CBR Based Workflow Composition Assistant

Eran Chinthaka, Jaliya Ekanayake, David Leake, Beth Plale
School of Informatics, Indiana University
Bloomington, Indiana, USA.

{echintha, jekanaya, leake, plale} @cs.indiana.edu

Abstract—Composing a scientific workflow from scratch may
be time-consuming, even if the scientist is fully aware of the
semantics, the inputs, and the outputs of the expected workflow.
Reusing existing services and parts from already composed
workflows can aid in reducing the total workflow composition
time. However, matching the semantics and the inputs and
outputs of these reusable components manually is not an easy
task, especially when there are hundreds of such components
available. Even components are annotated with information
on the semantics of their inputs and outputs, the complex
nature of the semantic languages may make manual component
selection even harder. In this paper, we propose a Case-Based
Reasoning (CBR) approach to assist composition of workflows
based on the characteristics of the inputs and the outputs of
the reusable workflow components, facilitating user exploitation
of existing services and workflows during workflow composition.
The architecture can also be extended to utilize the semantics of
the various components improving the precision of the identified
reusable components.

I. INTRODUCTION

Scientists compose workflows to achieve a custom task, pri-
marily by aggregating existing services. The outcome can be a
final workflow or a part of a much larger workflow. Scientists
start the composition by keeping in mind a certain description
of the inputs and outputs of the workflow. They then must
develop a path from the inputs to the outputs, preferably using
the available services and components. Even though this task
might appear trivial to perform, the composition might be
difficult for various reasons:

o The scientist may have to choose from many available
services, making a manual search time-consuming due to
the number of candidates.

« Selecting the right service requires sufficient knowledge
to understand the semantics of each service to get the
best workflow.

o Scientists might also have difficulties expressing their
service requirements to the system. Even though various
semantic languages [1], [2], [3] have been proposed to
describe requirements, some users might not be conver-
sant with those languages.

e Services might have been written using various service
description standards with which the scientist is unfa-
miliar. For example, WSDL (Web services Description
Language) [4], which is commonly used to define Web
services, might not be familiar to the user.

*This material is based on work supported in part by the National Science
Foundation under Grant No. OCI-0721674.

Automated support for identifying and reusing existing
services and parts of workflows from the scientists’ previous
work or from the work of her colleagues or from a public
source such as myexperiment.org is an appealing strategy for
reducing the development time. These existing workflows or
sub-components within workflows may either help the user to
accomplish the whole task or might help to achieve sub-parts
of his larger workflow.

Even if scientists are not familiar with semantic languages,
they should at least be able to express their requirements
using simple keywords. Consequently, it is desirable for the
system to support retrieval using keyword-based descriptions.
However, if the user is advanced enough, then the system
should also support expressing the requirements using a given
semantic language. We propose a Case-based reasoning based
framework to assist users during their workflow composi-
tion. Case-based reasoning systems reason from specific prior
experiences, retrieving records of similar past problems and
adapting them to fit new needs [5], [6].

Our system, now under development, helps users to find
existing workflows to fit the users’ requirements or to find
components within existing workflows which might fit within
the user’s bigger workflow. It will also enable users to express
their requirements in a user-friendly way. In our implementa-
tion we used a simple keywords-based approach; however, our
framework can be easily extended to be used with the other
known semantic description languages.

In this paper, Section II discusses the related work in
this domain. Section III explains the proposed solution to
overcome the problems outlined above. In Section IV we will
discuss the key features of our system. Section V we will
outline the future work that can be carried out to improve
our proposed system and finally Section VI concludes the
discussion.

II. RELATED WORK

The most common method used to help users to compose
workflows is to take a set of Web services and automatically
compose a set of candidate workflows from it based on
semantic service descriptions. Previous approaches have used
logic programming [7], type matching [8], linear logic [9],
and Al planning [10]. Many of these systems generate a set
of workflows, based not on user goals but on the matching
of inputs and outputs. Ambite and Kapoor [11] have also
proposed a system to automatically compose workflows from
a given set of requirements, and have used shim services to

bridge between incompatible services. Patrick et al. [12] have
proposed a constrained object model for workflow composi-
tion, based upon a meta-model for workflows and ontologies
for processes and data flows. These approaches use various
search strategies to automatically generate a workflow for the
user.

