formation Systems Technology Program of NASA’s Earth—Sun
System Technology Office.

Appendix A. Sample Context XML metadata

<?xml version=*1.0" encoding="UTF-8"7>
<uddi_wsctx:context
xmlns:uddi_wsctx="http://WSCTX.services.axis.cgl/
uddi_wsctx_schema”
xmlns:wsctx="http://WSCTX.services.axis.cgl/
wsctx_schema”
xmlns:uddi_ext="http://uddi.services.axis.cgl/
uddi_ext_schema”
xmlns:uddi="http://uddi.services.axis.cgl/
uddi_schema”
xmlns:xsi="“http://www.w3.0rg/2001/
XMLSchema-instance” >
<uddi_wsctx:contextKey >
uuid: ABCCE800-AB35-11DA-A4FC-
C80C5880CB18-1141445798958
</uddi_wsctx:contextKey >
<uddi_wsctx:sessionKey >
uuid:ABCCE544-CX35-11EA-BVFC-C34C7789CB33-
1414457987978
</uddi_wsctx:sessionKey>
<uddi:name>
<value>
context://GIS/PI/ABCCE544-CX35-11EA-BVFC-
C34C7789CB33
</value>
</uddi:name>
<uddi_wsctx:value>COMPLETED
</uddi_wsctx:value>
<uddi_wsctx:accessRightInfo>
<uddi_wsctx:others>
<uddi_wsctx:readAccess>true </uddi_wsctx:
readAccess>
<uddi_wsctx:writeAccess>false </uddi_wsctx:
writeAccess>
</uddi_wsctx:others>
</uddi_wsctx:accessRightInfo>
<uddi_ext:lease>
<timeout>1000</timeout>
<isInfinite>false </isInfinite >
</uddi_ext:lease>
<uddi_wsctx:version> 1 </uddi_wsctx:version>
</uddi_wsctx:context>

Appendix B. Sample UDDI XML metadata

<?xml version="1.0" encoding="UTF-8"7>
<uddi:businessService
xmlns:uddi=*“http://uddi.services.axis.cgl/uddi_schema
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance”>
<serviceKey>
uuid:12114460-B4B6-11DA-A1DD-C2341CB5D80D
</serviceKey>
<businessKey >
uuid:7115B940-A95E-11DA-B940-CB4E3E38D62F
</businessKey>
<uddi:name>
<value>Sample Service</value>
</uddi:name>
<uddi:description>
<value>Service Description</value>
</uddi:description>
<value>String</value>
<uddi:bindingTemplates >
<uddi:bindingTemplate>
<bindingKey >
uuid:129679F0-B4B6-11DA-A1DD-E719F6E12358
</bindingKey >
<serviceKey>
uuid:12114460-B4B6-11DA-A1DD-C2341CB5D80D
</serviceKey>
<uddi:accessPoint>
<value>
http://gf7.ucs.indiana.edu:8092/wfs-streaming-service/
services/wfs
</value>
<useType>research</useType>
</uddi:accessPoint>
</uddi:bindingTemplate>
</uddi:bindingTemplates>
<uddi:categoryBag>
<uddi:keyedReference>
<uddi:tModelKey >
uuid:6D712AF0-4ADA-11DA-BC65-C767CO7TEBBEA
</uddi:tModelKey >
<uddi:keyName> ServiceCategory
</uddi:keyName>
<uddi:key Value>GIS-WEFS </uddi:key Value >
</uddi:keyedReference>
<uddi:categoryBag>
</uddi:businessService>

References

[1] G. Aydin, M.S. Aktas, G.C. Fox, H. Gadgil, M. Pierce, A. Sayar,
SERVOGrid complexity computational environments (CCE) integrated
performance analysis, Accepted as poster and short paper in Grid2005,
Seattle, USA.

[2] H. Zhuge, Semantic grid: Scientific issues, infrastructure, and methodol-
ogy, Communications of the ACM 48 (4) (2005) 117-119.

M.S. Aktas et al. / Future Generation Computer Systems 23 (2007) 317-337 337

[3] W. Wu, G. Fox, H. Bulut, A. Uyar, H. Altay, Design and implementation
of a collaboration web-services system, Journal of Neural, Parallel &
Scientific Computations (NPSC) 12 (2004).

