
Measuring Overhead for Distributed Web Service Handler

Beytullah YILDIZ
Department of Computer Engineering

TOBB University Economics and Technology
Ankara, Turkey

 E-mail: byildiz@etu.edu.tr

Geoffrey C. FOX
Department of Computer Science

 Indiana University
Indiana, USA

 E-mail: gcf@cs.indiana.edu

Abstract—Service Oriented Architecture perfectly manifests
itself in Web services, which create seamless and loosely-
coupled interactions. Web service utilizes supportive
functionalities such as security, reliability and so on. These
functionalities are called as handlers, which incrementally add
new capabilities. However, adding new handlers into the
execution path may cause performance and scalability
problems. Distribution of handlers solves these problems by
providing abundant computing resources. However, pulling a
handler out of its native place and positioning it away from
Web service endpoint brings additional costs. Hence, we will
investigate the overhead of handler distribution for various
environments.

Keywords-Web Service, Distributed Computing, Handler
Structure, Multi-core

I. INTRODUCTION

Web service is defined by World Wide Web
Consortium (W3C) as a software system that provides a
standard means of interoperating software applications,
running in variety of platforms[1]. It utilizes Web Service
Description Language (WSDL) to provide a standard way to
define services [2]. A Web service can be published to a
Universal Description Discovery and Integration (UDDI)
registry to be discovered and defined how to be interacted
over Internet [3]. In addition, Web service framework uses
Simple Object Access Protocol (SOAP) as de-facto standard
to exchange structured information [4]. Requests and
responses travel within SOAP messages. Hence, Web
services strongly employ SOAP processing engines and
transport helpers to contribute the interactions. These
functionalities are combined in middleware system called
Web service container, which essentially hides the
complexity of SOAP processing and details of message
transportation.

Web service employs additional functionalities, which
are called handlers, by utilizing the extensibility feature of
SOAP. Depending on the service container, these
functionalities can be called as filters too. Generally, a Web
service container provides a handler processing pipeline so
that many handlers can contribute to a service interaction. In
other words, many capabilities can be incrementally added
to a service interaction. Even though handlers improve

service capabilities, they may complicate a service
interaction because of having too many handlers in a single
processing chain. This may be inevitable in some situation
to offer necessary qualities. On the other hand, handlers can
become autonomous processing nodes. Hence, they can be
separated away from the service endpoint with the intention
of creating more powerful, efficient, scalable and modular
service environment. Web service architecture supports this
separation without harming correctness of the execution.
When handlers are deployed away from a service endpoint,
they become individual applications running without
knowing each other. Hence, the detached and distributed
handlers are needed to be orchestrated and managed so that
they can achieve the execution, which was successfully
happening before.

There are several reasons to separate a handler from the
service endpoint. We may need to benefit from additional
resources such as processor, memory and storage space. We
may want to have a powerful architecture by offering a
more modular and scalable structure. We may need to
increase usability. Finally, we may successfully introduce
concurrency to the handler execution. However, all these
advantages do not come for free. The additional
requirements for the orchestration and management of the
message execution bring extra burden to the services.
Hence, we will investigate overhead for the distribution of
Web service handler.

II. DISTRIBUTING HANDLERS

Handlers are very necessary architectural components
of Web service framework. Distribution of the handlers to
the individual physical and/or virtual machines provides
many advantages and opens doors to the immense
computing resources. The computing power of machines
almost doubles every year following the projection of
Moore’s law[5], the network speed also catches up with the
same pace. Hence, the obtainable computing power
increases steadily. Moreover, many other resources also
became accessible such as application software, storage, and
sensor and so on. We may hit barrier if we insist to utilize
single machine for Web services while we can access many
computing resources in the remote places. Therefore, we
build architecture to distribute handlers, shown in Figure 1.

