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ABSTRACT  
   
Some of the latest trends in cheminformatics, computation, and the world wide web are reviewed with 
predictions of how these are likely to impact the field of cheminformatics in the next five years. The vision 
and some of the work of the Chemical Informatics and Cyberinfrastructure Collaboratory at Indiana 
University are described, which we base around the core concepts of e-Science and cyberinfrastructure that 
have proven successful in other fields.  Our chemical informatics cyberinfrastructure is realized by  building 
a flexible, generic infrastructure for cheminformatics tools and databases, exporting “best of breed” methods 
as easily-accessible web APIs for cheminformaticians, scientists, and researchers in other disciplines, and 
hosting a unique chemical informatics education program aimed at scientists and cheminformatics 
practitioners in academia and industry.  
 
1. HOW FAR HAS CHEMINFORMATICS COME?  
 
The practice of cheminformatics has come a long way since the start of the field in the area of chemical 
information and structure representation. In its current form cheminformatics has become an encompassing 
field that includes areas such as structure representation and searching, prediction of molecular properties, 
and visualization of molecular structures and properties. Naturally cheminformatics is very multidisciplinary 
in nature, utilizing tools and techniques from computer science, mathematics, statistics and visualization. The 
goal of cheminformatics is to make sense of the large amount of information that is derived from chemical 
structures and processes. The results must not be presented only as mathematical models or tables of 
numbers, but in terms of chemistry. Fundamentally, cheminformatics must be able to manage and process the 
large amounts of data that are characteristic of today’s chemical enterprises, and transform the data into 
usable chemistry. We believe that in the last fifty years, cheminformatics has made significant progress 
towards this goal, though many problems still exist.  
 
The explosion of data in cheminformatics has come about because of the large increase in the numbers of 
chemical compounds that have been synthesized or which can be shown to be synthesizable, and a plethora 
of properties (biological and chemical) that can be measured or calculated for these compounds. One of the 
largest repositories of such data is PubChem which currently has 10 million chemical structures as well as 
results from nearly 500 bioassays on about 80,000 compounds. In addition to public resources, there are 
many proprietary repositories of such information, which are generally not publicly accessible. In addition to 
these databases, alternative forms of information are becoming increasingly available.  Such information may 
take the form of electronic journal articles, web pages containing structural formulae and other 
representations as well as discussion forums related to chemistry. These non-traditional sources of 
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information may not contain an explicit chemical structure. In many cases, text and images must be parsed to 
identify relevant chemical items, which can then be processed to generate traditional structures and other 
information. We include algorithms as possible data sources. Given the large number of algorithms and 
software packages available for a variety of cheminformatics tasks, we believe that it is important to be able 
to organize these types of resources, so that one can use them in a uniform manner allowing for automation. 
Thus the first fundamental feature of cheminformatics is the ability to handle multiple and disparate sources 
of chemical data.[52]  
 
With cheminformatics in its fifth decade (although not under that title[18]), it is interesting that the scope of 
the term and goals of the field are not well agreed upon. We believe a fundamental goal is to provide useful 
information to chemists to help them do better chemistry in whatever sphere they work; that is, to make use 
of chemical information to identify the best molecules for a specific purpose and explain the behavior of a 
given molecule from its structural features. Given the deluge of data described above, today’s scientists 
require not only that answers be quickly available but also that answers can be quickly updated when new 
data is available. This approach implies that in many cases, one may not be able to get an exact answer. 
Depending on the situation, an approximate answer may be sufficient and in a number of situations, an 
approximate answer may be all that is available. In other words a fundamental feature of cheminformatics is 
its ability to handle large amounts of data efficiently and its ability to provide an approximate answer to the 
questions: Which are the molecules I want? and What do these molecule do?  
 
The cheminformatics literature is filled with approaches that attempt to answer these two questions using a 
variety of techniques. Obviously, if one were able to calculate everything from first principles in reasonable 
time, we would not need to consider simplified or transformed versions of chemical structures as much of 
cheminformatics does. Since such first principle calculations are still not feasible we must resort to 
abstractions that allow us to manage large amounts of chemical data in reasonable time frames. Not only 
must we perform these analyses in reasonable time, we must remember that the goal of cheminformatics is to 
provide useful information to the practicing chemist so all information must be contextualized for the human 
and scientific pursuit.[40] We believe that the issue of extracting chemistry from cheminformatics techniques 
is still open and that much remains to be done to unify cheminformatics resources such that they can be 
accessed uniformly and combined in innovative ways.  
 
In the following sections we describe some of the areas of cheminformatics that we are tackling in the 
Indiana Chemical Informatics and Cyberinfrastructure Collaboratory (CICC) using a cyberinfrastructure 
approach. By cyberinfrastructure we mean the integration of advanced instruments, computing systems, data 
storage facilities, visualization environments, software, and people connected by advanced networks to 
enable scientific discoveries that would otherwise not be possible. Arden Bement, director of the National 
Science Foundation, has called cyberinfrastructure[10] the engine for change that will drive “a second 
revolution in information technology, one that may well usher in a new technological age that will dwarf, in 
sheer transformational scope and power, anything we have yet experienced in the current information 
age.”[17] For reviews and summaries of Grids and cyberinfrastructure, see Berman et al[14] and Foster[26].    
 
We advocate the adoption of an open distributed system architecture that is based on Web Services[11].  This 
architecture is illustrated conceptually in Figure 1.  Web Services provide a universal means for wrapping 
databases, analysis codes, computational methods, and miscellaneous capabilities such as format converters 
with well-defined XML interfaces that may be invoked using network messaging-based approaches.  The 
primary advantage of this approach is that it enables us to provide an open, loosely coupled, easily extensible 
architecture.  Other collaborators and partners can easily pick and choose the services they want and integrate 
these into their environments.  Similarly, they can provide back services to the community.  Higher level 
capabilities, such as workflow systems[27] and science gateway portals[9] can be built on this foundation.  
Further, as we discuss also in this paper, this is no fundamental difference between the so-called Web 2.0 
approaches[28] and cyberinfrastructure, and we attempt a blending of these two approaches in detail.  By 
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adopting these approaches, we hope to make our efforts compatible with the general trends in network 
computing.   
 
