
Supporting Queries and Analyses of Large-Scale Social Media Data with
Customizable and Scalable Indexing Techniques over NoSQL Databases

Xiaoming Gao

School of Informatics and Computing
Indiana University

Bloomington, IN, USA
gao4@indiana.edu

Judy Qiu
School of Informatics and Computing

Indiana University
Bloomington, IN, USA

xqiu@indiana.edu

Abstract— Social media data analysis demonstrates two special
characteristics in Big Data processing. First, most analyses focus
on data subsets related to specific social events or activities,
instead of the whole data set. Second, analysis workflows consist
of multiple stages, and algorithms applied in each stage may use
different computation and communication patterns suitable for
different processing frameworks. This paper presents our
efforts in supporting the data storage and processing
requirements brought by such characteristics. In order to
achieve efficient evaluation of queries about target data subsets,
we propose a general customizable and scalable indexing
framework that can be built over distributed NoSQL databases.
This framework allows users to define customized index
structures that are most suitable for their query patterns against
social media data, and supports scalable indexing of both
historical and streaming data. We implement this framework
using HBase as the storage substrate, and name it
IndexedHBase. Starting from IndexedHBase, we build a
distributed analysis stack based on YARN to support analysis
algorithms using different processing frameworks, such as
Hadoop MapReduce, Harp, and Giraph. This analysis stack is
used to support the Truthy social media data observatory, and
our experience shows that the customized index structures are
not only useful in efficient query evaluation, but also valuable in
supporting post-query analysis tasks. Performance tests show
that our solutions outperform implementations using both
direct raw data scans and current indexing mechanisms in
existing NoSQL databases.

Keywords-Social media data analysis; customizable and
scalable indexing; NoSQL databases; YARN;

I. INTRODUCTION

As data intensive applications evolve, many research
projects involving Big Data require efficient extraction and
analysis of specific data subsets, rather than the whole dataset.
Social media data analysis is one such example. While social
media platforms such as Twitter provide tremendous data
about people’s social life, most research analyses only focus
on data subsets related to specific social events or social
activities: congressional elections [6], protest events [4], etc.
Compared with the sheer size of the entire dataset at TB or PB
level, the subsets are normally smaller by orders of magnitude.
For such research scenarios, limiting analysis computation to
the exact scope of the target subsets is important in terms of
both efficiency and better resource utilization. Therefore,
mechanisms for quickly locating the relevant data subsets are
needed on the data storage layer.

Another important characteristic of social media data
analysis is that the analysis workflows normally consist of
multiple stages, and each stage may apply a diversity of
algorithms to process the target data subsets, as illustrated in
Figure 1. Different algorithms may demonstrate different
computation and communication patterns that are suitable for
different processing frameworks. Therefore, to achieve
efficient overall execution of the workflow, the analysis stack
must be able to adapt to alternate processing frameworks to
complete various steps from these stages.

Figure 1. Stages in a social media data analysis process.

To address these challenges, this paper proposes a general
customizable indexing framework that can be built over
scalable distributed NoSQL databases. With this framework,
users can define index structures that contain customized
information about the original social media data, so as to
achieve efficient evaluation of queries about interesting social
events and activities. By choosing proper mappings between
the abstract index structures and the storage units provided by
the underlying NoSQL database, efficient indexing of
historical and streaming data can be achieved. We implement
this framework on HBase [3], and release it as an open source
project IndexedHBase [15]. We extend IndexedHBase to
build an analysis stack based on YARN [23], which is
specially designed for dynamic scheduling of multiple
analysis tasks using different parallel processing frameworks
in a shared environment. This analysis stack is used to support
the Truthy social media data observatory [16], and we have
developed multiple parallel algorithms as basic building
blocks for constructing analysis workflows. Our experience
shows that the customized indices are valuable for developing
both efficient query evaluation strategies and various post-
query analysis algorithms.

