
Automating Metadata Web Service

Deployment for Problem Solving

Environments

Ozgur Balsoy a,b Ying Jin b, Galip Aydin b, Marlon Pierce b, and
Geoffrey Fox b

aDepartment of Computer Science, Florida State University,
Tallahassee, FL 32306

bCommunity Grids Lab, Indiana University,
501 N.Morton Stree, Suite 224, Bloomington, IN 47404-3730

Abstract

XML-based metadata information services are a crucial core service needed by
Problem Solving Environments built over emerging service-based, globally-scaled
distributed systems, as envisioned by the Open Grid Services Architecture and the
Semantic Web. Developing user interfaces and services bindings for manipulating
instances of particular schemas is thus extremely important and needs to be made
as simple as possible. In this paper we describe procedures for automating the cre-
ation of Web Service environments that can be used to simplify the creation and
deployment of schema-based metadata services.

Key words: Metadata authoring, Problem Solving Environments, XML, Web
Services

1 Introduction

One of the most important underpinnings of Problem Solving Environments
(PSEs) is the management of diverse types of information. Grid computing
and distributed Web services are metadata rich: all entities should be described
by XML metadata. Metadata must be used to describe the various parts that
must be managed by the PSE, such as available applications, service interfaces
and their binding points, batch queuing systems, hardware profiles, and so
on. Many projects have attempted to define metadata pieces needed to build
service grids, and such pieces will be needed as grid service data in the Open
Grid Service Architecture [1,2]. In addition to the service metadata, there

Preprint submitted to Elsevier Science 31 July 2003



is also need to provide organizational metadata descriptors for the services
themselves, and we have suggested data models for describing applications
[3,4] and their associated service bindings. We thus anticipate that metadata
richness will only increase.

We may place these issues into larger contexts. Autonomic computing (see [5]
for a description and [6,7] for sample academic projects) seeks to define the
interaction of components in next generation computing at all scales. In the
autonomic computing vision, components mean everything from the physi-
cal component parts of individual computers to the service components of
globally-scaled service environments. The ideal autonomic system is self-aware,
self-monitoring, adaptive, and self-healing, among other characteristics.

Developing standards for Web services for computational grids is a major (and
somewhat independent) component of the autonomic computing vision. Web
services are somewhat loosely defined, but may be characterized in general as
using existing Web technologies and standards (such as HTTP and XML) to
build the distributed computing environments. Important Web service stan-
dards include the Web Service Description Language (WSDL) [8]and the Sim-
ple Object Access Protocol (SOAP) [9]. The Open Grid Service Architecture,
developed under the auspices of the Global Grid Forum and primarily led by
IBM and the Globus team, seeks to extend the capabilities of Web services
in order to support more sophisticated services. The key to this development
is the extension of WSDL portTypes to include metadata and service state
information.

In a major alternative effort, other groups are using various XML standards
of the World Wide Web Consortium define what it terms the Semantic Web
[10]. The Semantic Web vision borrows ideas from federated information sys-
tems and artificial intelligent, modified and simplified to apply to the much
more ambitious problem of intelligent information retrieval and service exe-
cution on a global scale. The cornerstones of the Semantic Web are metadata
descriptions (RDF) [11] and ontologies that provide semantic meaning.

XML-based information services are the key to both the OGSA and the Se-
mantic Grid. We may go a step further and claim that the there is a general
need for many informal, lightweight information management systems for par-
ticular schemas. We have developed such a system, described in Refs [12] and
[13], which provides several per-schema implementations: newsgroups, cita-
tion and reference managers, training and conference registration systems. All
such systems possess the same general capabilities: browsing, search, ”push”
and ”pull” style event delivery options, and access controls on information
and publishing. More sophisticated systems that support schema-spanning
searches (with the associated meta-ontology research problems [14,15] may be
built on top of this practical base.