2. EXPLAINING CHEMISTRY WITH CHEMINFORMATICS  
 
One of the main focuses of the CICC is to devise and improve techniques for identifying molecules that can 
be used for a specific purpose. Successful approaches generally involve a range of predictions, which may 
include protein binding, absorption, distribution, metabolism and excretion (ADME) and toxicity and 
solubility prediction, inter alia. The success of these methods requires a high degree of prediction accuracy, 
as well as a high degree of accessibility to and interpretability by the chemist.   
 
The use of machine learning methods to predict the properties of molecules from their structural features has 
a long history, starting with Hansch in the early 60's.[36] This approach is also termed Quantitative 
Structure-Activity Relationships (QSAR) and has been a vigorous area of research for a long time. The basic 
idea underlying these approaches is that in many cases, it is difficult or impossible to directly predict the 
property of a molecule from the molecular structure. As a result we take an indirect route, whereby we 
consider a set of molecular structures which have measured values of the property of interest. We then derive 
numerical descriptors (also termed features) of the molecular structures and attempt to correlate these 
descriptors to the observed property via a mathematical model. The resultant model is then used to predict 
the property of a new molecular structure. It should be noted that this approach is very general. Thus, a 
predictive model can be built for any property that can be measured and there are numerous examples in the 
literature covering a wide variety of properties.[12, 13, 19, 42]  
 
Though this area of research is well established there are a number of issues that still remain. In particular, 
we seek to investigate methods that allow one to extract chemical sense from predictive models as well as 
identify when one can use a model sensibly (i.e., obtain a valid prediction) and when one should not rely on 
the results of a model.  
 
We first discuss the issue of extracting chemistry from predictive models. Traditionally predictive models 
have been judged in terms of numerical quantities. These include the statistical methods R2, q2 and Root 
Mean Square Error (for regression models) and the percentage correct classification and area under the curve 
(AUC) (for classification models). Though these are certainly necessary to judge whether a model is usable, 
they do not really describe the structure-activity trends that are encoded by the model. Thus one of the aims 
of the CICC is to devise methods that allow us to explain the encoded structure-activity trends. We have 
considered a number of approaches to this problem, focusing on individual modeling techniques. Thus for 
linear regression models we have applied a technique based on partial least squares (PLS)[46] which allows 
one to explain the effects of individual descriptors on the predicted property. Though this can be achieved to 
some extent by simply considering the appropriately scaled regression coefficients, the PLS approach allows 
much more detail when considering the effects of individual descriptors on specific molecules. This approach 
has been used to successfully extract detailed descriptions of structure-activity trends involved in the anti-
malarial activity of artemisinin analogs[33] and the inhibitory activity of piperazyinylquinazoline analogs 
against PDGFR.[32]  
 
We have also considered the interpretation of neural network models. For this case we devised a broad 
interpretation method[31] which essentially ranks the descriptors in order of their importance to the model’s 
predictive ability and is based on the concept of descriptor importance used in random forest models.[16] We 
also devised a detailed interpretation protocol[34] which allows us to analyze the effects of individual 
descriptors on the predicted output in a manner analogous to the PLS interpretation approach for linear 
regression models. This approach has been shown to correctly extract the encoded structure-activity trends 
from neural network models developed for a variety of properties such as boiling point and skin 
permeability.[34] The disadvantage of this approach is that it linearizes the network, thus losing a good deal 



Page 4 

of the non-linear encoding of the structure-activity trends. Current efforts in this area involve improving the 
method to avoid the linearizing approximation as well as make better use of the bias terms in the neural 
network model.  
 
The result of these approaches has been that rather than simply providing a table of numbers or a scatter plot, 
we are now able to explain why a certain molecule is predicted to be active (or toxic or mutagenic and so on) 
based on specific structural features. Naturally, one can obtain similar types of information using other 
methods (quantum mechanics, docking). Given that predictive models can be used on large chemical 
datasets, the approaches discussed here allow us to fully utilize the information encoded in these types of 
models, rather than simply using them for their predictive ability.  
 
One feature of our investigations in this area is that they have mainly focused on the interpretation of 
regression models. Future directions for this area of research include development of methods that can be 
used to interpret classification models. Currently, the descriptor importance approach for neural networks and 
random forest models can be applied to classification problems, but as noted above, this method does not 
lead to an in-depth understanding of the encoded structure-activity trends.  
 
From the above discussion it is clear that the process of extracting encoded structure-activity trends is 
dependent on the nature of the descriptors that are used to characterize molecular structure. Currently, there 
are a wide variety of packages[47, 49] that can be used to calculate molecular descriptors. As a result, one 
can calculate many thousands of descriptors. However, many of these descriptors are quite abstract (such as 
topological descriptors) and it is difficult to go from the descriptor values to a real molecular feature. On the 
other hand, a variety of descriptors are available that make physical sense; that is, it is clear how the 
descriptor relates to the molecular structure. Thus when interpreting a predictive model it is beneficial to 
have a model made up of such physically interpretable descriptors. Given that we can calculate thousands of 
descriptors, we must choose a small subset when developing a predictive model, so as to avoid 
overfitting.[37] The problem of choosing a small subset of descriptors from a large pool is termed feature 
selection and has been extensively studied[38, 39, 41] in the machine learning and data mining community.  
 
At the CICC we have considered the problem of feature selection in the context of multiple models. In the 
field of QSAR modeling it is traditionally seen that one builds a linear model for its interpretability and 
simplicity and a non-linear model for its improved predictive accuracy. However, each model is developed 
using a different set of descriptors, which is optimal for each individual model. Thus it is possible that the 
individual models may encode slightly different structure-activity relationships. However if one is able to 
select a set of descriptors that is simultaneously optimal for multiple types of models (say a linear regression 
model and a non-linear neural network model) then one of the models can be used for its greater 
interpretability and the other model for its higher accuracy. This approach would also be useful when 
developing models for ensemble predictions.[8, 22] In either case, by using the same set of descriptors in 
multiple types of models, one may expect that they now consistently encode the same structure-activity 
relationships. Our approach[25] has been to use a genetic algorithm in which the objective function is a linear 
combination of the error functions of the individual model types. Naturally, by forcing different types of 
models to use the same descriptor subset, the models may not be optimal in terms of their predictive ability. 
However our results[25] indicate that the decrease in predictive ability, as a result of the constraint of using 
the same descriptor subsets, is usually less than 10% for both regression and classification models. 
Interpretations of the models indicate that both models encode more or less the same structure-activity trends.  
 