The rest of this paper is organized as follows. Section 2
explains the abstract data model and index structure of our
customizable indexing framework, and describes our
implementation on HBase. Section 3 tests our architecture
with the Truthy application. Section 4 gives the performance
evaluation results of some typical queries and analysis tasks.
Section 5 discusses related work. Section 6 concludes and
discusses potential future work.

II. CUSTOMIZABLE INDEXING FRAMEWORK

A. Input Data Model

The customizable indexing framework uses the concept of
data record and record set to model the input data to be
indexed. A record set is composed of zero to multiple data
records. Each data record can be modeled by a JSON type
of nested key-value pair list data structure uniquely identified
by an “id” field, as shown in Figure 2. These concepts can be
easily mapped to the data storage units of various NoSQL
databases. For example, a record set can be implemented as
a table in HBase [3], a bucket in Riak [21], or a collection in
MongoDB [17]. Correspondingly, a data record can be
implemented as a row in HBase, an object in Riak, or a
document in MongoDB.

Figure 2. An example of nested
data model for input data records.

Figure 3. Abstract index structure.

B. Abstract Index Structure

Figure 3 illustrates the abstract index structure used by our
framework. The overall structure is organized by a sorted list
of index keys, and each index key can be associated with a
varied number of index entries. Each index entry contains a
unique entry ID, and a varied number of entry fields for
embedding additional information about the indexed data.
Index entries are sorted by entry IDs. This structure is
similar to the posting lists used in inverted indices [25], but
the major difference is that our framework allows users to
customize what to use as index keys, entry IDs, and entry
fields through an index configuration file, as illustrated in
Figure 4. Users can also define their own functions (UDFs)
for generating index keys and entries for a given data record.
By using proper index configurations or UDFs, it is possible
to create various index structures, such as single dimensional
index, multi-dimensional index, inverted index for text
retrieval, or even the geospatial index described in [18].

Figure 4. An example index configuration file.

C. Interface to Client Applications

Figure 5 presents the major operations provided by our
customizable indexing framework to client applications. The

client application can use a general customizable indexer to
index or un-index a data record. The general customizable
indexer analyzes the index configuration file and generates
index entries for the data record, invoking a user-defined
indexer if necessary. Then the insertion or deletion of index
entries is translated into data operations supported by the
underlying NoSQL storage substrate for real execution. To
complete a search using an index structure, the client
application can invoke a basic index operator provided by
the framework, or a user defined index operator. Multiple
constraints can be specified as parameters to filter the index
entries by their keys, entry IDs, or entry fields. Constraint
types currently supported are value set constraint, range
constraint, and regular expression constraint.

Figure 5. Interface to client applications.

D. Implementation on HBase

The customizable indexing framework can be
implemented on different NoSQL databases through proper
mappings between the abstract index structure and the storage
functionality provided by the NoSQL database. Considering
the requirement of scalable real-time indexing for streaming
data, the mapping must be carefully designed to support
efficient updates to single index entries. Our current
implementation uses HBase as the storage substrate.
Specifically, we use an HBase table to implement an index
structure, a row key for an index key, a column name for an
entry ID, and a column value for all the entry fields. Since
HBase stores table data under the hierarchical order of <row
key, column name, timestamp>, it is easy to support range
scans over the index keys or entry IDs. Moreover, based on
the region split and load balancing mechanisms provided by
HBase, we are able to achieve efficient and scalable real-time
indexing of streaming data.

III. CASE STUDIES WITH TRUTHY

Truthy is a social media data observatory [16] designed for
analysis and visualization of information diffusion on Twitter.
It collects data through the Twitter streaming API [22]. The
current total size of historical data in the format of .json.gz
files is more than 10 terabytes. The data rate coming out of the
dynamic stream is in the range of 45-50 million tweets per
day. Tweets come in the form of structured JSON strings that
contain information about users, their tweets, and the
“retweet” relationship among tweets.

