
Scientific Applications as Web Services: A Simple Guide
Marlon Pierce
Geoffrey Fox

Indiana University
September 8 2003

Introduction
We have discussed in several columns Grid technology and its use in e-Science (large
scale distributed scientific research). Here we make the ideas more concrete by
describing how one can “convert” (build from scratch) a scientific resource (program) as
a web service. Modern Grids are built on top of web services with interesting refinements
captured as OGSA – Open Grid Service Architecture. The approach here can easily be
extended to be OGSA (with its initial OGSI standard) compliant [3].

Web-enabled applications in support of e-business and e-commerce are an everyday fact
of life: customizable information portals like Yahoo, online ordering systems like
Amazon, and web auctions like E-bay are familiar to everyone. The potential for web-
enabling science applications has attracted a lot of attention from the scientific
community as well. Numerous browser-based computing portal systems and problem
solving environments have been built since the late ‘90s, and a comprehensive review
may be found in [1]. Various commodity technologies from the world of electronic
commerce, including CGI-based Perl and Python scripts, Java applets and servlets,
CORBA, and most recently, Web Services, have all been brought to bear on the science
portal/service problem.

This article discusses the general architecture of science portal/service systems and
illustrates with a simple example how one may build a constituent service out of a
particular application. To make the presentation concrete, we will develop a simple
wrapper application for a code, Disloc [2], which is used in earthquake simulation to
calculate surface displacements of observation stations for a given underground fault.
Disloc is a particularly useful example for our purposes, since the code performs the
calculations quickly, so we can provide this as an anonymous service, and issues such as
computer accounts, allocations and scheduling are not important.

The Big Picture: Services, Portals, and Grids
Before describing the details of Web service creation, we wish to present a
comprehensive view, Figure 1, of how Web Services, Portals, Grids, and hardware
infrastructure are related. Going from right to left, we start with the hardware resources:
computing, data storage/sources, and scientific instruments. These resources may be
bound into a computing grid [3] through common invocation, security, and information
systems. Access to particular resources is virtualized through the use of Grid/Web
services. These services are in turn accessed with client applications that are built using
various client-building toolkits. For computing portals, the client applications also define
user interfaces using HTML for display. We may use portlets to collect the displays of

these various clients into aggregate portal systems, such as Jetspeed
(http://jakarta.apache.org/jetspeed/site/index.html).

C
lie

nt
s

(P
ur

e
H

TM
L,

 J
av

a
A

pp
le

t .
.)

A
gg

re
ga

tio
n

an
d

R
en

de
rin

g

Jetspeed
Internal
Services

Portlet Class:
IFramePortlet

Portlet Class:
VelocityPortlet

Portlet Class:
JspPortlet

Portlet Class:
WebForm Toolkit Web/Grid

service

Web/Grid
service

Web/Grid
service

Computing

Data Stores

Instruments

Client
Toolkit

Client
Toolkit

Clients Portal Portlets Libraries Services Resources

Local
Portlets

Remote
or Proxy
Portlets

(Jetspeed)

Hierarchical
arrangement

Portal Architecture Grid Systems

Figure 1 Aggregate portals collect interfaces to remote services.

Figure 2 shows a sample screen shot of an aggregate portal from Figure 1. The portlet on
the left is a Web interface to a Disloc service (described below); the portlet on the right is
an interface to a file management service for a remote host.

Figure 2 A screen shot of an aggregate portal.

We have discussed portals before and will return over the next year with a more detailed
column on building portlet interfaces.

Web Services
What are Web Services? At its heart, the Web Service Architecture [4] is simply a
system for doing distributed computing with XML-based service interface descriptions
and messages. Service interfaces are described with the Web Service Description
Language, WSDL. WSDL allows you to describe how to invoke a service: what are the
functions, or methods, that the service provides? What arguments must I pass to the
service to use the function I want to invoke? What are the argument types (integers,
floats, strings, arrays) of the function and what are the return types? WSDL by itself may
be thought in general terms as the XML equivalent of C header files, Java interfaces, or
CORBA IDL.

The power of WSDL is that it expresses a program’s interface in language-neutral XML
syntax. WSDL does not directly enable remote function invocation, but does describe
how to bind a particular interface to one or more remote invocation protocols. These
protocols are simply ways of exchanging messages between the service provider and
service invoker. Most commonly, WSDL function invocations and returns are bound to
SOAP messages. These messages contain specific requests and responses: pass the
subroutine doLUDecompose the following two-dimensional array of doubles with the
following integer dimensions, and get back the LU decomposed form of the input array.
When SOAP and WSDL are combined, we may build a lightly coupled system of
distributed services that may be invoked and exchange information without worrying
about programming language implementations or internal data structure representations.

Although Web Services may be written in any language, we stress here that Web
Services are not simply CGI scripts. Web Services decouple presentation from
invocation, as illustrated in Figure 1: the service component provides some specific
functionality, and a client accesses it. This client is simply another program, possibly
written in another programming language, which wishes to make use of a remote service.
This client may also run in a Web server and generate an HTML display, but this is not
required.

Science Applications as Services
While it is certainly possible to develop Web Services versions of every subroutine in
Numerical Recipes and to rewrite all existing science applications so that they expose
their functions and subroutines as services for remote components, we present a simple
alternative approach that can be used to treat an entire existing application as a service.
Such approaches are useful for service-enabling legacy applications and commercial
codes (for which you may not have source code). This approach is also useful for
wrapping applications that need to run inside of batch scheduling systems.

