
Iterative MapReduce for Azure Cloud
Thilina Gunarathne, Judy Qiu, Geoffrey Fox

School of Informatics and Computing / Pervasive Technology Institute
Indiana University, Bloomington.
{tgunarat, xqiu, gcf}@indiana.edu

ABSTRACT
MapReduce distributed data processing architecture has become
the de-facto data-intensive analysis mechanism in compute clouds
and in commodity clusters, mainly due to its excellent fault
tolerance features, scalability, ease of use and the simpler
programming model. MapReduceRoles for Azure (MR4Azure) is
a decentralized, dynamically scalable MapReduce runtime we
developed for Windows Azure Cloud platform using Microsoft
Azure cloud infrastructure services as the building blocks. This
paper presents Twister4Azure, which adds support for optimized
iterative MapReduce computations to MR4Azure, based on the
concepts of Twister Iterative MapReduce framework.
Twister4Azure enables a wide array of large scale iterative data
analysis and scientific applications to utilize Azure platform
easily and efficiently, while preserving the fault tolerance,
decentralized and dynamic scheduling features of MR4Azure.
Both MR4Azure and Twister4Azure take advantage of the
scalability, high availability and the distributed nature of cloud
infrastructure services to avoid single point of failures, bandwidth
bottlenecks and management overheads.

Keywords
MapReduce, Azure, Iterative

1. INTRODUCTION
Cloud computing platforms offer easily accessible and
horizontally scalable compute power over the wire, which can be
effectively utilized for large scale computational analysis. While
cloud platforms can be used with relatively very low management
overhead and very low startup costs, they also present unique
challenges for the traditional computational frameworks such as
MPI. MapReduce distributed computing architecture, introduced
by Google, can be seen as an emerging data intensive analysis
architecture, which allows the users to harness the power of cloud
computing platforms more effectively and easily than their
traditional counterparts.

The Microsoft Azure is a cloud computing platform offering on
demand computing services such as Windows Azure Compute,
Storage BLOB service, Queue service, Table service etc. Azure
Compute is a platform as a service infrastructure allowing the
users to lease hourly charged virtual machine instances in the
form of various Roles (eg: Worker Role, Web Role, VM Role).
The Azure storage queue is an eventual consistent, reliable,
scalable and distributed message queue service, which is ideal for
small, short-lived, transient messages. The Azure Storage BLOB
service provides a distributed storage service where users can
store and retrieve any type data as a BLOB through a web
services interface. Azure Storage Table service provides scalable
non-relational highly available structured data storage. However
Azure platform currently do not offer a distributed computing
framework, other than the simple queue based model. Goal of
MR4Azure and Twister4Azure is to facilitate the efficient
execution of MapReduce and iterative MapReduce applications in
the Microsoft Azure cloud platform.

2. MAPREDUCE ROLES for AZURE
MR4Azure is a distributed decentralized MapReduce runtime for
Windows Azure cloud platform that utilizes Azure cloud
infrastructure services. MR4Azure overcomes the latencies of
cloud services by using sufficiently coarser grained map and
reduce tasks. It overcomes the eventual data availability of cloud
storage services through re-trying and by explicitly designing the
system to not rely on the immediate availability of data across all
distributed workers. MR4Azure uses Azure Queues for map and
reduce task scheduling, Azure Tables for metadata storage and
monitoring data storage, Azure BLOB storage for data storage
(input, output and intermediate) and the Window Azure Compute
worker roles to perform the computations.

Figure 1 MapReduce for Azure Architecture

In order to withstand the brittleness of cloud infrastructures and to
avoid possible single point of failures, MR4Azure was designed
as a decentralized control architecture which does not rely on a
central coordinator or a client side driver. MR4Azure provides
users with the capability to dynamically scale up/down the
number of computing resources. The map and reduce tasks of the
MR4Azure runtime are dynamically scheduled using global
queues achieving natural load balancing given sufficient amount
of tasks. MR4Azure handles task failures and slower tasks
through re-execution and duplicate executions. MapReduce
architecture requires the reduce tasks to ensure the receipt of all
the intermediate data products from Map tasks before starting the
reduce phase. Since ensuring such a collective decision is not
possible with the direct use of eventual consistent tables,
MR4Azure uses additional data structures on top of Azure Tables
for this purpose. In Gunarathne et al.[1] we show that MR4Azure
performs comparably to the other popular MapReduce runtimes.