Figure 1 : Distributing Handlers

In general, conventional handler structures does not

benefit from handler distribution. JAX-RPC [6], Apache
Axis [7] and Web Service Enhancement (WSE) [8] deploy
handlers into the computer where the service endpoint
resides. On the other hand, there exists a work whose
intention is to distribute the handlers. DEN/XSUL targets
directly to the Web Service security processing steps
without touching the service logic at all [9, 10]. It tears and
granulates the security processing node and deploys the sub-
tasks as individual services. This approach sets an example
to distribute the handlers as Web services.

Utilizing Web service approach for the handlers
provides several benefits. The first benefit is to be able to
remove bottlenecks from the SOAP processing pipeline
with a very well-known style. Additionally, service based-
approach improves the interoperability of the deployment.
Moreover, this approach is able to utilize the tools that have
been already implemented for the Web services.

On the other hand, we follow a different approach. We
have created an architecture, Distributed Handler
Architecture (DHArch), to provide a scalable, efficient and
modular environment for the handlers. It is basically a
distributed Web service handler container, a specialized
middleware system. It basically removes the bottlenecks
from SOAP processing pipeline by using additional
resources and providing an environment for the distributed
execution.

DHArch efficiently distributes handlers to the various
environments. It is able to utilize a cluster containing
heterogeneous computers as well as a single computer
utilizing multiple processors or cores. It is capable of
executing distributed handlers in a single processor machine
too. In this scenario, virtual machines provide necessary
distributed environment.
DHArch is able utilizes a Message Oriented Middleware
(MOM) for the transportation purpose. MOM is a powerful
tool to provide asynchronous, reliable, efficient delivery
mechanism. In addition to excellent messaging capability, it
can provide a queuing mechanism for the handler execution
to regulate the message flow [11, 13].

On the top, an orchestration mechanism is introduced to
coordinate tasks [14]. Additionally, supportive mechanisms
are provided to manage a message execution. Queuing
systems, data structures are those entities that we want to
mention for the architecture.

III. MEASUREMENTS AND ANALYSIS

A. Methodology

In order to calculate the overhead resulting from the
handler distribution, we utilize Apache Axis environment. It
benefits sequential execution for the handlers. Handlers
cannot be distributed to exploit additional resources [15].
On the other hand, DHArch is able to distribute handlers.
Additionally, handlers can be executed concurrently by
using both pipelining and handler parallelism.

For the sake of the fairness, the results have been
gathered by utilizing the same environments. The handlers
are completely same. The number of the handler in an
execution is also equal in every step. The only difference is
the distribution. Measurement starts with 1 handler. The
number of the handler is increased by 10 in every step. We
continue to add the same handler into the execution path
until having 50 handlers. Figure 2 illustrates how the
handlers are deployed in Apache Axis.

Every measurement is observed 100 times; a client
performs the same requests 100 times in every step. At the
end of the measurement, the service elapsed times are
collected and an average value is calculated. After gathering
the values in both environments, the overhead is calculated
with the following formula:

 Overhead = (Tdharch – Taxis) / N (1)
Where, Tdharch is the elapsed time of a service

utilizing DHArch. Taxis is the elapsed time of a service
utilizing Apache Axis. N is the number of the handlers in
the deployment.

Any performance improvement mechanism such as
parallel execution is not exploited to find out the pure
overhead added over the non-distributed execution.
Handlers are running sequentially with the same conditions
in the distributed environment too. The same deployment
strategy is applied in the distributed environment. Figure 3
illustrates the sequential deployment of the distributed
handlers. Handlers are deployed to a separate computing
resource such as core, processor or physical machine.

Figure 2 : Apache Axis sequential handler deployment to measure the

overhead

Figure 3: DHArch sequential handler deployment to measure the

overhead
We give a special attention to the measurements in

multi-core system. The utilized machine in this experiment
has 1.2 GHz UltraSPARC T1 processor that contains 8
cores running Solaris Operating System, 4 threads per core,
with 8GB physical memory. The second environment is a
cluster sharing a Local Area Network. The computers in this
cluster have the same hardware features. They utilize Fedora
operating system in Intel Xeon CPU running on 2.40GHz
and 2GB memory. The last environment is a single
computer, utilizing single 2.80GHz processor with 1.5 GB
memory. It is running Red Hat Enterprise Linux AS 4
operating system.