We will now examine (briefly) how to do this with Java. We chose Java here since there
are a comprehensive set of freely available tools to build Web Service applications. The
Jakarta Tomcat web server is the open-source reference implementation for the Java
servlet specification. Specific web services may be built using the Java-based Apache
Axis toolkit. This toolkit includes a web application that can be used to convert user-
written Java applications into Web services, as well as tools that help create client
boilerplate code (stubs) that simplify building clients. We note that Web services built
with Java and Apache Axis can interoperate with clients written in other languages like C,
and vice versa. Other (free and commercial) Web service toolkits exist for other
languages, and the process of creating the Web service is roughly equivalent in the other
toolkits.

Java compiles source code into byte code form, which is interpreted by a virtual machine.
Calling external, non-Java programs may be done in two ways: through the Java Native
Interface (to C/C++) or simply by executing an external process. Take the code Disloc as
an example. This is written in C, but we really don’t want to bother with wrapping this
directly using the JNI. We instead invoke the precompiled Disloc executable by forking
off a separate process external to the Java runtime environment. This approach sacrifices
low level integration for ease of use.

The compiled copy of Disloc takes two command line arguments: the name of the input
file and the name of the output file. The input file provides parameters such as the
latitude and longitude of an earthquake fault and its physical dimensions and orientations,
and a grid of surface observation points for the code. The output data consists of the
calculated displacements of the surface grid points. Here we assume for our Disloc
service that the input file has been generated and exists, or can be put, in the same file

system as the Disloc executable. Generating the input file and getting it to the right place
can also be done with supporting Web Services.

Our first step is to write a Java program that can invoke the Disloc application locally.
To invoke a program external to the Java Virtual Machine, one can use code such as the
following:

public class RunExternal {
 public void runCommand(String command) throws Exception {
 //Run the command as a process external to the
 //Java Runtime Environment.
 Runtime rt=Runtime.getRuntime();
 Process p=rt.exec(command);
 }
 …
}

If we compile this java program (providing a main() method, not shown), we can invoke
Disloc as follows:

 [shell> java RunExternal Disloc myinput.txt myoutput.txt

In practice, we would modify the above fragment to also capture standard output and
standard error and put these strings in the return values for runCommand().

The above code fragment can now be converted into a deployed Web service, but first we
note the following: for a real application, we certainly do not want to expose the
runExec() method directly as a service for obvious security reasons, so we instead would
make this a private method and surround it with publicly accessible methods such as
setDislocInput(), setDislocOutput(), and runDisloc() that control and validate the input to
the runExec() method.

The previous code fragment can be easily converted into a Web service with Apache
Axis. First, one sets up a Tomcat web server and deploys the Axis web application. Our
Java program can be deployed automatically into Axis by simply copying it into the Axis
web application directory, renaming it as RunExternal.jws. This can be used for quick
testing, but more formal deployment should be based around a Web Service Deployment
Descriptor (WSDD), an XML file that defines the service and its allowed functions.
Written descriptors can be used to deploy a Web service using Axis’s AdminClient
program. The interested reader should visit http://ws.apache.org/axis/.

We now have a Web Service, with methods setDislocInput(), setDislocOutput(), and
runDisloc() that we expose publicly. Note that we have not written any WSDL to
describe this Web Service interface. This is usually done automatically by the service
container (Axis in our case). You can view the generated WSDL for your deployed
service by pointing your browser to http://localhost:8080/axis/services/RunExec?wsdl.
When you see it, you will be glad that you did not have to write any WSDL.

Creating Clients for Web Services
We’re now ready to write clients to our Disloc Web Service. As we have emphasized
previously, clients do not need to use Axis tools and do not even need to be written in
Java. The general process is

1. Find/discover the service’s WSDL file. You may know this already because
you wrote the service, you may know it because your collaborators sent you
the WSDL’s URL or emailed it to you, or you may have discovered it in some
online Web Service registry.

2. Write a client program that generates messages that agree with the WSDL
interface. Typically these messages will be written in SOAP.

3. Send those messages to the Web Service’s deployment URL. The Web
Service container (Axis in our example) will inspect the SOAP message,
invoke the service methods, get the results (if any), and route them back to the
client.

Writing the code for clients for Web Services (step 2) can be partially automated. One
approach for clients written in object oriented languages is to map the WSDL
descriptions of interfaces to stub classes. Instances of these stub classes can be used
locally by the client as if they were local objects, but in fact they simply convert
arguments passed to them into SOAP calls to remote services and return locally the
remote method return values. Axis, for example, provides a tool, WSDL2Java, that
creates client stubs for a given WSDL file.

Conclusion: Building on the Example
In this article we have described the simplest possible service that can be used to wrap a
science application (or any other code) as a Web service. We have not addressed several
other issues. First, the service typically must be coupled with security systems that
ensure only authenticated, authorized usage. Another important issue is service discovery,
by which we find the URLs and descriptions for services that meet our requirements.
This is one example of an information service (which may also be a Web service). We
may also wish to build information services that describe, in general, how to invoke a
whole range of applications. We need in this case to encode information such as how
many input and output files the application takes, the location of its executable, and so
forth. We may also want to encode in our information services information necessary to
run the code via scheduling systems. Finally, there is the issue of coupling our service to
other services into a chain. For example, the Disloc output may be coupled with a
visualization service that can be used to create images that map the output vectors over a
geo-referenced point.

References
[1] G. Fox, D. Gannon and M. Thomas eds. Concurrency and Computation: Practice
and Experience, Vol. 14, No. 13-15 (2002). Special Issue on Grid Computing
Environments.

[2] Dr. Andrea Donnellan of the NASA Jet Propulsion Laboratory is the author of Disloc.

[3] The Physiology of the Grid: An Open Grid Services Architecture for Distributed
Systems Integration. I. Foster, C. Kesselman, J. Nick, S. Tuecke, Open Grid Service
Infrastructure WG, Global Grid Forum, June 22, 2002.

[4] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D.
Orchard, “Web Services Architecture.” W3C Working Draft 8 August 2003.

