
Iterative MapReduce for Azure Cloud
Thilina Gunarathne, Judy Qiu, Geoffrey Fox

School of Informatics and Computing / Pervasive Technology Institute
Indiana University, Bloomington.
{tgunarat, xqiu, gcf}@indiana.edu

ABSTRACT
MapReduce distributed data processing architecture has become
the de-facto data-intensive analysis mechanism in compute clouds
and commodity clusters, mainly due to its excellent fault
tolerance features, scalability, ease of use and the clean
programming model. MapReduce for Azure (MR4Azure) is a
decentralized, dynamically scalable MapReduce runtime for
Azure Cloud infrastructure built using Microsoft Azure cloud
infrastructure services. This paper also present AzureTwister,
which adds support for optimized iterative MapReduce
computations to MR4Azure, based on the concepts of Twister.
MR4Azure and AzureTwister take advantage of the scalability,
high availability and the distributed nature of cloud infrastructure
services to avoid single point of failures, bandwidth bottlenecks
and management overheads.

Keywords
MapReduce, Azure, Iterative

1. INTRODUCTION
Cloud computing platforms offer more accessible and
horizontally scalable compute power, which can be utilized for
large scale computational analysis. While cloud platforms can be
used with very low overhead and very low startup costs relative to
the traditional clusters, they also present unique challenges for the
existing computational frameworks. MapReduce distributed
computing framework, introduced by Google, is an emerging data
intensive analysis architecture which allows the users to
effectively harness the power of cloud computing platforms with
ease.
The Microsoft Azure platform is a cloud computing platform
which offers on demand computing services such as Windows
Azure Compute, Azure Storage BLOB service, Azure queue
service, Azure table service, etc. Azure Compute is a platform as
a service infrastructure allowing the users to lease hourly charged
virtual machine instances in the form of various Roles (eg:
Worker Role, Web Role, VM Role). The Azure storage queue is
an eventual consistent, reliable, scalable and distributed message
queue service, ideal for small, short-lived, transient messages.
The Azure Storage BLOB service provides a distributed storage
service where users can store and retrieve any type data as a
BLOB through a web services interface. Azure Storage Table
service provides scalable non-relational structured data storage in
a highly available manner. However Azure platform currently do
not offer a distributed computing framework, other than the
simple queue based model. Goal of MR4Azure and AzureTwister
is to facilitate efficient MapReduce & iterative MapReduce
computations in the Azure cloud infrastructure.

2. MAPREDUCE FOR AZURE
MR4Azure is a distributed decentralized MapReduce runtime for
Windows Azure cloud platform that utilizes Azure cloud
infrastructure services. The usage of the cloud infrastructure

services allows the MR4Azure implementation to take advantage
of the scalability, high availability and the distributed nature of
such services to avoid single point of failures, bandwidth
bottlenecks and management overheads. MR4Azure overcomes
the latencies of cloud services by using sufficiently coarser
grained map and reduce tasks. It overcomes the eventual data
availability through retrying and by designing the system to not
rely on the immediate availability of data to all the workers.
MR4Azure uses Azure Queues for map and reduce task
scheduling, Azure tables for metadata & monitoring data storage,
Azure blob storage for input, output and intermediate data storage
and the Window Azure Compute worker roles to perform the
computations.

Figure 1 MapReduce for Azure Architecture

In order to withstand the brittleness of cloud infrastructures and to
avoid possible single point of failures, MR4Azure was designed
as a decentralized control model. MR4Azure also provides users
with the capability to dynamically scale up/down the number of
computing instances. The map and reduce tasks of the MR4Azure
runtime are dynamically scheduled using global queues achieving
natural load balance. MR4Azure handles task failures and slow
tasks through re-execution and duplicate executions. MapReduce
architecture requires the reducers to ensure the receipt of all the
intermediate tasks before starting the reduce processing. Since
ensuring this is hard in an eventual consistent environment,
MR4Azure uses additional data structures for this purpose. In
Gunarathne et al.[1] we show that MR4Azure performs
comparably to the other MapReduce runtimes.