2



Given the demonstrable importance and proliferation of XML metadata, it
becomes necessary to automate the creation of publication and editing tools
for particular schemas. We describe the details of two such systems, which
we refer to as ”Schema Wizards”. The first is designed to simplify the cre-
ation of XML wizards for specific schemas. These wizards are in turn used
for creating and publishing instances in the XML messaging system described
in [13]. The Schema Wizard is thus a wizard for wizards. The second wizard
system, a follow-on to the first, is designed to automate metadata-based Web
services (such as service data associated with Grid Web services). In both
cases, a particular schema is used as the underlying data model, and the wiz-
ard generates the user interface (view) and action bindings (control) necessary
to automatically create and deploy the new metadata-based service.

2 Schema Wizard: Automating Metadata Creation for Publication

Applications that guide users through a complicated task are usually called
wizards. XML wizards are applications that receive user inputs to generate
XML documents. In our research on XML information frameworks (see par-
ticularly Ref [13], XML is used as the medium for storing information, but
the systems are user driven. Wizards help users generate schema-based XML
content and publish into an XML messaging broker. Such documents are then
typically published to various sources, including both persistent repositories
and listeners demanding immediate notification.

In our current implementation, our information management system provides
general purpose tools that can be used to create specific applications that
are tied to single, specific schema. Thus to add a new application, one of the
necessary tasks is to create a new publishing wizard to the particular schema.
Creating such publishing wizards requires the following steps:

(1) Writing an XML Schema which has all the necessary elements regarding
with the current project.

(2) Producing the Object Models of the XML Schema elements and at-
tributes. This is done by using Castor’s [16] Source Generator, which
creates Java beans to correspond to the elements of the schema.

(3) Obtaining user data. This step requires us to prepare HTML forms which
have form elements to represent the schema elements. We use JavaServer
Pages (JSP) technology, which allows us to interact with HTML forms
and data objects at the same time. In that way we immediately assign
the user entries to the data objects.

(4) Generating the XML document. Using Castor’s marshalling framework
we create an XML document which contains the user inputs.

(5) Publishing this XML document. This may use publish/subscribe systems

3



Fig. 1. The Schema Wizard is used to generate interfaces for particular XML
schemas, which in turn generate XML instances for messaging.

such as the JavaMessaging System (JMS).

Given the repetitive, tedious nature of this process, we have developed a gen-
eral purpose tool to that automates the creation of this process. We refer to
this tool as the SchemaWizard.

2.1 Schema Wizard Architecture

The Schema Wizard (SW) maps XML Schema elements to HTML form ele-
ments through its schema parser, and creates the framework and logic for an
XML form wizard, as depicted in Figure 1. The Schema Wizard is used to
generate interfaces for particular XML schemas, which in turn generate XML
instances for messaging.

Users can use newly generated wizards to create, edit, and publish XML
instances, which follow a given schema, to any destinations such as pub-
lish/subscribe messaging systems or through SMTP. XML form wizards are
Web applications that can also serve as validating XML editors and be cus-
tomized through schema annotations.

The SchemaWizard has been developed as a Web application compliant to
JSP/Servlet specifications that generates and deploys new Web applications
to help instantiate XML documents. A SW user defines her data model using
a XML schema and annotates the schema to customize the HTML form view.
[Fig. 2] After provided with a schema, the Wizard first creates the necessary
directory structure and required libraries for a XML form wizard by unpack-
ing a Web application template package. Second, the Wizard invokes Castor
SourceGenerator [16] to create Java object definitions (a.k.a. javabeans) cor-
responding to individual XML schema elements, and compiles them into the
previously created Web application directories. As the third step, the Wiz-

4



Fig. 2. The XML Schema Wizard simultaneously generates user interfaces,
in-memory data bindings, and actions links between interface elements and data
objects for an XML schema.

ard uses Castor’s Schema Object Model (SOM) API to parse and process the
schema in the memory. The SOM API is used for its convenient and special-
ized schema type access methods, which we prefer for this purpose over other
XML processing APIs, i.e. DOM or JDOM.