3. WHEN IS A MODEL USEFUL?  
 
Though interpretability is a very important aspect of predictive models in cheminformatics, it is equally 
important to understand when a model returns valid predictions. That is, a model that is developed using a 
collection of molecules (termed the training set) will be able to give reliable predictions for new molecules 
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that are similar in nature to the training set that the model was built with. When a model is asked to predict 
the property of a new molecule that is significantly dissimilar to the training set, it will return a predicted 
value. However, can we be sure that the model has given us a reliable prediction, given that, by definition, it 
has never seen the features present in the new molecule? This problem is formally stated as identifying the 
domain of applicability of a model. This problem has become increasingly important as the use of in silico 
predictive models has increased, especially within regulatory agencies. A number of workers have addressed 
this issue[44] using techniques ranging from similarity to the training set to probability contours.  
 
Our previous investigation[30] in this area has focused on the use of an auxiliary model, which was used to 
predict whether a new molecule would have a high or low prediction error. The auxiliary model was 
developed using the training set residuals of the model, where the residuals were arbitrarily divided into two 
classes – high and low. The auxiliary model was then used to predict whether a new molecule would have a 
high or low residual. We considered a variety of methods, and a neural network model was able to predict the 
class of the residual correctly more than 90% of the time. The approach does exhibit a number of 
disadvantages such as being focused on a binary classification of residuals. More importantly, the use of an 
auxiliary model leads to a recursive solution to the problem. That is, how does one measure the applicability 
of the auxiliary model? Clearly this is not an optimal approach. The underlying feature of this approach and a 
number of approaches described in the literature is that they focus on the model space. Thus the domain of 
applicability is defined as the space within which the training set exists. As a result, if a new molecule does 
not lie within this space it is expected that its predicted property will not be reliable. Our current lines of 
investigation in this area attempt to better quantify the chemical space and the relationships between the 
training set and a new molecule in this space. In this context we are investigating the use of external 
descriptor sets that allow us to avoid being restricted in the chemical space of the model and investigating 
density based methods which consider the population density in different regions of the chemical space, 
rather than distances between objects in the space.  
 
We believe that providing more rigorous approaches to extracting structure-activity relationships from QSAR 
models and quantifying the domain applicability of these models will not only make these mathematical 
models more accessible to the practicing chemist, but will also increase their reliability and utility. In 
addition to providing chemical insight into mathematical models of structure-activity relationships, the 
techniques being investigated should allow us to more reliably identify promising leads when such models 
are used in virtual screening protocols.  
 
4. EXPLORING CHEMICAL SPACES  
   
As noted above, one can calculate many thousands of molecular descriptors. Given a large pool of 
descriptors one usually performs some form of feature selection to choose an information rich and relevant 
set of descriptors. This subset is then used to perform modeling, searching or some other task and represents 
a chemical space. In many situations it is beneficial to understand the distribution of compounds in such a 
space. Exploring a chemical space can lead to various types of useful information. The most familiar would 
be the fact that compounds located close to each other in a space will exhibit similar properties. 
Alternatively, identification of compounds that are located in a very sparse region of a space might lead to 
interesting new leads and thus serve as the starting point for lead hopping[21]. Our goal in this are has been 
to develop intuitive methods to characterize chemical spaces and distributions of compounds in these spaces, 
as well as pursuing methods which identify interesting, related structures to probes or query compounds. We 
recently described a method,[29] termed RNN curves that uses a nearest neighbor approach to characterize 
the spatial location of each point of a dataset in a given chemical space. It is important to note that rather than 
consider the k-nearest neighbors we consider the number of neighbors within a series of radii. Traditionally 
this approach has a running time that is quadratic with the number of points in the dataset, though this can be 
improved by use of data structures such as kd-trees. We also investigated[24] the use of an approximate 
nearest neighbor detection technique that runs in sublinear time, allowing this approach to be applied to large 
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datasets. Our initial investigation focused on nearest neighbor detection using the Euclidean metric. However 
by considering weighted distance metrics, whereby different dimensions of the chemical space are given 
different weightings, we can bias the nearest neighbor search to relevant descriptors. Our current 
investigations focus on the use of this approach to identify the natural numbers of clusters in a dataset, 
identifying good lead hopping candidates,  as well as applying it to the problem of the domain applicability 
of QSAR models. Finally, we are further developing 3D scaffold searching techniques based on atom 
mapping techniques recently applied by one of the authors.[15] 
 
5. CHEMINFORMATICS AND THE WEB  
 
As noted previously, an increasing amount of chemistry information is available on the internet and intranets, 
often in forms other than traditional, searchable databases (electronic journal articles, web pages, online 
documents, blogs, RSS feeds and so on).  In addition to these forms of data sources, current models of usage 
of chemical information also include Internet based access in addition to traditional forms such as local 
desktop clients.  
 
One of the fundamental problems that faces the cheminformatics community is the fact that though there are 
many novel algorithms being developed as well as new data sources being created, they more or less exist as 
islands. That is, the implementation of these algorithms and the databases containing new data, require that 
one visit a web page and either download a collection of source files or enter data into a web form which then 
returns results in the form of an HTML page or in some cases an email. Though this is certainly better than 
not being able to access these resources at all, such modes of access create bottlenecks for interoperability. 
 