Automatic composition of workflows from scratch faces
some substantial difficulties. First, when the search space
or the number of services increases, generating a solution
might be time-consuming, especially for generative search-
based approaches. In addition, the required time can increase
significantly with the size of the search space, making scale-up
an important concern.

Another class of issues concerns usability: Being able to
handle different ways of expressing users’ inputs and sup-
porting the interactive workflow building process. Users build
workflows incrementally and the system must be able to help
the users in each stage. Coming up with multiple suggestions
prioritized by confidence may be useful for providing useful
support with flexibility.

Kim et al [13] discuss CAT, an approach to help users during
workflow composition by analyzing the composed workflows.
The CAT system notifies users on various errors and suggests
the users to overcome them. They have used planning tech-
niques for the better construction workflows. Leake and Mor-
wick [14] propose a case-based approach to proactive retrieval
as the background to an incremental workflow construction
process, based on analysis of the workflow under construction,
but without using explicit goal-related information from the
user. Our approach combines case-based reuse with semi-
automated support for retrievals using an intuitive keyword-
based method.

III. INTERACTIVE REUSE SUPPORT

Our approach provides interactive assistance during work-
flow composition, using CBR based techniques which draw on
user-generated annotations to guide retrieval of suggestions.
Given a selected annotation framework, authors annotate their
workflow inputs and outputs using the framework and add
the annotated workflows to the case base, which may already
contain workflows annotated by other users.

The framework can assist the user in two different ways:

1) It can retrieve matching workflows, if there are stored
workflows with matching inputs and outputs

2) It can retrieve parts of workflows which the user can
used to compose his larger workflow

A. Methodology

A workflow contains several services each having one or
more inputs and outputs. All the inputs and outputs are
annotated with keywords, to provide a description about the
input or the output. Within our knowledge-base, we represent
these annotated workflow descriptions as cases.

Once the case-base is established, it can be used to identify
a workflow or a sub-workflow that matches to the description

<Input 1 <Output 1

keywords> ’ Expected e | keywords>
° Workflow o

<lnputn — <Output m

keywords> keywords>

Fig. 1. Input to the system is a set of keyword lists, specifying the inputs
and outputs of the expected workflow

and the keywords of the inputs and outputs of the expected
workflow provided by the user. (Figure 1).

The system retrieves the possible matches by considering
keyword information and the structural information of the
workflows stored in the case base. Once the user specifies
the search keywords, as shown in Figure 2, the system can
match those to a) a service b) a part of a workflow or c) a
complete workflow (single output requirement).

v

(Seee) B
; Serivce 1

N

[Output 1] [Output 2]

Fig. 2. Matching users’ search criteria to parts of workflows

To elaborate on the above, consider the workflow shown
in Figure 2. Each box shown by the dashed lines could be a
possible match for the user’s inputs and outputs. As mentioned
earlier, the system takes the structure of the workflow into ac-
count when calculating similarity for the user’s search criteria.
Therefore, for the workflows we consider, which are acyclic,
the search is based on the lemma: All acyclic workflows can be
modeled as a graph. This enables us to reduce the structural
search into a graph search.

Depending on the user’s requests and the cases stored in
the case base, it is not always possible to find a direct match
to the user’s input and output requirements. Consequently,
the system incorporates a simple case adaptation step to fit
retrieved cases to new needs. If the system cannot find the
required set from a single workflow in our system, it tries to
merge the closest workflow with the services in its knowledge
base to get the perfect match. For example, user might want
the workflow output to be generated as an HTML page, but the
most similar workflow in the case base might output an XML
file. In this scenario, the system adds to the identified workflow
another service that convert XML to HTML fulfilling the
user’s requirements. The overall operations performed by the
system are shown in Figure 3.

<input keyword list> 4
<Output keyword list>
Keword Similarity Check
Lesk Algorithm Try to adapt
using existing
N workflows and
o services
Yes
¢ Yes No

Check the self-containedness
of the selected nodes in the
workflow

Fig. 3. System and operations and decision points

B. Similarity Assessment

Our framework matches users inputs and output descriptions
to the cases, stored in our knowledge base. Before a workflow
is stored in the case base, the user is required to annotate
the inputs and outputs of each service in the workflow. These
annotations can be expressed in simple keywords or semantic
languages.

The user specifies the number of inputs and the outputs
of the desired portion of the workflow along with a set
of keywords for each input and output. The user specified
inputs are matched against the inputs of all the services in a
given workflow. A match is made when all the inputs of the
selected service matches the input descriptions given by the
user (Figure 4).

