
to remember the details of what would now be called the
metadata for many jobs and, in particular, could never re-
member what the sixth input parameter in my (3I2,A4,2X,
E12.4,I6,5F10.4) read statement was. Thus I adopted For-
tran namelist statements and input parameters with a syntax
similar to

$ioparm niters=”6”,

couple=”2.0” model=”6” $end. (1)

Not finding this supported uniformly, I wrote (in Fortran,
of course) my own namelist package. This undoubtedly
increased my productivity as I sat through many midnight
shifts on the Lawrence Berkeley CDC 6600. Some 25 years
later, I diligently supported the same functionality in a mul-
titude of Web configuration files, but with Perl and an
email-like syntax that had attribute name and value sepa-
rated by colons, as in

.......

niters:6

model:6

couple:2.0

....... (2)

Today, XML has swept the world, and everybody writes Ex-
ample 2 like this:

<?xml version=”1.0” encoding=”UTF-8”

standalone=”no” ?>

<ioparm xmlns=”http://www.BlahBlah.org/

schemas/foxparms.xsd” >

<niters>6</niters>

<couple model=”6” >2.0</couple>

</ioparm> (3)

XML
The skeptic might wonder if 30 years’ progress has really

been that striking or why XML is greeted with such eupho-
ria, especially because it doesn’t even run on the CDC 6600.
Maybe I could use my long-practiced skill with overlays to
port J2ME (Java for personal digital assistants and other tiny
machines) to the small memory of those titans of the past.
However, this is daydreaming—let’s get back to XML.

Originally, this data structure specification was released
with a rather clumsy method (called data-type definitions or
DTDs) to specify the allowed elements, attributes, and other
features of an XML instance. In Example 3, niters and
couple are elements, and model is an attribute. Think of
Example 3 as defining the values of the allowed properties
and their relationship for an “instance” of an ioparm object.

Recently, the Web consortium released the XML Schema
specification (www.w3.org/XML/Schema), which is an elegant
and powerful way of expressing an XML data instance’s gen-
eral object structure. Schema essentially replace DTDs and
uses an XML syntax to specify object structure. For those fa-
miliar with object-oriented languages such as Java, Schema
plays a similar role to classes. You can nest attributes and ele-
ments in any fashion you like, with instances that resemble this:

.....

<couple model=”6” >

<comment>Just a Test<author>Fox</author>

</comment>

2.0

<units>Fermi**-2<units>

</couple> (4)

Example 4 emphasizes the difference between XML and
namelist or email metadata. XML can specify objects with
complex structure, whereas the previous technologies can
only specify collections of (name,value) pairs.

We can argue forever whether Fortran, Java, C++, or
Python is the best language and whether object-based lan-

96 1521-9615/02/$17.00 © 2002 IEEE COMPUTING IN SCIENCE & ENGINEERING

XML AND THE IMPORTANCE OF
BEING AN OBJECT
By Geoffrey Fox

IN THE BEGINNING OF TIME, I WAS A POST-

DOC TRAVELING WITH DECKS OF CARDS

FROM JOB TO JOB AND FROM ONE VENDOR’S FOR-

TRAN COMPILER TO THE NEXT. I FOUND IT HARD

Editor: Geoffrey Fox, gcf@indiana.edu

GRIDSG R I D C O M P U T I N G

MAY/JUNE 2002 97

guages are important. However, the sophisticated data struc-
tures XML allows are helpful in expressing information in
many fields, and many communities developing XML-based
standards are exploiting the object structures XML permits.
Examples include the learning object standards from IMS
(www.imsproject.org), the Geography Markup Language
(http://opengis.net/gml/01-029/GML2.html), and the eX-
tensible Scientific Interchange Language, developed by Roy
Williams at the California Institute of Technology (www.
cacr.caltech.edu/SDA/xsil). From these, we can generate
even more complex objects—for example, we could denote
the Ansys installation on the National Center for Super-
computing Applications’ Modi4 computer as

<XSIL Name=”Modi4 Type=”csm.

parseXMLHost”>

<Param Name=”HostName”>modi4.ncsa.

uiuc.edu</Param>

<Param Name=”QueueType”>LSF</Param>

<Param Name=”ExecPath”>/usr/apps/fe/bin/

ansys57</Param>

<Param Name=”WorkDir”>/scratch</Param>

<Param Name=”QsubPath”>/usr/local/bin/bsub

</Param>...</XSIL> (5)