This problem is being tackled in the web community in general by the use of web services which allow 
computational procedures to be accessed through standard web protocols, and the semantic web which 
promises to help interoperability of services and information through the use of standardized markup and 
ontology languages. We believe that this approach is highly appropriate for  cheminformatics. The 
cheminformatics community has developed a number of algorithms for a variety of problems such as 
structure searching, descriptor calculation, similarity and so on. Many of these are bound to a specific web 
page or require one to download a program. It would be better if all these algorithms were accessible in a 
uniform manner (at least those algorithms that perform similar functions) without binding a user to a specific 
web page interface. Additionally, the development of workflow tools such as Pipeline Pilot[3] and Knime[2] 
has led to a significant increase in the usability of cheminformatics tools when handling large datasets. In 
such a setup, having to go outside the environment to generate data which must then be imported back into 
the environment severely hampers the whole idea of a workflow environment. Now, it is certainly possible 
that a given algorithm might be implemented in a specific workflow tool. However this requires that the 
developer of the algorithm have access to the workflow program and be familiar with it. Furthermore, this 
would require reimplementation for each new workflow tool. Clearly, a standardized approach to accessing 
new algorithms and data sources would easily allow arbitrary workflow tools to include them. Finally, access 
to a wide variety of algorithms and data sources in a standardized and distributed manner will lead to novel 
uses of such resources that may not have been considered by their designers. For example, structure 
searching algorithms have a well defined function, but when coupled to new data sources (such as journal 
articles or blogs), one can envision new resources that go beyond the traditional view of searching structure 
databases for similar compounds. The explosion of innovation around the Google Maps API should serve as 
an inspiration as to what is possible when computational capabilities are made highly accessible. 
The vision for cheminformatics described above depends on the presence of an infrastructure. At this point, 
such an infrastructure is not widely available, though many of the underlying technologies have been 
available for some time. In the following sections we describe approaches taken by the CICC to achieve the 
vision of a distributed collection of cheminformatics resources that cover both algorithms and data sources.  
 
6. A WEB SERVICE INFRASTRUCTURE FOR CHEMINFORMATICS DATABASES AND TOOLS  
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With the aim of making a wide variety of algorithms and data sources available in a distributed and 
standardized manner, we have developed a variety of web services.[23] A web service is essentially a remote 
function call that allows a user to send an argument (which may be a simple SMILES string or something 
more complex such as a 2-dimensional data matrix) and obtain a result (which again, may of different types). 
In this sense a web service is much the same as a traditional library call. However a web service provides a 
number of advantages. First, web services are generally language agnostic. Thus one may write a web service 
in Java, but be able to access it in any language (Python, C, Java, Ruby, etc.) that can communicate with web 
services. Second, by allowing a web service to reside anywhere on a network (which may be the Internet or a 
local network), we are not required to have the algorithm or data reside locally. This may be important when 
the developer of the resource does not want to make the actual source code public, but does want to allow 
users to access the functionality. Third, by presenting arbitrary functionality as a web service, one is no 
longer restricted to the manner of access as defined by the original developer. Thus for example, consider an 
algorithm that evaluates the 3D similarity between two structures. The developer of an algorithm could 
implement a command line or GUI program which a user would then download and run locally. However 
this would not be very useful if the user was using a workflow environment. Alternatively, the developer 
could design a web page where a user would upload two structures and get back an HTML page that printed 
the similarity. Though useful, this is not helpful if one needs to process many structures in an automated 
fashion. By exposing the similarity function as web service, the user can now access the functionality in a 
variety of ways. The user could design a client that is simply a web page. However, the user is not bound to 
such an interface. If the user’s workflow tool supports web services, he could simply include the similarity 
web service as another entry in the workflow tool’s palette. Alternatively, the user could write his own 
command line or GUI program which would utilize the similarity web service.  
 
The above discussion has focused on the presentation of specific algorithms as web services. However we 
should also point out that web services are not restricted to this. That is, arbitrary programs (which have a 
command line interface) can also be wrapped and presented as web services. Furthermore, the web services 
approach can also include commercial programs and algorithms by the use of appropriate authentication 
mechanism. In addition, databases can be exposed as web services. This is especially useful since one is no 
longer restricted to using SQL queries or a static web form. We describe these aspects in more detail below.  
 
In addition to the above advantages, the use of web services means that a given user does not need to 
maintain a variety of software packages and databases. As long as standard interfaces are designed and 
standard protocols are used for communication, the user need only worry about what to send to a service and 
what he will get back.  
 
Though web services are not common in the field of cheminformatics, they have existed for some time in 
other fields. As a result, the design of web services is rather straightforward in terms of communication 
protocols and hosting environments. The bulk of the services developed and hosted by the CICC are written 
in Java and hosted in a Tomcat application container. However it should be noted that one is not restricted to 
Java for the development and deployment of web services and that numerous other languages can be used. 
The source code for the web services developed by the CICC is freely available and can be obtained from the 
Subversion repository located at http://sourceforge.net/svn/?group_id=163501. In addition, we provide 
complete Javadocs for each service as well as Junit tests, which provide working examples of the usage of 
the web services.  

The underlying protocol that allows arbitrary clients to communicate with web services written in arbitrary 
languages is the Simple Object Access Protocol (SOAP). This protocol is based on XML and allows a 
program to send data to a service and receive data from a service without having to worry about service-
specific encodings. SOAP allows one to handle primitive data types (int, string, float) as well as composite 
types such as arrays, hash maps and so on.  
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Given a mechanism by which clients can communicate with services, the next requirement is to identify what 
types of arguments must be sent to a service and what type of return value will be received from a service. 
The input / output specifications for a service are described in a Web Services Description Language 
(WSDL) document. This document will define how many and what types of arguments a service will accept, 
what type of value it will return to the caller and what (if any) exceptions may be generated by the service. 
Thus for a client to be able to use a service, it must first access the WSDL for the service. This leads to a 
broader question: given a multitude of services at different locations how does a client know what is 
available? This is an open question, though the web service community has made a number of advances. The 
CICC provides this information in three different ways. First we collect the links to the WSDL for each 
service on a web page. One can visit this page and copy the links to access the web services. In addition to 
web services developed by the CICC we also collect WSDL links to services provided by other organizations 
such as Cambridge University and NCI. However visiting a web page to retrieve links does not lend itself to 
automation. As a result we also host a UDDI registry which allows automated discovery of available web 
services. Finally, we also provide an RSS feed of web services (available at 
http://www.chembiogrid.org/cheminfo/wsrss/wsdlrss/getFeed) . RSS feeds have traditionally been used to 
syndicate news items. We expect web services to grow in importance. As new web services are developed, 
an RSS feed that syndicates the WSDL for each web service provides an easy and low-cost way to keep track 
of what services are available. Unlike a UDDI registry which requires special client software to interact with 
it, an RSS feed of web services can be viewed in any standard RSS viewer.  
 