3. TWISTER for AZURE
There exists many data analysis as well as scientific computation
algorithms that rely on iterative computations, where each
iterative step can be easily specified as a MapReduce
computation. Twister4Azure extends the MR4Azure to support
such iterative MapReduce executions, drawing lessons from
Twister [2] iterative MapReduce framework.

Twister4Azure introduces an additional “Merge” step to
MapReduce programming mode, that executes after the reduce
phase (map->reduce->merge). Merge task receives all the reduce
task outputs as its input. Since Twister4Azure do not have an
always connected client driver due to reliability reasons, the
decision to continue with more iteration or to finish the
computation after the current iteration needs to be made in the
Merge step. Iterative computations often rely on a set of static
data that remain fixed across iterations and a set of transient
dynamic data between iterations. Twister4Azure introduces an in-
memory DataCache to store the reusable static data across the
iterations, avoiding the downloading and parsing cost of such data
from Azure BLOB storage for every iteration. Each worker role
will have one managed DataCache with a given memory limit.

Figure 3 Twister4Azure Computation Flow

Figure 4 Twister4Azure Map Worker Architecture

Since Twister4Azure do not have a central coordinator which can
utilize the knowledge about cached data products to assign tasks
to workers, scheduling tasks to take advantage of data caching
presents a significant challenge. At the same time, it’s desirable to
preserve the dynamic scheduling, fault tolerance and dynamic
scalable features of MR4Azure in the new scheduling mechanism.
In order to address these issues, Twister4Azure utilizes a hybrid
scheduling approach using a combination of Queues and Azure
Tables. The first iteration of Twister4Azure would be identical to

MR4Azure and will get scheduled only through Azure queues.
Twister4Azure uses a special table as a "BulletinBoard", where
the tasks are advertised from second iteration onwards. Map
Workers first query this bulletin board to identify any intersection
between the data items they have in their DataCache vs the data
items needed for the advertised tasks. With this mechanism the
static data for iterative MapReduce computations will get reused
from the second iteration onwards. In the meantime idle workers
(newly joined or a worker who has finished processing all the
tasks for the cached data) will be able to pick up tasks directly
from the queue and will use the AzureTables and the monitoring
infrastructure to identify the tasks that are already processed. This
also ensures that Twister4Azure retains the fault tolerance
features of MR4Azure.

Figure 2 presents the performance of KMeans clustering
Twister4Azure implementation using Azure small instances. Each
data set contained 8-128 million 20-dimensional data points.
Cached KMeans computation showed ~18% speedup over non-
cached computation, when used with this particular data set. We
expect the speedups to be even more significant for more data
intensive iterative computations. Figure 2 (c) shows that the
Twister4Azure was able to sustain the performance with
increasing number of iterations.

4. CONCLUSION
Twister4Azure and MR4Azure provide MapReduce distributed
computing runtimes for the Windows Azure cloud platform.
Twister4Azure presents a decentralized iterative extension to
MapReduce distributed computing model, enabling the users to
easily and efficiently perform large scale iterative data analysis
and scientific computations on Azure cloud platform.
Twister4Azure utilizes a novel hybrid scheduling mechanism
based on Azure Tables and Azure Queues to provide the caching
of static data across iterations in iterative computations.
Twister4Azure and MR4Azure can also be perceived as two
examples of architectures that utilize cloud infrastructure services
effectively to deliver robust and efficient applications.

MR4Azure and an alpha version of Twister4Azure are available
for download at http://salsahpc.indiana.edu/twister4azure

5. REFERENCES
[1] Gunarathne, T., Wu,T.L., Qiu, J., and Fox, G.C. 2010.

MapReduce in the Clouds for Science. In Proceedings of
CloudCom 2010 Conference (Indianapolis,December 2010)

[2] J.Ekanayake, H.Li, B.Zhang et al., 2010. Twister: A
Runtime for iterative MapReduce, in Proceedings of the
First International Workshop on MapReduce and its

Figure 2. KMeans iterative MapReduce performance using (a) 6 iterations with/without data caching, 16 instances (b) Scaling
Speedup - 10 iterations with caching (c) Increasing number of iterations using 16M data points with data caching, 16

Applications of ACM HPDC 2010 conference (Chicago, June 2010)