Truthy uses the concept of “meme” to represent a set of
related posts corresponding to a specific discussion topic,
communication channel, or social event/activity. Memes can
be identified through elements contained in the text of tweets.
These include keywords, hashtags (e.g. #euro2012), user-
mentions (e.g. @youtube), and URLs. Most analysis
workflows start with queries about memes [12], e.g. get-

mention-edges(memes, time-window). Here memes is a list of
meme identifiers such as hashtags, and time-window is given
as a pair of time points like [2012-06-08T00:00:00, 2012-06-
23T23:59:59]. This query first finds all the tweets containing
the given meme identifiers within the time-window, and then
extracts all the user-mention edges contained in these tweets.
These edges as a whole construct a user-mention network for
the given memes, representing a typical pattern of information
diffusion on social networks.

We test IndexedHBase with the Truthy queries,
designing a set of multi-dimensional index structures. Figure
6 illustrates one of them. This structure indexes both text and
non-text data fields, but does not store any frequency or
position information about the indexed terms. This is because
the Truthy queries are not designed for retrieving the top-N
most related documents, but for extracting information such
as user-mention networks from all related social updates. To
the best of our knowledge, this index structure is not currently
supported by any existing NoSQL databases.

Figure 6. Example data and index tables designed for Truthy.

To achieve efficient execution of analysis workflows in
Truthy, we upgraded our previous analysis stack in [13] to a
new one based on YARN [23], as shown in Figure 7. The
Indexing Module provides efficient and scalable customized
index building for both streaming and historical data. The
Query Analysis Engine completes queries about interesting
data subsets through the usage of index operators, and
dynamically invokes different parallel processing frameworks
to execute analysis tasks over the query results.

Figure 7. Architecture of data analysis stack based on YARN.

Based on this analysis stack, we developed the following
building blocks wrapped up with shell scripts for constructing
analysis workflows:

A two-phase parallel query evaluation strategy for all
the queries used in Truthy, as described in [12].

A parallel related hashtag mining algorithm
implemented with Hadoop MapReduce [2], as described in
[13]. The advantage of this algorithm is that it only uses a
small portion of the original data, and relies on the indices to
complete the major part of computation. Since the size of
index data is significantly smaller, this algorithm is much
faster than a solution based on original data scanning.

A parallel algorithm for generating the daily
frequencies of all hashtags during a given time window. This
is useful for many analysis purposes, such as generation of
meme evolution timelines [4] and meme lifetime distribution
[24]. Considering the schema of “Meme Index Table” in
Figure 6, it is obvious that this can be done by solely scanning
the index, without touching any original data. The algorithm
is implemented as a Hadoop MapReduce program. Each
mapper takes one region of the “Meme Index Table” as input,
and generates the daily frequencies for each hashtag by going
through the corresponding row and doing simple counting.

An iterative MapReduce implementation of the
Fruchterman-Reingold algorithm [11] for graph layout
generation. This algorithm is useful in visualizing many social
network structures, such as retweet networks and user-
mention networks. We have upgraded the implementation in
[13] to a new implementation on Harp [14], the new YARN-
compatible version of Twister [9].

In addition, a parallel version of the label propagation
algorithm [19] using Giraph [1] is under development.

IV. PERFORMANCE EVALUATION

This section presents the results of several important
performance evaluation tests, which clearly demonstrate that
our customizable index structures can greatly improve the
efficiency of query evaluation and analysis tasks in Truthy.
All tests are done on a private eight-node cluster. The
hardware configuration of each node is listed in Table I. Each
node runs RHEL 6.5 and Java 1.7.0_45. For the deployment
of YARN and IndexedHBase, Hadoop 2.2.0 and HBase 0.96.0
are used. For the deployment of Riak, each node runs Riak
1.2.1, using LevelDB as the storage backend.