B. Measurements

The first experiment is conducted in multi-core system.

We initially collected the results in Apache Axis handler
structure. Then, the same scenario is repeated in the
distributed environment. Figure 4 illustrates the service
elapsed time and standard deviation.

Figure 4: Comparison of handler execution in Apache Axis and

DHArch for a multi-core system

Table 1 : Overheads of a handler distribution in the multi-core system

for the increasing number of handlers in the execution path
Number of
handlers 1 10 20 30 40 50
Overhead

(msec) 4.52 4.59 4.63 4.61 4.60 4.59
Adding a new handler into the execution path linearly

increases the processing time. This pattern is seen in the
distributed environment as well. The formula 1 is applied to
calculate the overhead. We observe that the overhead is
almost equal for the increasing number of handlers which
are added to the execution path. Table 1 shows the
numerical values. Adding new handlers does not cause an
unreasonable fluctuation. This is an expected outcome from
a stable and scalable system. Of course, we should note that
the pattern should be expected to change when the system
resources start saturating. However, we do not expect that
the average number of handlers in a single execution
exceeds 50.

For the second environment, a cluster sharing LAN
environment is utilized to measure the overhead. Three
computers are used for the deployment in the distributed
environment. Service endpoint and the messaging broker are
deployed to an individual computer. Similarly, handlers are
distributed to separate individual virtual machines in a
single computer. The gathered results resemble to those
collected in the multi-core system. Figure 5 depicts the
results. Even though the tasks are carried to/from the
distributed handlers by using LAN, the overhead is lower
than that in the multi-core system. Table 2 shows the
numerical values. This illustrates that the processor speed
affects the overhead more than the network speed. Previous
configurations do not have network latency. However, we
must know that the network speed in this hardware
configuration has a minuscule effect due to the usage of the
computers sharing a LAN. The results would be different if
the computers use a Wide Area Network (WAN).

Figure 5 : Comparison of handler execution in Apache Axis and

DHArch for the cluster

Table 2 : Overheads of a handler distribution in a cluster utilizing
Local Area Network for the increasing number of handlers in the

execution path
Number of
handlers 1 10 20 30 40 50
Overhead

(msec) 3.3 3.31 3.25 3.29 3.30 3.31

Finally, we have conducted the experiment in a single
processor system. Figure 6 shows the results gathered for
this configuration. Similar to the previous hardware
configurations, the time for the execution of a service in the
distributed environment is higher than those in Apache Axis
environment because of the overhead resulting from the
handler distribution. Although this system has a faster
processor capability than the previous configurations and
there is not a message transferring cost coming from the
network usage, the overhead is not the smallest one. This
must be due to thread scheduling. In this configuration,
handlers are distributed into virtual machines instead of
cores, processors or individual physical computers. In other
words, handlers, service endpoint and messaging broker
share a single processor to execute their tasks. Hence, the
thread scheduling causes performance degradation so that
the overhead is not the smallest one.

Figure 6 : Comparison of handler execution in Apache Axis and

DHArch for a single processor system

Table 3 : Overheads of a handler distribution for a single processor
system for the increasing number of handlers in the execution path
Number of
handlers 1 10 20 30 40 50
Overhead

(msec) 3.74 3.73 3.72 3.80 3.81 3.79

IV. CONCLUSION

Handler is a crucial aspect of Web service architecture
because of the key importance in the execution path.
However, the way of utilizing handlers and their structures
become important when the number of the necessary
functionalities increases. The experiments have provided us
a clear understanding of the behavior of the distributed
environment for the Web service handlers. The overhead
value is mostly affected by the computing power and the
network speed.