The CICC currently hosts a number of web services which include services that provide specific functionality 
in a specific area as well as services that represent complete applications. Table 1 lists the web services 
currently hosted by the CICC. As can be seen we provide services that cover core cheminformatics 
functionality, database access, and statistical methods.  

The core cheminformatics services include functionality to perform fundamental cheminformatics tasks such 
as evaluating 2D and 3D similarity between molecules, evaluating molecular descriptors, generating 2D 
structure diagrams and 3D coordinates from SMILES strings, file format conversions and so on. It is clear 
that on their own many of the individual services do not provide a complete cheminformatics platform. 
However that is not the aim. The idea underlying these services is that they can be used as components on the 
client side, which may be a standalone program, a web page or a workflow tool. In general most of the 
cheminformatics services accept a SMILES string, though some services such as the descriptor and 3D 
coordinates services also accept an SDF formatted file as input. Depending on the nature of the service the 
output may be a simple number or a complete structure in some specified format. The bulk of these services 
are implemented in Java and are based on the Chemistry Development Kit,[47] a Java library for 
cheminformatics. As a result, much of the underlying code has already been written and the service is simply 
a wrapper around the relevant functions from the CDK library.  
 
A number of the CICC services are actually more involved than simple core functions. Examples are a 
toxicity prediction service and a docking service. The former was originally a GUI program developed by the 
IdeaConsult[4] which used a decision tree algorithm to predict the toxicity class of a given molecule based on 
the approaches of Cramer et al[20], Verhaar et al.[50] and Walker et al.[51] We were able to extract the core 
functionality of the program and wrap it in a web service, thus allowing access to the program without having 
to use the original interface. In the case of the docking service, we use the FRED docking program developed 
by OpenEye[5]. This is a command line program that requires a number of parameters to be set. The program 
was wrapped in a Java web service which creates the command line invocation of the program and returns 
the resultant docked poses back to the caller of the web service. It should be noted that this is a commercial 
program and thus the service is not freely available to the public. In general, proprietary programs can be 
easily presented as web services and proper authentication mechanisms can be employed to ensure that only 
the authorized users can access such a service.  
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Given the above services, it is natural to ask for clients that can make use of the services. As mentioned 
above, the source code for the services includes examples of their use in clients. However, we have stressed 
the fact that one can write clients that take on a variety of forms, ranging from command line applications to 
web pages. Thus many of the cheminformatics core services are used by web page clients. These clients 
appear to be standard web forms utilizing CGI. However underneath the web pages the clients make the 
appropriate calls to the web services to obtain the results. The web page at 
http://www.chembiogrid.org/projects/proj_applications.html provides a number of links to such clients. One 
of the examples is a simple form that allows you to specify two SMILES strings and evaluate the Tanimoto 
similarity between them. More involved examples include evaluating molecular descriptors and generating 
3D coordinates. Of course, clients are not restricted to web pages and we have written examples of command 
line clients as well as incorporated web services in workflow tools. 
 
The next class of services revolves around database access. The CICC maintains a local mirror of the 
PubChem database which is updated on a monthly basis. The goal of this mirror is to provide easy access to 
compound and bioassay data for various projects that the CICC is involved in. A number of these projects 
aim to add value to the data that is present in PubChem. We discuss two such projects and how web service 
interfaces provide easy access to the data that is being generated. The first project is aimed at providing a 
database of coarse-grained docking results for a 960,000 compound drug-like subset of PubChem. The long 
term goal of this project is to dock this subset into all protein structures that are available in the PDB, whose 
binding site is known. The total number of such protein targets is approximately 1700. We are using 
OpenEye’s FRED to perform the docking using a variety of scoring functions. The docked ligands and the 
individual components of the scoring functions are stored in a PostgreSQL database, which is searchable by 
SMARTS using the gNova cartridge. Thus one can construct SQL queries which will identify the best fitting 
ligands for a given protein, identify proteins to which a given ligand has been docked and so on. It should be 
noted that we are not performing high quality docking. Rather we view the results as a coarse filter that will 
allow us to ignore molecules that do not obviously fit a given protein target. Given that the database is 
accessible via SQL queries one might think that that is all there is to it, but many users of the database will 
not know SQL. Thus the natural step is to provide a web page frontend to the database and this is available at 
http://www.chembiogrid.org/cheminfo/dock/. However this web form does not allow easy inclusion of the 
results of queries into other applications. Thus we provide web services that essentially encapsulate a number 
of SQL queries. The web services allow one to retrieve ligand and protein structures, score values, perform 
SMARTS searches and so on, using well defined interfaces that do not involve SQL.  
 
The second database that we maintain is a collection of 3D structures derived from the 2D structures stored 
in PubChem. Currently PubChem has about 10 million unique chemical structures, of which we have been 
able to generate 3D coordinates for approximately 9.99 million. The coordinates represent a single low 
energy conformer generated using the MMFF94 forcefield[35]. The structures are then stored in a 
PostgreSQL database, which is searchable by SMARTS using the gNova cartridge. In addition, we also allow 
queries based on 2D and 3D similarity. As before, the database is accessible via raw SQL queries as well as a 
web form (http://www.chembiogrid.org/cheminfo/p3d/). We also provide web services that encapsulate a 
variety of queries. Therefore one does not necessarily have to know SQL or use the simple web page to 
access the data.  
 