XML object architecture
Suppose that all data is specified in XML, which has the in-

teresting consequence of turning this data into objects. These
objects are not specified in a traditional language but in a sim-
ple XML Schema. In a Web or Grid computing application,
we would see some sort of multilayer architecture (see Figure
1). XML is neither a natural Fortran binary file, nor is it a
bunch of tables, as in a relational model. Thus neither SQL (the
database access standard) nor Fortran I/O is the natural way to
access information stored in XML. Figure 1 shows this chal-
lenge in the virtual XML layer—“virtual” because although an
XML Schema could specify the structure of our information,
it is often impractical to represent our information as a stream
of characters. XML implies both a different way of specifying
data structure and a different way of accessing it. Access (search)
is most natural with a certain XML query syntax rather than
with SQL or any traditional-language input command. Future
data storage will have to become intelligent—a stream of data
structures with embedded Schema—which means we need im-
provements of both our storage and processing architectures.

Specifications and methods
Let’s look at further implications of XML-specified ob-

jects. Suppose your enterprise invests enormously in nifty
XML Schema for the corporate data crown jewels, and
your job is to design software to manipulate them. Having
separate specifications for the data in XML and the con-
trol code would probably be unwise; rather, you would
want the Java or C++ code to automatically generate data
structures from XML Schema. There are many ways to do
this—I have had good success with Castor (http://cas-
tor.exolab.org), and I expect substantial new ideas and tech-
nology in this area. Computer language designers will
hopefully recognize this development and separate the
specification of information more clearly from its process-
ing. This could have further implications for teaching com-
puting. Students might learn the Web in elementary
school, XML in middle school, and control software (Java)
for XML objects in high school.

You might say that, well, XML is interesting, but it’s only
data; real objects have properties (data) and methods. But what
is a method? It is just specified by the subroutine–method
name and the list of input or output parameters, all of which
are just “data.” The Gateway portal system (www.gateway-
portal.org) has always used XML to specify methods in this
manner:

<interface name=”submitJob” extends=

”BeanContextChild”>

<method return=”void”

Database (persistent store)

(Virtual) XML (object) layer

Virtual machine

Select data

Control

Render page

Figure 1. A multilayer XML architecture. Data at the top is fed
through a processing engine (in pink) and rendered onto a
client machine.

name=”test”></method>

<method return=”string” name=

”execLocalCommand”>

<arg in=”string”>command</arg>

</method>

<method return=”string” name=

”execRemoteCommand”>

<arg in=”string”>host</arg>

<arg in=”string”>user</arg>

<arg in=”string”>command</arg>

<arg in=”string”>carrier</arg>

</method>

<method return=”string” name=

”copyFileFromBackend”>

.......... </method>

<method return=”string” name=

”copyFileToBackend”>

.......... </method>

</interface> (6)

Such specifications can be converted into remote method calls
and implemented with Java or Corba. We can hide the partic-
ular implementation and language used for a method by spec-
ifying all interfaces in XML. The Web Services Definition
Language, which uses XML to specify a single interface to mul-
tiple languages and transport protocols (www.w3.org/TR/
wsdl), has made this idea far more powerful.

We’ve come a long way from Fortran namelists.

Geoffrey Fox is director of the Community Grids Lab at Indiana Univer-

sity. He received a PhD in theoretical physics from Cambridge University.

Contact him at gcf@indiana.edu; www.communitygrids.iu.edu/lC2.html.

G R I D C O M P U T I N G

To get regular updates, email dsonline@computer.org

✔ Grid Computing ✔ Mobile and Wireless
✔ Dependable Systems ✔ Security
✔ Distributed Agents ✔ and more!
✔ Middleware

DS Online recently relaunched with a new
design. Check us out for news, book reviews,
and more!

IEEE

ONLINE

distributed systems

Expert-authored articles and resources

Distributed Systems Online
supplements the coverage

in IEEE Internet Computing

and IEEE Pervasive Computing.

Each monthly issue includes

magazine content and issue

addenda such as source code,

tutorial examples, and virtual tours.To keep up with all that’s happening in distributed systems, check out

dsonline.computer.org

I E E E D i s t r i b u t e d S y s t e m s O n l i n e b r i n g s y o u
p e e r - r e v i e w e d f e a t u r e s , t u t o r i a l s , a n d e x p e r t - m o d e r a t e d p a g e s

c o v e r i n g a g r o w i n g s p e c t r u m o f i m p o r t a n t t o p i c s , i n c l u d i n g