TABLE I. HARDWARE CONFIGURATION OF EACH NODE

CPU RAM Hard Disk Network

4 * 4 Quad-Core AMD
Opteron 8356 2.3G Hz

16GB 4 TB 1Gb Ethernet

Figure 8 shows the performance comparison of three
query evaluation strategies for a typical query in Truthy. The
Hadoop-FS strategy uses a MapReduce program to scan the
.json.gz files (one file for each day), and process the matched
tweets to complete query. Riak represents a strategy using the
text indices with “inline fields” supported by Riak, as
described in [12]. The results clearly demonstrate that
IndexedHBase is significantly faster than the other two
strategies. Furthermore, the difference between Riak and
IndexedHBase gets bigger as the time window gets longer,
suggesting that IndexedHBase is especially good at queries
with large intermediate data and result sizes.

Figure 9 compares the performance of our solutions on
IndexedHBase against two Hadoop-FS implementations in
completing two analysis tasks. The first task mines related
hashtags for “#p2” using data between 2012-09-24 and 2012-
11-06. The second task generates daily meme frequencies of
all hashtags for 2012-06. The Hadoop-FS implementations
use MapReduce programs to scan the corresponding files and
generate the results. Again, our solutions are significantly
faster by factors of ten. More importantly, this comparison

clearly demonstrates the value of indices in supporting
analysis tasks beyond the basic queries.

Figure 8. Results for query

evaluation tests.
Figure 9. Results for analysis

task performance tests.

V. RELATED WORK

For more details about the query evaluation strategy and
indexing performance of IndexedHBase, as well as
reproducing Truthy workflows, please refer to [12] and [13].

DataStax (Cassandra) [5], MongoDB [17] and Riak [21]
are other examples of distributed NoSQL databases with their
own indexing mechanisms. As discussed in section II, our
customizable indexing framework can be implemented on
these systems to extend their existing indexing functionality.

Hadoop++ [7], HAIL [8], and Eagle-Eyed Elephant [10]
are systems that try to extend Hadoop [2] with indexing
mechanisms to facilitate MapReduce queries. However, they
schedule MapReduce tasks based on data blocks or splits on
HDFS, and tasks may have to scan irrelevant data during
query evaluation. In contrast, our framework does indexing
on the data record level, and query and analysis tasks only
need to access relevant data records to produce the result.

VI. CONCLUSIONS AND FUTURE WORK

Three major conclusions can be drawn from our
experience in this project. First, to achieve the optimal query
evaluation performance for different domain applications,
index structures should be customizable rather than static.
Second, indexing is valuable for not only query evaluation,
but also analysis and mining tasks. Finally, an extendable
analysis stack that can dynamically adopt different processing
frameworks to handle different tasks is crucial for efficient
execution of social media data analysis workflows.

There are two major directions that we can work on in the
future. First, it will be interesting to extend our customizable
indexing framework to other NoSQL databases and compare
the performance with IndexedHBase. Second, we will try to
further explore the value of indices in supporting analysis
algorithms for streaming data.

ACKNOWLEDGEMENTS

This research is in part supported by National Science
Foundation CAREER Award OCI-114943 and DARPA
(grant W911NF-12-1-0037).

REFERENCES
[1] Apache Giraph. https://giraph.apache.org/.

[2] Apache Hadoop. http://hadoop.apache.org/.

[3] Apache HBase. http://hbase.apache.org/.

[4] Conover, M., Ferrara, E., Menczer, F., Flammini, A. The Digital
Evolution of Occupy Wall Street. PLoS ONE, 8(5), e64679. 2013.

[5] DataStax. http://www.datastax.com/.

[6] DiGrazia, J., McKelvey, K., Bollen, J., Rojas, F. More Tweets, More
Votes: Social Media as a Quantitative Indicator of Political Behavior.
Available at SSRN: http://dx.doi.org/10.2139/ssrn.2235423. 2013.

[7] Dittrich, J., Quiané-Ruiz, J., Jindal, A., Kargin, Y., Setty, V., et al.
“Hadoop++: making a yellow elephant run like a cheetah (without it
even noticing),” Proc. VLDB Endow. 3, 1-2 (Sep. 2010), 515-529.