3. AZURE TWISTER
There exists many data analytics as well as scientific computation
algorithms that rely on iterative computations, where each
iterative step can be easily specified as a MapReduce
computation. Twister4Azure extends the MRRole4Azure to
support such iterative MapReduce executions, drawing lessons
from Twister [2] iterative MapReduce framework.
Twister4Azure introduces an additional step, Merge, that executes
after the reduce step (map->reduce->merge). Merge task receives
all the reduce task outputs. Since AzureTwister do not have a

always connected client driver due to reliability reasons, the
decision to continue with another iteration or finish the job needs
to be made in the Merge step. Iterative computations often rely on
a set of static data that remain fixed across iteration and a set of
transient dynamic data between iterations. Twister4Azure
introduces an in memory data cache to store the static data
(downloaded from Azure BLOB storage and parsed according to
the input format) across the iterations. These data can be reused
by subsequent iterations. Each worker role will have one managed
DataCache with a given memory size.

Figure 3 AzureTwister Computation Flow

Figure 4 AzureTwister Map Worker Architecture

Since AzureTwister do not have a central coordinator to assign
tasks to workers using global knowledge, scheduling of the map
tasks to appropriate workers with the cached data products
presents a significant challenge. In addition to this, it’s desirable
to preserve the dynamic scheduling, fault tolerance and other
features of MR4Azure in the new scheduling mechanism. In order
to address these issues, AzureTwister utilizes a hybrid scheduling
approach using a combination of Queues and Azure Tables.

AzureTwister has a special Table called "BulletinBoard", where
the tasks will be advertised from second iteration onwards. Map
Workers will first check this bulletin board to see any intersection
between the data items they have in the DataCache vs the data

items needed for the advertised tasks. The first iteration of
AzureTwister would be identical to MR4Azure and will get
scheduled through Azure queues. From the second iteration
onwards, MapWorkers will pick and process the tasks from the
bulletin board as mentioned above. In the meantime if a new
worker joins, if some worker finishes all its tasks for the cached
data, a task or worker fails, then the workers will be able to pick
up tasks directly from the queue and will use the AzureTables and
the monitoring infrastructure to identify the tasks that are already
processed. Task monitoring thread will run in each worker role
instance and will monitor the state of the executing map tasks and
will get rid of the rare duplicate executions as soon as possible.

Figure 2 presents the performance of KMeans clustering
AzureTwister implementation using 16 Azure small instances.
Each data set contained 500,000 20-dimensional data points.
Cached KMeans computation showed ~18% speedup over non-
cached computation, when used with this particular data set. We
expect the speedups to be even more significant for more data
intensive iterative computations. Figure 2 (c) shows that the
AzureTwister was able to sustain the performance with increasing
number of iterations.

4. CONCLUSION
AzureTwister and MR4Azure provide MapReduce runtimes for
the Windows Azure cloud platform. AzureTwister enables the
users to easily and efficiently perform large scale iterative data
analysis and scientific computations on Azure. AzureTwister
presents a decentralized iterative extension to MapReduce
programing model. It also utilizes a novel hybrid scheduling
mechanism based on Azure Tables and Queues to take advantage
of the caching of static data in iterative computations.
AzureTwister and MR4Azure can also be seen as two examples of
architectures that take utilizes cloud infrastructure services
effectively to deliver robust and efficient applications.MR4Azure
and an alpha version of AzureTwister are available for download
at http://salsahpc.indiana.edu/mapreduceroles4azure

5. REFERENCES
[1] Gunarathne, T., Wu,T.L., Qiu, J., and Fox, G.C. 2010.

MapReduce in the Clouds for Science. In Proceedings of
CloudCom 2010 Conference (Indianapolis,December 2010)

[2] J.Ekanayake, H.Li, B.Zhang et al., 2010. Twister: A
Runtime for iterative MapReduce, in Proceedings of the
First International Workshop on MapReduce and its
Applications of ACM HPDC 2010 conference (Chicago,
June 2010)

Figure 2. KMeans iterative MapReduce performance using 16 Azure small instances (a) 6 iterations with/without data
caching (b) Speedup of using data cache (c) Increasing number of iterations using 32* 500k data points with data caching

http://salsahpc.indiana.edu/mapreduceroles4azure

	1. INTRODUCTION
	2. MAPREDUCE FOR AZURE
	3. AZURE TWISTER
	4. CONCLUSION
	5. REFERENCES