An interesting application of these web services is to use them to generate RSS feeds for database searches. 
For example, one may query the structure database for the term “thiol”. This would ordinarily return a static 
web page containing a list of structures whose name contains the word “thiol”. Instead we can generate an 
RSS feed for the search, which can then be viewed in any RSS reader. Whenever the user refreshes the RSS 
feed (which can be performed at predefined intervals if desired), any new molecules that match the original 
query will show up in the feed. We provide RSS feeds for both of the databases described above, specifically, 
CMLRSS[43] feeds which include 2D and 3D (if available) structure information. Although a traditional 
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RSS reader will only be able to view the name and other textual information for the element of the feed, a 
CMLRSS-aware reader such as Bioclipse[45] will also be able to view the structures embedded in the feed.  
 
The next class of services consists of those that provide statistical and mathematical functionality. These 
services are based on the R software package[48] and include services that provide access to model building 
methods (linear regression, neural networks, random forest and linear discriminant analysis), clustering 
methods (k-means), plotting methods (2D scatter plots and histograms) as well as miscellaneous statistical 
functions (sampling distributions and statistical tests). It should be noted that the design of these services is 
based on the Rserve package which results in the fact that the underlying computation engine can be located 
on a different machine than the one hosting the web services. This allows us to host the web service 
interfaces on one machine, but perform heavy duty computations on a more powerful, separate machine. 
Another result of the use of R as our computation engine is that it is possible to present arbitrary R code as a 
web service. We have provided a number of examples of this feature. For example, we were able to convert 
the PkCell[55] program to R code, which was then made available as a web service. We then developed a 
web page client (http://www.chembiogrid.org/cheminfo/pkcell/) that allows the user to evaluate 
pharmacokinetic parameters for arbitrary molecules.  
 
The fact that the R-based web services provided access the full functionality of R allows us to approach the 
problem of model deployment. Traditionally, when one develops a QSAR model using a specific statistical 
package, the user must be familiar with the statistical package to be able to obtain new predictions from the 
model. In some cases, it is possible to wrap the model in a web form so that a non-expert does not need to 
learn the mechanics of a statistical software package, but this means the user is still restricted to using the 
web page frontend. Since R is capable of storing arbitrary models, we are able to develop a variety of models 
and deploy them within the R web service infrastructure. This allows us to implement a client in the form of 
a traditional web page, but in addition include these models in workflow tools, command line programs or 
any other type of client program. This approach clearly expands the utility and usability of models and also 
extends their use beyond expert users of statistical software. Examples of models deployed in this manner 
include an ensemble of random forest models that predict the toxicity of a given compound using BCI 
fingerprints and a set of random forest models that predict the anti-cancer activity of a compound against the 
60 cell lines hosted by the NIH Developmental Therapeutics Program. Each of these models can be accessed 
via a web service and Figure 2 shows a screen shot of the web page client for the anti-cancer models.  
 
Of course the R-based web services do have a number of downsides at this point. One of main disadvantages 
is that it restricts us to developing models in R. Though there are many good reasons to do so, it is evident 
that many people will prefer other packages for their statistical work. At this point, our infrastructure does 
not allow us to include models from other packages. Another issue is one of standardization. Though it is 
easy to save and deploy an R model, we cannot easily evaluate arbitrary descriptors for use in a model. That 
is, a model developed by the CICC will use a set of descriptors accessible to the CICC. Thus when a 
deployed model is to be called we are able to evaluate the descriptors and generate predictions. For an 
arbitrary model supplied by an outside organization, it may not be easy and in some cases may be impossible 
to evaluate the required descriptors. This leads to the issue of standardization, which is discussed in the 
following section.  
 
7. STANDARDIZATION ISSUES  
 
Standardization is an important topic in various areas of cheminformatics ranging from structure 
representations to structure names. Currently the CICC is focusing on standardization issues related to the 
deployment of predictive models and associated molecular descriptors. As noted above, our current web 
service infrastructure requires that models be stored in an R binary format. In addition to storing the model 
itself, it is equally important to store metadata associated with the model. Examples of such metadata include 
the author of the model, the date of development (or contribution), the algorithms employed, data sources and 
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descriptors used. Certain attributes can be obtained by interrogating the model object, though this is specific 
to the R platform. A more general approach that we are considering is to associate each model with an 
external XML document that will allow us to add metadata using well known standards such as RDF. This 
has two advantages. First, we are no longer limited by the R platform as the metadata document can be used 
to describe models generated using arbitrary packages. Second, given that we employ an XML format for the 
document we are easily able to include other XML resources within such a document. This implies that we 
do not need to reinvent mechanisms for attribution (which is handled by the Dublin Core specification) and 
so on. This is especially useful when we consider the issue of how to note what descriptors were used in a 
model. This is a potentially troublesome aspect of a standardized model infrastructure, as different programs 
may implement the same descriptor using slightly different names and may even use slightly modified 
versions of the original algorithm. As part of the Chemistry Development Kit, we are involved in the 
development of an RDF based descriptor dictionary which allows us to unambiguously identify each 
descriptor implemented in the CDK. Since this dictionary is an XML document it is easy to incorporate the 
relevant information within the model metadata document mentioned above. Of course, this does not solve 
the problem entirely since the descriptor dictionary is specific to those descriptors implemented in the CDK. 
However we believe that this approach has significant benefits in terms of interoperability and extensibility 
and hope to encourage the inclusion of external descriptors within such a dictionary. Naturally, such an 
approach must involve the community at large and we hope that the approach used in the CDK descriptor 
dictionary will provide a starting point for some sort of standardization of molecular descriptors.  
 
8. CHEMINFORMATICS EDUCATION THROUGH LOCAL AND DISTANCE LEARNING  
 
The Indiana University School of Informatics has dynamic, innovative programs in several areas of science 
informatics, including cheminformatics. There are chemoinformatics learning opportunities for both on-site 
undergraduate and graduate students, as well as for people outside the academy through distance education 
(DE).[54] At present, Indiana University is the only academic institution in the United States with formal 
graduate degree programs in cheminformatics.[53] This is confirmed by the continuously updated survey of 
informatics programs from the University of North Carolina (Chapel Hill) School of Information and Library 
Science.[6] Furthermore, IU has developed a number of courses and workshops in grid computing and Web 
services. The marriage of these two areas strengthens both.  
 