The SchemaParser module, the heart of the Wizard application, traverses the
schema using the SOM API and collects XML type and structure information.
This information later is used to decide what type of template is necessary
to generate final JSP pieces or nuggets. Velocity [17] templates are used for
their simplicity to define JSP nuggets, each of which maps either a simple
schema type or a complex type to one or more HTML elements rendered by
JSP engine. The JSP page created for the root element is included by a higher
level index page where the entire form view is finally constructed. The rules
for mapping from XML schema types to HTML elements are listed in the
following section.

2.2 Schema Element to HTML Mapping Rules

To generate XML instances based on XML schema elements, each schema ele-
ment is mapped to one or more corresponding HTML form elements. Mapping
follows these guidelines:

(1) One HTML form page is generated for each possible root (or global)
element, which is based on an anonymous or named global complex type.

(2) XML schemas define elements for any level within XML document hi-
erarchy. Some elements, for example, may not need any parent element
to exist and can root a XML document. Such elements are called global
elements and defined at the top level in a XML schema. Elements can
also include sub elements and attributes. These elements are based on

5



complex type definitions. SW generates forms for only global elements
that are based on either named or anonymous complex types.

(3) Each form has one form level submission, which submits all the content
inside form elements and alters current values on the server side at once.
Each form may also have more than one element level submission, which
affects only related elements or attributes.

(4) Simple, non-enumerating, non-repeating elements or attributes are mapped
to a single input text field.

(5) Simple typed elements or attributes must be based on predefined XML
schema types such as numbers, character strings, and date and duration
types. Any simple type can be restricted into a narrower type range.
For an example, a new type can be generated from the integer type by
restricting the values to the integer numbers between 0 and 100. Another
example could be a character string type that must follow a pattern such
as social security numbers with 9 digits and two dashes. Such schema
types are mapped by SW to single input text fields and their values
are only updated if a form level submission occurs. Data validation is
performed on the server side while forms are used for some input size
restrictions.

(6) An enumerated simple type is mapped to a selection box with the enumer-
ated values filled in. XML schemas allow some of the simple element or
attribute values to be enumerated. Enumerated values are provided with
type definitions inside schemas. Drop-down selection boxes with enumer-
ated values filled in are used to map such types. If an enumerated element
or attribute is optional, users are provided with an option to remove it.
These types are updated by only form level submissions.

(7) An unbounded simple type is mapped to an input field, a selection box,
and two buttons to add and remove new values in addition to form level
submissions. Unbounded simple types are elements that can repeat with
the same or different values. The content of the input field is submitted
and a new element is created when the submission is performed through
the addition button. The new element is also added to the selection box.
Users can remove any element by choosing its value from the selection
box and submitting the form through the remove button.

(8) A defaulted simple type is mapped to an input field with a default value.
(9) A fixed value simple type is mapped to no form element, but the fixed

value is written in plain text.
(10) A simple Boolean-typed element or attribute is mapped to a pair of radio

buttons with labels, ”Yes” and ”No.”
(11) An unbounded complex value is mapped to, along with its sub elements,

a selection box where the element’s index can be chosen, and a pair of
add and remove buttons. If any complex element index is chosen from
the list, it can be removed by submitting through the remove button.

6



2.3 View Construction

The following is a sample Velocity template for simple enumerated types fol-
lowed by the JSP page generated from this template. All the Velocity vari-
ables starting with $ and surrounded by braces are replaced with the schema
types information gathered by the SchemaParser. Elements and attributes are
treated the same way in terms of the interface however, Castor SourceGener-
ator generates different source code for them, and the template reflects this
through a Velocity variable, $attribute. Also, enumerated values are embedded
into the JSP nugget through an array of values, $values, obtained through the
SOM API and forwarded to the Velocity template engine by SchemaParser.