A single processor computer may not be as good as the
computer which utilizes additional computing power for the
performance wise. It starts to be affected by frequent
context switches. By exploiting multi-core system and/or a
cluster, we are able to remove the limitation over the
computing resources.

Multiple computers can be efficiently utilized for the
distributed execution. Each handler may acquire an
individual computer within a network to contribute to the
execution with the additional computing power. Even
though there are overheads and obstacles for the distribution
and the management of the execution, the use of the
additional computer provides suitable environment for the
handlers due to the improvements in the network speed,
especially in Local Area Network (LAN).

Since the computers sharing LAN has more powerful
processors than that utilizing multi-core processor, the
overhead in LAN environment is better in the benchmark
results. The effect of the message transferring on the
overhead is minuscule because the distance is short and the
LAN network provides fast message transferring
environment. However, the network latency should be
expected to become main factor for the overhead if the
distance increases, especially while utilizing Wide Area
Network (WAN). On the other hand, having faster processor
in multi-core computers may provide better opportunity.
Additionally, network latency coming from the transferring
messages between computing nodes can be eliminated
totally. In this situation, multi-core environments would be
best option for the handler distribution.

As a result, we witness that the overhead is affordable.
It can be easily compensated by exploiting the advantages,
which are originated from the utilization of additional
distributed resources. These benefits may even provide
substantial gains. One of the ways is to utilize parallel
execution for the distributed handlers.

REFERENCES

[1] Web Service Architecture,
http://www.w3.org/TR/ws-arch.
[2] Web Service Description Language (WSDL),
 http://www.w3.org/TR/wsdl.
[3] Universal Description Discovery and Integration (UDDI),
 http://www.uddi.org .
[4] Simple Object Access Protocol (SOAP),
 http://www.w3.org/TR/soap12-part1.
[5] Lundstrom, M., APPLIED PHYSICS: Enhanced: Moore's Law
Forever? Science 2003 Vol. 299. no. 5604, pp. 210 - 211.
[6] Java, A.P.I., for XML-Based RPC (JAX-RPC). 2003.
[7] Apache Axis, http://ws.apache.org/axis.
[8] Microsoft Web Service Enhancements (WSE),
http://www.microsoft.com/downloads/details.aspx?FamilyId=FC5
F06C5-821F-41D3-A4FE-6C7B56423841&displaylang=en.
[9] Shirasuna, S., et al., “Performance comparison of security
mechanisms for grid services.” 5th IEEE/ACM International
Workshop on Grid Computing, 360-364, 2004.
[10] Slominski, A., et al., “Asynchronous Peer-to-Peer Web
Services and Firewalls”, 7th International Workshop on Java for
Parallel and Distributed Programming (IPDPS 2005), April 2005.
[11] Pallickara, S., Fox G., “NaradaBrokering: A Middleware
Framework and Architecture for Enabling Durable Peer-to-Peer
Grids.” ACM/IFIP/USENIX International Middleware Conference
Middleware, 2003.
[12]Fox, G., “A Scheme for Reliable Delivery of Events in
Distributed Middleware Systems.” The First International
Conference on Autonomic Computing (Icac'04) - Volume 0,
ICAC. IEEE Computer Society, Washington, DC, 328-329, May
17 - 18, 2004.
[13]Tai, S., Mikalsen T., and Rouvellou I., “Using Message-
oriented Middleware for Reliable Web Services Messaging.”
Lecture Notes in Computer Science (Lect. notes comput. sci.)
ISSN 0302-9743 , 2003.
[14] Yildiz, B., Fox G., and S. Pallickara, “An Orchestration for
Distributed Web Service Handlers” International Conference on
Internet and Web Applications and Services ICIW 2008, June 8-
13, 2008 - Athens, Greece
 [15] Yildiz, B., S. Pallickara, and Fox G., “Experiences in
Deploying Services within Apache Axis Container.” IEEE
International Conference on Internet and Web Applications and
Services ICIW'06 February 23-25, 2006 Guadeloupe, French
Caribbean.