[8] Dittrich, J., Quiané-Ruiz, J., Richter, S., Schuh, S., Jindal, A., et al.
“Only aggressive elephants are fast elephants,” Proc. VLDB Endow. 5,
11 (Jul. 2012), 1591-1602.

[9] Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S., et al.
“Twister: a runtime for iterative MapReduce,” Proc. ACM Symp. High
Performance Distributed Computing (HPDC 10). ACM New York,
2010, pp. 810-818, doi: 10.1145/1851476.1851593.

[10] Eltabakh, M., Özcan, F., Sismanis, Y., Haas, P., Pirahesh, H., et al.
“Eagle-eyed elephant: split-oriented indexing in Hadoop,” Proc.
International Conf. Extending Database Technology (EDBT 13). ACM
New York, 2013, pp. 89-100, doi: 10.1145/2452376.2452388

[11] Fruchterman, T., Reingold, E. M. “Graph drawing by force-directed
placement,” Softw. Pract. Exper. 21, 11 (Nov. 1991), pp. 1129-1164.

[12] Gao X., Roth, E., McKelvey, K., Davis, C., Younge, A., et al.
“Supporting a Social Media Observatory with Customizable Index
Structures - Architecture and Performance,” book chapter to appear in
Cloud Computing for Data Intensive Applications, to be published by
Springer Publisher, 2014. Available at
http://salsaproj.indiana.edu/IndexedHBase/paper_bookChapter.pdf.

[13] Gao, X., Qiu, J. “Social Media Data Analysis with IndexedHBase and
Iterative MapReduce,” Proc. Workshop on Many-Task Computing on
Clouds, Grids, and Supercomputers (MTAGS 2013) at Super
Computing 2013. Denver, CO, USA, Nov. 17th, 2013.

[14] Harp project. http://salsaproj.indiana.edu/harp/index.html.

[15] IndexedHBase. http://salsaproj.indiana.edu/IndexedHBase.

[16] McKelvey, K., Menczer, F. “Design and prototyping of a social media
observatory,” Proc. International Conf. World Wide Web companion
(WWW 13). International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva, Switzerland, 2013, pp.
1351-1358.

[17] MongoDB. http://www.mongodb.org/.

[18] Nishimura, S., Das, S., Agrawal, D., Abbadi, A. E. “MD-HBase: A
Scalable Multi-dimensional Data Infrastructure for Location Aware
Services,” Proc. IEEE International Conf. Mobile Data Management
(MDM 11). IEEE Computer Society Washington, DC, 2011, pp. 7-16,
doi: 10.1109/MDM.2011.41.

[19] Raghavan, U., Albert, R., Kumara, S. “Near linear time algorithm to
detect community structures in largescale networks,” Physical Review
E 76, 036106 (2007).

[20] Ratkiewicz, J. Conover, M., Meiss, M., Goncalves, B., Patil, S., et al.
“Truthy: mapping the spread of astroturf in microblog streams,” Proc.
International Conf. World Wide Web companion (WWW 11). ACM,
New York, 2011, pp. 249-252, doi: 10.1145/1963192.1963301.

[21] Riak. http://basho.com/riak/.

[22] Twitter Streaming API. https://dev.twitter.com/docs/streaming-apis.

[23] Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, Sharad.,
Konar, M., et al. “Apache Hadoop YARN: yet another resource
negotiator,” Proc. ACM Symp. Cloud Computing (SoCC 13). ACM
New York, 2013, Article No. 5, doi: 10.1145/2523616.2523633.

[24] Weng, L., Flammini, A., Vespignani, A., Menczer, F. “Competition
among memes in a world with limited attention,” Nature Sci. Rep., (2)
335, 2012.

[25] Zobel, J. Moffat, A. “Inverted files for text search engines,” ACM
Computing Surveys, 38(2) - 6. ACM New York, 2006.