<% {
// obtain element’s name and its submitted value
String elementName = ”$name”;
String value = request.getParameter(elementName);

// obtain if this element has a parent. If root, no parent.
Stack parents = (Stack)request.getAttribute(” parents stack”);
String parent = (parents==null —— parents.empty())

? null
: (String) parents.peek();

// check if form is submitted by either the main submit button,
// or other buttons on the form, such as those
// for unbounded elements
if(request.getAttribute(”submit parent”) != null

&& value != null)
{

// if [remove] item is selected, remove this element.
// otherwise set its value
if(value.equals(REMOVE))

${parentname}.set${javaname}(null);
else

try {
${parentname}.set${javaname}

(${javaname}Type.valueOf(value));
} catch(Exception ex) {}

}
else if(parent != null)
{

// if the form is not submitted by the main submit button,
// then bring back the in-memory value
Object valueObj = ${parentname}.get${javaname}();

7



value = (valueObj==null) ? null : valueObj.toString();
}
if(value == null)

value = ””;

// enumerated values in an array
String[] values = {

#set ($i = 0)
#foreach ($enum in $values)
”$enum”#set ($i = $i + 1)#if( $i < $values.size() ) ,#end
#end
};

// send the HTML for enumeration
%>

<tr>
<td>
## if numbers is requested, then print out the leading numbers,
## i.e. 1. , 2.2, 3.4.2
#if ($numbers)
<%= ((Leveler)request.getAttribute(” leveler”)).increase()%>
#end
$label</td>
<td>

<select name=”$name”>
<option value=”<%=REMOVE%>”><%=REMOVE%></option><%

// print out option. select the one that matches in-memory value
for(int i=0; i< values.length; i++)
{

String enm = values[i]; %>
<option value=”<%= enm %>”<%=

(value != null && value.equals(enm))
? ” SELECTED”
:”” %>><%= enm %>

</option><%
} %>
</select>

</td>
</tr><%
} %>

An example of the JSP generated from this template may be found in [18]. The
parent element of this type is a complex type called rootElement. The JSP

8



starts with retrieving the user input data, and checks whether this element
has a parent or not. Based on the result of this check, the JSP nugget decides
whether the memory object needs to be updated or the form is to be filled
with the old data in memory. Finally, a selection box is printed out in HTML
with enumerated values stored in an array of strings, values[].

All variables defined in generated JSP nuggets are local. Since parent elements
include sub elements’ JSPs, initializations are performed within parents’ scope.
The following is an example generated JSP for a parent element. The last part
of the JSP decides whether this element is the root element and the submission
buttons need to appear.

In XML schema, all the elements defined as global elements can be referenced
at any level within the schema hierarchy. To support referenced global ele-
ments, we have designed the JSPs for parent elements, such as the example
above, so that they can be included by other complex typed elements. Here,
the complex type ’rootElement’, can repeat in any part of the schema as well
as in its mapped HTML form.

The entry pages for HTML forms are index pages, which must not be included
by other JSPs. SW does not provide such inclusions. Developers who use
generated JSPs should also notice this requirement.

3 WSDL Wizards for Metadata Web Services

In the proceeding section we described an XML Schema Wizard that can be
used to automate the process for creating specific wizards for generating XML
messages. This system is appropriate for publish/subscribe style interactions.
Here we describe our design for a variation of this system that is used to
automatically generate remote procedure call (RPC)-style services. Instead
of supporting all schema types, we need only to support one: WSDL. User
interfaces generated from WSDL instances will be used to create server-side
SOAP calls to back-end XML repositories.

As we argued in the introduction, an important subclass of Web services must
be geared toward the creation and management of XML metadata. We refer
to this particular subclass of Web services as Metadata Web services (MWS).
Creating and deploying a new MWS has the following steps:

(1) Create Java class bindings for the schema.
(2) Create a Faade class to serve as Web service implementation and simplify

manipulation of the data classes.
(3) Deploy the service.

9



(4) Generate client stubs from the service’s WSDL.
(5) Create the user interface to the service using the client stubs.