[4] B. Plale, P. Dinda, G. Von Laszewski, Key concepts and services of a grid
information service, in: Proceedings of the 15th International Conference
on Parallel and Distributed Computing Systems, PDCS 2002, 2002.

[5] Monitoring and Discovery System (MDS4), Web Site is available at
http://www.globus.org/toolkit/mds.

[6] A. Cooke, A. Gray, L. Ma, W. Nutt, J. Magowan, P. Taylor, R. Byrom,
L. Field, S. Hicks, J. Leake, R-GMA: An information integration system
for grid monitoring, in: Proceedings of the 11th International Conference
on Cooperative Information Systems, 2003.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable
content-addressable network, in: Proc. ACM SIGCOMM, August 2001,
pp. 161-172.

[8] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan,
Chord: A scalable peer-to-peer lookup protocol for internet applications,
IEEE/ACM Transactions on Networking 11 (1) (2003) 17-32.

[9] S. Zanikolas, R. Sakellariou, A taxonomy of grid monitoring systems,
Future Generation Computer Systems 21 (1) (2005) 163—188.

[10] V. Dialani, UDDI-M Version 1.0 API Specification, University of
Southampton — UK. 02.

[11] A.S. Ali, O. Rana, R. Al-Ali, D.W. Walker, UDDIe: An extended registry
for web services, in: Proceedings of the Service Oriented Computing:
Models, Architectures and Applications, SAINT-2003, IEEE Computer
Society Press, Orlando Florida, USA, 2003.

[12] S.Miles, J. Papay, T. Payne, K. Decker, L. Moreau, Towards a protocol for
the attachment of semantic descriptions to grid services, in: The Second
European across Grids Conference, Nicosia, Cyprus, January 2004, p. 10.

[13] S. Miles, J. Papay, V. Dialani, M. Luck, K. Decker, T. Payne, L.
Moreau, Personalized Grid Service Discovery, in: Nineteenth Annual
UK Performance Engineering Workshop, UKPEW’03, University of
Warwick, Coventry, England, 2003.

[14] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, J.
Miller, METEOR-S WSDI: A scalable P2P infrastructure of registries
for semantic publication and discovery of web services, Journal of
Information Technology and Management (2005).

[15] S. Sivansubramanian, M. Szymaniak, G. Pierre, M. V. Steen, Replication
for web hosting systems, ACM Computing Surveys 6 (3) (2004) 291-334.

[16] M. Rabinovich, Issues in web content replication, Bulleting of the IEEE
Computer Society Technical Committee on Data Engineering (1998).

[17] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, B. Weihl,
Globally distributed content delivery, IEEE Internet Computing 6 (5)
(2002) 50-58.

[18] M. Rabinovich, I. Rabinovich, R. Rajaraman, A. Aggarwal, A dynamic
object replication and migration protocol for an internet hosting service,
in: Proc. 19th Int’l Conf. Distributed Computing Systems, June 1999, pp.
101-113.

[19] P. Rodriguez, S. Sibal, SPREAD: Scalable platform for reliable and
efficient automated distribution, Computer Networks 33 (1-6) (2000)
33-49.

[20] B. Bunting, M. Chapman, O. Hurley, M. Little, J. Mischinkinky,
E. Newcomer, J. Webber, K. Swenson, Web Services Context (WS-
Context), available from http://www.arjuna.com/library/specs/ws_caf_1-
0/WS-CTX.pdf.

[21] T. Bellwood, L. Clement, C. von Riegen, UDDI Version 3.0.1:
UDDI Spec Technical Committee Specification, Available from
http://uddi.org/pubs/uddi-v3.0.1-20031014.htm.

[22] M.S. Aktas, G. Aydin, G.C. Fox, H. Gadgil, M. Pierce, A. Sayar,
Information services for grid/web service oriented architecture (SOA)
based geospatial applications, Technical Report, June, 2005.