It is a common perception that the US is not keeping up with work going on in the rest of the world in e-
Science (cyberinfrastructure), and the same could be said for cheminformatics, since most of the major 
academic advances of the last few decades have emanated from Europe. One need look no farther than the 
Obernai Declaration which was adopted by 100 scientists in mid-2006 to recognize that Europe is not going 
to stand still in cheminformatics.[7]  The declaration seeks an increase in funding for cheminformatics 
research and teaching in Europe and makes the following point:  

"The further development of chemistry in general and chemoinformatics in particular needs an 
increase in teaching of chemoinformatics. This is necessary:  

• to provide chemoinformatics specialists for academia and industry  
• to train chemists in the use of chemoinformatics methods in all areas of chemistry."  

Our efforts to combine cheminformatics with cyberinfrastructure are helping to bridge the gap between the 
US and Europe, as the trend toward distributed, interoperable digital object representations on the grid and 
data intensive science gains momentum. The Indiana University School of Informatics and the IU 
Community Grids Laboratory are developing plans to spread the knowledge of their respective areas of 
expertise among the chemistry and life science communities in the US and potentially throughout the world. 
In terms of formal degree programs, Indiana University offers the BS in Informatics with a specialization in 
chemistry, the MS in Chemical Informatics, and the Ph.D. degree with a track in chemical informatics. We 
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want to broaden cheminformatics education at IU to the full continuum—from one-day courses to the PhD—
with training components that complement the formal education programs, including summer schools, 
tutorials, re-training, and continuing education. Chemistry departments are traditionally very pure in what 
they think belongs in the chemistry curriculum. Therefore, they need service centers in cheminformatics to 
supplement their efforts. We will link participating schools via distance education and develop curriculum 
packages that they can use, while serving as a reference and referral center for expert guidance on the 
teaching of cheminformatics.  
   
9. FORMAL CHEMINFORMATICS EDUCATIONAL ACTIVITIES AT INDIANA UNIVERSITY  
   
BS in Informatics with Cheminformatics Specialization  

The Bachelor of Science in Informatics requires a cognate (specialization) in a subject discipline. For a 
cheminformatics cognate, a student currently takes the equivalent of an undergraduate minor in chemistry (17 
semester credit hours) and two courses that are undergraduate versions of I571 and I572 (see below). A 
minimum of 35 credits of Informatics courses is also required.  
   
MS in Chemical Informatics  
 
The M.S. in Chemical Informatics Program admitted its first students at IUB in 2002. This is a 36-semester-
hour degree, with both core informatics classes and core cheminformatics courses among the 30 hours of 
required coursework. The final 6 hours of credit are spent on a capstone project that demonstrates the 
student’s mastery of the tools and techniques learned. Specific requirements for the chemical informatics MS 
are:  
   

• I501 Introduction to Informatics (3 cr. hrs.)  
• I502 Information Management (3 cr. hrs.)  
• I571 Chemical Information Technology (3 cr. hrs.)  
• I572 Computational Chemistry and Molecular Modeling (3 cr. hrs.)  
• Electives: 18 hrs., including (strongly recommended):  

• I519 Bioinformatics: Theory and Application (3 cr. hrs)  
• I529 Bioinformatics in Molecular Biology and Genetics: Practical Applications (4 cr. hrs.).  

   
Ph.D. in Informatics: Chemical Informatics Track  
 
This is the standard 90-hour Ph.D. program offered through the Graduate School of Indiana University. The 
first group of Ph.D. students entered the program in August 2005. In addition to the core courses for the M.S. 
degree, students must take at least two advanced seminar courses in cheminformatics. The goal of the Ph.D. 
program is to produce graduates with a multidisciplinary education. Graduates should be comfortable 
discussing enzymology, organic chemistry, quantum mechanics, databases, e-Science and programming, 
while being specialists in areas such as grids, artificial intelligence, and data mining of gigantic datasets, such 
as PubChem. 
 
Continuing Non-Degree Students  
 
The Graduate Certificate Program in Chemical Informatics is awarded to those who complete I571 and I572 
plus the following courses:  
   
• I573 Programming for Science Informatics (3 cr. hrs.)  
• I553 Independent Study in Chemical Informatics (3 cr. hrs.)  
 



Page 13 

The certificate is available both to on-site and DE students. Among the out-of-state students who have 
enrolled for the I571 class are a patent specialist and a chemist in pharmaceutical companies, and a 
researcher at a major bio/cheminformatics software company.  
 
Our experience in teaching cheminformatics at a distance goes back to 2001 when the first cheminformatics 
undergraduate classes were taught by Polycom teleconferencing link between Indianapolis and 
Bloomington.[54] The DE program was expanded to include students from around the country and to offer 
graduate courses by using Macromedia Breeze to view the slides and phone connections for the audio 
portion. One of the target groups in this endeavor is people moving from an earlier career into the field of 
cheminformatics. Typically, they lack any kind of formal training in the area, yet they are highly motivated. 
As one of our external advisers to the NIH grant project recently put it, “We have yet to see an example of a 
cheminformatician going back to the laboratory, but there are plenty of examples of chemists going the other 
way.” This underscores the need for more outreach to provide a sound educational foundation to those who 
are making the move from the laboratory to the computer end of chemistry.  
 
An area that people new to the field, whether students in the academy or outside, are likely to have little 
inkling of is the vast and rich resources for chemical information provided by commercial and society 
publishing houses over many decades. In order to provide an easy introduction to such resources, we have 
developed the Chemical Information Sources Wiki.[1] Included are chapters on such topics as chemical 
structure searching, searching by chemical names, finding synthesis routes, etc.  
 
Enrollment  
   
In the past two academic years, 124 people have been exposed to cheminformatics instruction through our 
teaching efforts at Indiana University, including 30 distance education students. With four PhD students 
and eight MS students currently enrolled in the graduate cheminformatics programs, we are assured of a 
healthy core of research help as we continue our research and teaching efforts in the fast growing field of 
cheminformatics.  
 