The Faade class for the server (step 2) may be used to simply manipulate the
schema data objects, but for complicated schemas it also serves to simplify (at
the expense of lost functionality) the task of step 5. These steps are somewhat
tedious to perform manually. The tedious nature of creating these services has
some unpleasant side effects: it inhibits the modification phase of trial schemas
and (more globally) discourages the proliferation of lightweight, schema-based
services.

The Schema Wizard itself, as described above, is designed for creating XML
messages. In particular, it is not directly suitable for creating services and
user interfaces from the WSDL schema. The WSDL document consists of two
parts: service interface definitions and implementation bindings. The interface
part contains the abstract definition of a service, which allows one to retrieve
information of operations, and the types of the messages the operations receive
and return. The implementation section contains concrete information on port
and binding protocol. We thus do not want to create the user interface for
a WSDL service description from the entire document but instead only the
abstract portion (the portTypes) of the document.

The WSDL Wizard is designed to automate all parts needed to create a Meta-
data Web Service. This essentially has the following parts: a) selection of de-
sired WSDL instance, b) generation of user interface and server-side bindings,
and c) dynamic invocation of WSDL interface methods to manipulate the
remote XML instance.

We are developing a Java package that allows SOAP procedures to be dynam-
ically constructed for a given WSDL instance without needing to create client
stub programs. This is described elsewhere [19], and in this paper we focus its
combination with the Schema Wizard.

The major components need to accomplish this are illustrated in Figure 3.
The user is assumed to have selected a particular service by inspecting a
WSIL [20] document through a WSIL proxy client. The WSDL description of
this interface is downloaded and the service generation procedure begins.

The important additional components are the WSDL Parser, GhostWSDL
Parser, and User Data Parser. These parsers each are designed to provide ac-
cess for manipulating in-memory representations of XML. A Controller com-
ponent is responsible for managing all the components. The WSDL Parser
is given the WSDL document that describes the desired service and creates
an in-memory representation of the service interface. This document is then
inspected by the Controller in order to dynamically generate a SOAP call.

10



Fig. 3. A usage scenario illustrates the interaction of WSDI and Schema Wizard
components.

Table 1
GhostWSDL (left) to WSDL (right) mappings.

Schema Tags WSDL Tags

<Schema> <definition>

<complextype> <message>

<operation>

<element> <input>

<output>

<part>

<porttype>

As explained above, we do not need the entire WSDL description of a service
to generate its interface. We thus construct a new ”ghost” schema for the
particular WSDL instance, based on the port type. This GhostWSDL instance
contains only the information necessary to generate the user interface and the
SOAP call. The WSDL-GhostWSDL mappings are shown in Table 1. The
generated GhostWSDL is passed to the Schema Wizard, which generates a
user interface.

After the Schema Wizard user interface has been generated and the user has
entered information, this must be passed to the Controller, which will need to
use this data in the dynamically generated SOAP call. This data is accessed
through the User Data Parser, which accepts the XML output of Schema Wiz-
ard. This output is simply an instance of the generated GhostWSDL schema,
with the users’ data. For the simple types, the User Data parser parses the
data in the XML to its corresponding Java value. For the complex type, the
parser uses data to instantiate the Java object class which is generated by
Schema Wizard. The results are placed to a Java object array.

11



Figure 3 shows how these components are related to each other. The arrow
lines indicate the communication between the two components. The diagram
uses the thicker lines for Internet request/response messages with the indi-
cated protocols, and the thinner lines represent internal communications. The
following is detailed explanation for each numbered step.