[23] S. Pallickara, G. Fox, NaradaBrokering: A distributed middleware
framework and architecture for enabling durable peer-to-peer grids,
in: Proceedings of ACM/IFIP/USENIX International Middleware
Conference Middleware, Rio Janeiro, Brazil, June 2003, See also
http://www.naradabrokering.org.

[24] N. Carriero, D. Gelernter, Linda in Context. Communications of the ACM
32 (4) (1989) 444-458.

[25] Extended UDDI and Fault Tolerant and High Performance Context
Service Research is available at http://www.opengrids.org.

[26] M.S. Aktas, G.C. Fox, M. Pierce, Managing dynamic metadata as
context, in: The 2005 Istanbul International Computational Science and
Engineering Conference, ICCSE2005, Istanbul, Turkey.

[27] China National Grid Project Web Site is
http://www.cngrid.org/en_index.htm.

[28] D.L. McGuinness, F. van Harmelen (Eds.), OWL Web Ontol-
ogy Language Overview, W3C Recommendation, 10 February 2004,
http://www.w3.0org/TR/2004/REC-owl-features-20040210/. Latest ver-
sion available at http://www.w3.org/TR/owl-features/.

[29] G. Klyne, J.J. Carroll, Resource Description Framework (RDF):
Concepts and Abstract Syntax, W3C Recommendation, 10 February
2004, http://www.w3.0rg/TR/2004/REC-rdf-concepts-20040210/. Latest
version available at http://www.w3.org/TR/rdf-concepts/.

[30] H. Zhuge, The Knowledge Grid, World Scientific, 2004.

[31] H. Zhuge, Semantics, resource and grid, Future Generation Computer
Systems 20 (1) (2004) 1-5.

[32] D.S. Milojicic, et al. Peer-to-Peer computing, HP Labs Technical Report
HPL-2002-57, 2002.

[33] G. Saez, A. Sliva, M.B. Blake, Web services-based data management:
Evaluating the performance of UDDI registries, in: ICWS 2004, pp.
830-831.

[34] MySQL 3.23, 4.0, 4.1 Reference Manual,
http://dev.mysql.com/doc/refman/4.1/en/index.html.

[35] M. Gerndt, R. Wismiiller, Z. Balaton, G. Gombas, P. Kacsuk, Zs.
Németh, N. Podhorszki, H.-L. Truong, T. Fahringer, M. Bubak, E. Laure,
T. Margalef, Performance Tools for the Grid: State of the Art and Future.
White paper, Shaker Verlag, 2004.

[36] G.Fox, Grids of Grids of Simple Services for CISE Magazine July/August
2004.

[37] D.J. Watts, S.H. Strogatz, Collective dynamics of small-world networks,
Nature 393 (1998) 440.

[38] R. Albert, H. Jeong, A. Barabasi, Diameter of the world wide web, Nature
401 (1999) 130.

available at

available at

Mehmet S. Aktas is a Ph.D. candidate in the Com-
puter Science Department and Graduate Research As-
sistant in the Community Grids Lab at Indiana Univer-
sity. His areas of research include distributed informa-
tion systems for Grid and Web Service systems, Geo-
graphical Information Systems, Information Retrieval,
| Web Mining, Semantic Grid, and Grid/Web services to
support science and engineering applications. He can
be reached at maktas @cs.indiana.edu, and more infor-
mation on his research is available from http://www.opengrids.org. Also, his
academic background is available from http://www.cs.indiana.edu/"maktas.

Prof. Geoffrey C. Fox is the director of the
Community Grids Lab and holds joint faculty
appointments in Physics, Computer Science, and
Informatics at Indiana University. Dr. Fox received
a Ph.D. from Cambridge University in Theoretical
Physics. He may be reached at gef@indiana.edu. For
more information on the Community Grids Lab, please
see http://grids.ucs.indiana.edu/ptliupages.

Dr. Marlon Pierce received his Ph.D. in physics
from Florida State University in 1998. He currently
is a Senior Research Associate for the Community
Grids Lab at Indiana University. His research
interests are in the development of Web portals
and Grid/Web services to support science and
engineering applications. He may be reached at
mpierce@cs.indiana.edu. For a snapshot of current
% SR activities, see his blogs on Grid and related topics
available at http://communitygrids.blogspot.com.