9. SUMMARY  
 
In this paper we have attempted to highlight some of issues that the field of cheminformatics currently faces. 
Fundamentally, cheminformatics attempts to identify molecules with specific properties as well as explain 
why molecules exhibit certain properties. In many ways these aspects are similar to traditional computational 
chemistry. The difference arises in the sources of data. In the field of computational chemistry, methods 
focus on specific molecules and proteins and try to derive molecular properties based on first principles. This 
results in a high computational cost. On the other hand the techniques of cheminformatics are, in general, 
able to work with collections of molecules ranging from a few hundred to many thousands and even millions. 
Naturally, cheminformatics methods do not always give an exact answer to the question we ask. However, 
even an approximate answer can winnow these large collections of molecules to a smaller set that can then be 
investigated in depth by more computationally intensive methods. However, cheminformatics methods do 
not focus exclusively on the evaluation of molecular properties. Recent developments in web technologies 
have given rise to a large number of alternative data sources which include electronic journal articles, RSS 
feeds and so on. The field of cheminformatics attempts to handle these disparate resources and provide an 
intuitive and uniform mode of access to the chemical information contained in them.  
 
Given the above characteristics of cheminformatics, we must not forget where the field has come from and 
what is its primary purpose.  The role of cheminformatics in today's research is to enable chemists to better 
use the huge amounts and wide variety of information that is available to them. That is, the results of 
cheminformatics must help a chemist make better decisions in terms of chemistry. This has been true in the 
past and there are documented cases where cheminformatics techniques have led more quickly to better 
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drugs. However, we believe that there is much more to do. Though cheminformatics methods have played 
important roles in various chemical enterprises, these methods are still the domain of experts. We do not 
expect that non-experts will play a role in the development of new cheminformatics techniques, but we do 
expect that any chemist should be able to easily use these techniques and extract chemical meaning from the 
results.  It is to that end that our educational web services activities are in part devoted. 
 
To achieve this vision, we have focused on four tracks. The first track is the development of a distributed 
infrastructure that allows us to integrate a variety of data sources and computational methods. We have 
focused on the use of web service as an underlying technology as this leads to a high degree of flexibility. 
Coupled with recent developments in thin clients and mash-ups, this infrastructure allows us to combine a 
wide variety of functionality in ways that the original designers might not have thought of. However, not 
only can we combine resources, the infrastructure also allows us to present information in novel ways as well 
as to include the resources and information in preexisting frameworks (such as workflow tools and so on). 
The second track involves the investigation of methods that extract chemical meaning from mathematical 
models. Thus rather than consider numerical values, we are devising methods that allow a chemist to easily 
interpret chemical trends encoded in these models. It is also equally important to provide a chemist with 
some idea of when a model can be used and when it cannot. We believe this is vital to prevent the use of 
models in scenarios that they were not meant to handle. Given that much of cheminformatics is based on a 
variety of representations of chemical structures, resulting in a multiplicity of chemical spaces, we are also 
investigating intuitive ways to explore and characterize these spaces. The common thread underlying the 
approaches in this track is that we use state of the art modeling techniques, developing them in such a way 
that they do not remain as numerical black boxes, but rather, yield useful chemistry. The final track focuses 
on the use and integration of disparate sources of information. Thus we aim to extract chemistry from journal 
articles, from web pages, RSS feeds and so on. A major effort in this area is the addition of chemical 
semantics to a variety of data sources, including web services, descriptors and so on. Underlying this effort is 
the development of ontologies. There is much evidence for the utility of ontologies in a variety of fields and 
we  believe that the development of ontologies in chemistry will lead to a significant increase in usability and 
interoperability of chemical data resources. Finally, we are creating a comprehensive, local and distributed 
chemoinformatics education program to expand knowledge of cheminformatics tools and techniques. 
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Figure 1 illustrates the general cyberinfrastructure “layer cake” that can be adapted to Chemical 
Informatics.  In going from the base to the top, we proceed from physical infrastructure to software to Web 
enabled capabilities (Web Services) to service client environments to scientific collaboration tools.  The 
individual layers are loosely coupled: the same web services can be used by many different workflow 
composers, for example.    
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Figure 2. A screen shot of a web page client that provides access to a set of models that predict the anti-
cancer activity of a compound, given its SMILES, against the 60 cancer cell lines hosted by the NIH NCI 
Developmental Therapeutics Program.  
 

 
 



Page 17 

Table 1. A summary of the various web services currently hosted by the CICC. The services include those 
developed at the CICC as well as services that are derived from external software packages.  

Class  Service  Functionality  
Cheminformatics  Similarity  2D and 3D similarity.  
 Molecular descriptors  TPSA, XlogP and other descriptors  
 2D structure diagrams  Generates 2D diagrams from a SMILES 

string  
 Drug-likeness  Currently returns the number of Lipinski 

failures  
 Utility  Fingerprints, file conversion  
 CMLRSSServer  Generates an RSS feed from CML 

formatted molecules  
 InChIGoogle  Search Google using an InChI  
 OSCAR3  Extract chemical structures from text  
 ToxTree  Obtain toxicity predictions  
 3D Coordinates  Generate 3D coordinates from SMILES 

strings  
Databases  PubDock  Obtain ligand structures and associated 

score values by PubChem compound ID or 
SMARTS based similarity searches  

 Pub3D  Obtain a low energy 3D conformation of 
PubChem structures by compound ID, 
SMARTS based similarity or by 3D 
similarity searching  

Statistics  Modeling  Builds regression (OLS, CNN, RF) and 
classification (LDA) models. Perform 
clustering using k-means  

 Feature Selection  Select descriptor subsets for linear 
regression using backward or forward 
stepwise regression  

 Plots  Generate 2D scatter plots and histogram 
plots  

Applications  Toxicity  Ensemble of random forests that provide 
predictions of animal toxicity  

 Mutagenicity  Single random forest that predicts 
mutagenicity of a compound given a 
SMILES string 

 Anti-cancer activity  A set of random forest models that predict 
anti-cancer activity against the 60 cell lines 
managed by the NIH DTP program  

 Pharmacokinetic 
parameters  

Modified version of the pkCell calculator 
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