The user specified output is also matched against all the
outputs of the services in a given workflow. The inputs
and outputs can be matched to different services inside the
workflow and hence the system should be able to determine if
the selected services are connected. The system also checks the
self-containedness of the selected services, using the structural
information.

Matched to Matched to
first input first input
Matched to Matched to
third input third input
Matched to
Matched to second input

input

Service 1 and Service 2 are
possible candidates for the
inputs specified by the user

—> .
4)

Service 2 has an additional
input and hence these
services cannot be considered
as a possible match

Fig. 4. Matching users input descriptions to the inputs of services

Structural Similarity Check : Once a set of input services
and an output service are matched for the user’s input and
output descriptions for a given workflow, the next task that the
system performs is to check the structure of the graph. First,
it checks if there exists at least one path from all the input
services to the desired output service. This will ensure that

the selected inputs and outputs are actually a part of a graph
and not a disconnected set of nodes. Next it checks whether
all the services encountered within these paths form a self
contained set of nodes in a workflow (graph) to ensure that
the collected set of nodes can be used without any additional
inputs to achieve the user’s needs. In our system, we store all
the workflows as graphs and hence performing the above two
checks simply reduces this to a graph search problem.

C. Case Adaptation

In our system, the keyword based similarity check allows
the user to specify a certain threshold for the keyword match-
ing. This gives control to relax or tighten the search criteria
and hence control the recall. However, sometimes finding exact
matches for the user requests only from the stored cases might
not be possible. As a solution to this, we incorporated a case
adaptation step that is based on the two assumptions:

« the case base stores descriptions of services, which take
one input and one output

« the adaptation process considers only these services for
constructing extensions to the existing workflows or part
of the workflows

The case adaptation uses backward search to adapt a work-
flow to the user’s requests and has the following steps.

e For each workflow, identify input services by running
the keyword similarity check using the input descriptions
specified by the user.

« Identify services (from the services stored in the case
base) which have the output keywords similar to the
output description specified by the user.

« For each such service (say service S), find a service in the
selected workflow that has the output description similar
to the input description of the service S.

o If there is a match, then execute the direct search
algorithm to see if the identified input services have
connecting paths to the service S and those services in
the paths form a self contained set.

o If such a path is found, add the Service S to the end
of the identified workflow (or part of the workflow) and
present the result to the user.

The above algorithm is not computationally efficient, as it
requires searching all the stored cases against the selected
workflows. Consequently, a depth limit is used to increase
efficiency: The system only performs a few iterations of the
above for adaptation.

The final output of a workflow is highly dependent on
the specific problem the user trying to solve. For example, a
workflow created by a user to retrieve protein structures from
an online database may use a service to convert the selected
results into an html table for the final presentation. Another
user may need to find the exact workflow, but does not need
the output in html format, instead needing it in some other
format such as an xml file. In such situations, although the
case base contains a nearly ideal match, without adaptation the
user would not be able to reuse the previous workflow. With

our system, if the system can find a service which performs
the html to xml conversion, it will be able to adapt the stored
workflow to the user requirement and hence suggest it to the
user.

IV. KEY BENEFITS

Our approach has a few key benefits. First, such a system
saves the user’s time, compared to manual techniques alone.
Second, compared to automated methods, it requires less
processing, because it can rely on the user for focus. Having
an ontology might improve the total time and effort, but
presents a heavy knowledge acquisition burden avoided by
simple keyword-based retrieval. This applies for updates as
well: Even if automatic workflow composition tools use pre-
indexed information, adding new services can be a challenge.

Our system does not rely on any particular workflow
description language [15], [16]. We only consider acyclic
workflows in our approach and this enables reducing any
workflow description language description into a graph. Our
main algorithms work on graph levels and this makes our
system independent of any workflow description language.

Our system enables users to provide their input and out-
put descriptions using keywords. For this we used a simple
similarity measure based on Lesk Algorithm [17] for keyword
matching and disambiguation. Similarity metrics in our system
are decoupled from the main system making it easier to plug
in a different context matching algorithm. If the semantics are
expressed using known standards, again plug-in of similarity
components adhering to those standards will be easier as well.

The cases retrieved using our system might not be ex-
act matches to user requirements. But those cases will be
intelligent suggestions for the users, who exercise the final
judgement. User can set a threshold in the system, to control
the quality and the number of results the system provides.