(1) The user requests the service list through a browser interface.
(2) The JSP interface sends the user’s request to Controller
(3) Controller communicates with the web services inspection proxy client (a

WSIL client).
(4) Proxy client makes the SOAP call to the web services inspection proxy

server and requests the WSIL service list.
(5) Proxy server makes the HTTP connection to a remote/local server for

getting WSIL document
(6) The remote/local server sends the WSIL document back to the proxy

server
(7) Proxy server sends back the service list to the client
(8) The proxy client responds to Controller
(9) Controller returns the service list to the user

(10) The user picks a desired Web service from the list WSIL list.
(11) Steps (2) - (8) are repeated in order to retrieve the WSDL document,

this time going through (5) and (6).
(12) The WSDL document is sent to the parsers. In 12a, the WSDLParser

creates in memory representation of WSDL. In 12b, the GhostWSDL is
extracted from WSDL instance.

(13) The GhostWSDL is sent to the Schema Wizard, which generates the user
interface.

(14) The user enters the required information of service into the system.
(15) The wizard generates a GhostWSDL instance with the user’s data, is cre-

ated. If the GhostWSDL interface contains complex types, then JavaBean
classes are also generated.

(16) A Java Object array with the user data is passed to Controller.
(17) The controller obtains an in-memory representation of the WSDL in-

stance.
(18) The Controller inspects the WSDL document, constructs, and launches

the SOAP call to invoke the service.

4 Summary and Future Work

As part of our attempts to address a larger metadata management problem,
this paper has presented two mechanisms for automatically deploying web-
based applications for creating and manipulating metadata based on XML
schemas. The Schema Wizard is a general purpose system for creating user

12



interfaces and action bindings for a particular XML schema. As we have il-
lustrated, the SW is used to generate browser interfaces automatically from
a particular schema data model. It also binds the schema to in-memory data
objects that can be used to manipulate schema instances. In addition to gen-
erating the view of the data model, we also generate the action bindings (in
this case, HTML Form actions) that connect the user-supplied values to the
data model. This is a useful component in message-based systems such as we
describe in [13]. Future work on the Schema Wizard will be to introduce more
customization of the presentation.

In contrast to one-to-many, message-style metadata services, the one-to-one,
RPC-style metadata services are more meaningfully described with WSDL
interfaces than message formats. To automatically generate the user interface
to these services, we need to modify the Schema Wizard operation to display
not the entire WSDL schema but the only the portion appropriate for display.
In addition, the bindings must now change so that we can tie user inter-
face actions to backend (rather than server-side) data instances, which we do
with SOAP invocations dynamically generated from the WSDL instances. We
have completed development of the preliminary libraries for dynamic WSDL
invocations (supporting XML primitive types), and the WSDL wizard imple-
mentation based on these libraries is currently in progress. The next step will
be to add support for WSDL complex types, as we describe in the paper.

References

[1] I. Foster, C. Kesselman, J. M. Nick, S. Tuecke, The physiology of the grid. an
open grid services architecture for distributed systems integration, Open Grid
Service Infrastructure WG, Global Grid Forum (June 2002).

[2] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, Grid
service specification, Open Grid Service Infrastructure WG, Global Grid Forum
(July 2002).

[3] M. Pierce, G. C. Fox, C. Youn, S. Mock, K. Mueller, O. Balsoy, Interoperable
web services for computational portals, in: Proceedings of High Performance
Networking and Computing SC’02, 2002.

[4] C. Youn, M. Pierce, G. Fox, Building problem solving environments with web
services, in: Workshop on Complex Problem Solving Environments for Grid
Computing, 2003.

[5] Autonomic Computing: IBM’s Perspecitive on the State of Information
Technology (2001).
URL
www.research.ibm.com/autonomic/manifesto/autonomic computing.pdf

13



[6] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon,
J. Kubiatowicz, Maintenance-free global data storage, IEEE Internet
Computing 5(5), 40-49. .

[7] D. Abramson, R. Buyya, J. Giddy, A computational economy for grid
computing and its implmentation in the nimrod-g resource broker, Future
Generation Computer Systems 18.

[8] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web service
description language (wsdl) version 1.1.
URL www.w3c.org/TR/wsdl

[9] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen,
S. Thatte, D. Winer, Simple object access protocol (soap) version 1.1., W3C
Note (May 2000).
URL www.w3.org/TR/SOAP

[10] T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Scientific American
(May 2001).

[11] O. Lassila, R. R. Swick, Resource description framework (rdf) model and syntax
specification, W3C Recommendation (1999).

[12] O. Balsoy, et al., The Online Knowledge Center: Building a component based
portal, in: The Proceedings of Information and Knowledge Engineering (IKE),
2002.

[13] G. Aydin, et al., An XML based system for dynamix message content creation,
delivery, and control, in: The Proceedings of IASTED International Conference
on Information and Knowledge Sharing (IKS), November 2002.

[14] J. Kahng, D. McLeod, Dynamic classification ontologies. computing the brain:
A guide to neuroinformatics, Academic Press, 241-254 (2001).

[15] S. Thacker, A. Sheth, S. Patel, Complex relationships for the semantic web,
In Creating the Semantic Web (D. Fensel, J. Hendler, H. Liebermann, and W.
Wahlster, eds). MIT Press (2001).

[16] M. Birbeck, et al., Professional XML, 2nd Ed. (671-721), Wrox Press, Inc., 2001.

[17] Apache jakarta-velocity project.
URL jakarta.apache.org/velocity/index.html

[18] O. Balsoy, Schemawizard project documentation (2003).
URL ptlportal.communitygrids.iu.edu/schemawizard/index.html

[19] Y. Jin, Web service dynamic invocation, Tech. rep., Community Grids Lab,
Indiana University (2003).
URL
grids.ucs.indiana.edu:8035/doc/Dynamics Web Services Accessing.doc

[20] Web services inspection language (WSIL).
URL
www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html

14



5 Authors’ Biographies

Ozgur Balsoy is a Ph.D. candidate at Florida State University.
He has worked with Dr.Geoffrey Fox through his Master’s and
Ph.D. years working on and developing new technologies for the
Internet and its effective usage in education. Currently, his re-
search interests include metadata modelling and management
for distrubuted and collaborative systems, metadata author-
ing tools, and component-based portal systems. He received
his B.S. in computer engineering from Ege University, Turkey,
and M.S. degree from Syracuse University.

Ying Jin has more than six years of software development expe-
rience, including network, database, and web design and devel-
opment. Before entering IU as a graduate student, Ying worked
in industry, focusing on printer driver implementation and Or-
acle database application development.
Right now, Ying is a Graduate Assistant in Pervasive Technol-
ogy Labs at Indiana University. Her work involves processing
research related to the Network Intrusion Detection System and
Layer 2 Query Protocol.

Galip Aydin is a Ph.D. student in Computer Science Depart-
ment and research assistant in Pervasive Technology Labs at
Indiana University. He has built several XML wizards for vari-
ous projects. His current focus is development of GML Schemas
and Web Services for seismic events and fault data.
He has a B.S. degree from Electrical and Electronics Engineer-
ing at Firat University, Turkey. He had his M.S. degree in Com-
puter Science from Syracuse University, NY in 2000.

Marlon Pierce is a Senior Postdoctoral Research Associate for
the Community Grids Laboratory at Indiana University. His
research interests include the development of Grid/Web ser-
vices, component-based portal environments, and information
representation and management to support scientific applica-
tions and data. He received a Ph.D. in Physics from Florida
State University in 1998.

Geoffrey Fox, nationally renowned for his work in the devel-
opment and application of parallel computers, most recently
served as director of the Computational and Information Sci-
ence Laboratory at Florida State University. He was also the
director of the Northeast Parallel Architectures Center at Syra-
cuse University from 1990-2000. His research has led to two
commercial spinoffs-WebWisdom.com and Anabas Inc.
Fox’s current projects include developing the Online Knowledge
Center for the Department of Defense High Performance Com-
puting and Modernization Program, which is creating a peer-
to-peer system to allow users to more easily access and update
information on the department’s high performance computers.

15