V. FUTURE DIRECTIONS

Our current system works on graphs and hence supporting
a few workflow description languages natively is an important
fuure work. Also, in addition to the keyword based similarity
model now used for expressing and matching semantics of
services and workflows, we would like to support a few
semantic languages within the system. We expect to use
an existing implementation of those semantic languages and
integrate that implementation with our similarity detection
and requirement specification components. We also intend to
integrate our system into an existing workflow composition
framework to help leverage functionality and the usage of
those composition tools.

We intend to do a performance evaluation of our system
with various knowledge-heavy systems and also with man-
ual systems. Comparing our system performance in terms
of memory, speed and response time, as well as in user
acceptance, compared to automatic composition frameworks,
might provide better insights in to the usability of our system.
We note that although we expect our approach to provide cer-
tain advantages over both manual and automatic composition

systems, it is a complement to them, with each method most
appropriate for certain circumstances; it will not completely
replace them.

VI. CONCLUSION

We proposed an approach to supporting workflow com-
position, leveraging a number of methods from previous
research. Our work aims to to improve productivity and the
quality of final workflows generated by scientists, by providing
alternatives they might otherwise miss and focusing attention
on relevant options. We hope that such a framework can
help scientists composing workflows to concentrate on their
experiments, minimizing the distraction of focusing on the
innter details of their workflows.

REFERENCES

[1] S. Beco, B. Cantalupo, N. Matskanis, and M. Surridge, Putting Seman-
tics in Grid Workflow Management: The OWL-WS approach.

[2] D. Martin et al., OWL-S: Semantic Markup for Web Services,
http://www.w3.org/Submission/OWL-S/.

[3] The Resource Description Framework, http://www.w3.org/TR/rdf-
syntax-grammar/.

[4] E. Christensen et al., Web Services Description Language (WSDL) 1.1,
http://www.w3.org/TR/wsdl.

[5] D. Leake, “CBR in context: The present and future,” in Case-
Based Reasoning. Experiences, Lessons and Future Directions,
D. Leake, Ed. AAAI Press, 1996, pp. 3-30. [Online]. Available:
http://www.cs.indiana.edu/ leake/papers/p-96-01.pdf

[6] R. Mantaras, D. McSherry, D. Bridge, D. Leake, B. Smyth, S. Craw,
B. Faltings, M. Maher, M. Cox, K. Forbus, M. Keane, A. Aamodt, and
1. Watson, “Retrieval, reuse, revision, and retention in CBR,” Knowledge
Engineering Review, vol. 20, no. 3, 2005.

[71 E. Sirin, J. Hendler, and B. Parsia, “Semi-automatic composition of web
services using semantic descriptions,” in /CEIS-2003 Workshop on Web
Services.

[8] I. Constantinescu, B. Faltings, and W. Binder, “Large scale, typecom-
patible service composition,” in IEEE International Conference on Web
Services, 2004.

[9] J. Rao, P. Kungas, and M. Matskin, “Logic-based web service composi-

tion: from service description to process model,” in /EEE International

Conference on Web Services, 2004.

M. Carman, L. Serafini, and P. Traverso, “Web service composition as

planning,” in ICAPS03 International Conference on Automated Planning

and Scheduling, 2003.

J. L. Ambite and D. Kapoor, “Automatically composing data workflows

with relational descriptions and shim services,” International Semantic

Web Conference, 2007.

P. Albert, L. Henocque, and M. Kleiner, “Configuration-based workflow

composition,” in /EEE International Conference on Web Services, 2005.

J. Kim, Y. Gil, and M. Spraragen, “A knowledge-based approach to

interactive workflow composition,” 2004.

D. Leake and J. Kendall-Morwick, “Towards case-based support for

e-science workflow generation by mining provenance information,”

in Proceedings of the Nineth European Conference on Case-Based

Reasoning. Springer, 2008, in press.

Business Process Execution Language for Web Services,

ftp://www6.software.ibm.com/software/developer/library/ws-bpel11.pdf.

Web Services Flow Language, http://dps.uibk.ac.at/uploads/100/W SFL.pdf.

S. Banerjee and T. Pedersen, “An adapted lesk algorithm for word

sense disambiguation using wordnet,” in Computational Linguistics and

Intelligent Text Processing, 2002.

(10]

(11]

[12]
[13]

[14]

[15]

[16]
(17]

