
Software Development around a Millisecond
Geoffrey Fox

Introduction
In this column we consider software development methodologies with some emphasis on
those relevant for large scale scientific computing. There have been many projects aimed
at improving the environment for scientific computing. These address the preparation and
execution and debugging of scientific code. A scientific programming environment must
address some of the key features that differentiate this from “commodity” or “business”
computing for which many good tools exist. These special features include

1) Importance of floating point arithmetic

2) Importance of performance and need to support scalable parallel implementations

3) Very particular scientific data structures and utilities (such as mesh generation)

4) Integration of simulations with distributed data

The last area has been discussed extensively in this column as it is a major feature
brought by the Grid to scientific computing. This article focuses on it again and
generalizes to a discussion of technologies needed to integrate modules together. From
the beginning of computing, we have struggled to identify the best way to develop self
contained modules that then can be linked together to make bigger applications.
Subroutines, methods, libraries, objects, components, distributed objects, services are all
to some extent different ways of packaging software for greater re-usability. Here we are
looking at the service model for software modules.

Criteria for choosing Software
In developing programming environments one needs to address the problem from two
points of view. Firstly one needs to identify requirements and then as best one can
identify the very best architectures and technologies to address them. Then one has the
harder but perhaps more important issue – what is the “life-cycle model”. How do we
maintain the environment and update it as the underlying computing infrastructure
underneath it marches on with major architecture and preferred vendor changing on the
few year time scale driven by Moore's law for the performance improvement of the
hardware. The “life-cycle” issue is particularly important in areas like scientific or high
performance computing where the market is not large enough to support all the nifty
capabilities that one needs. This affects both hardware and software but here we focus on
the latter. One may have a great idea for a new parallel computing tool and obtain funds
to develop an initial and perhaps highly successful prototype; ongoing funds to refine and
maintain your system are often much harder to obtain unless one can find a sustainable
commercial market for it. For this reason, once should look at existing commercial
approaches and use them wherever possible. This will sometimes mean choosing a less
than optimal solution but we argue that a supportable “almost good enough” solution is
typically preferable to an optimal unsustainable system. Suppose your latest parallel
computing software tool requires the application developer to modify or annotate their
code. Maybe they do this and it works well but when the next generation hardware is

installed, the tool is not upgraded. The user must then start again on the parallelization.
For this reason I tend to recommend that one use the rather painful explicit message
passing approach to parallelization. It is supported by a sustainable technology, MPI even
though there are higher level approaches such as openMP and HPF which offer more
productive but not clearly sustainable portable programming models.

The Rule of the Millisecond
In this article we explore the “rule of the millisecond” which says that one should use
commodity (Internet, peer-to-peer or Grid) programming models for those parts of one's
programming that can tolerate millisecond or longer delays. First let us revisit the Grid or
Web Service programming model.

Grid and Web Service Programming
We phrase our discussion in terms of the model of Grid programming that we briefly
covered in the March/April 2003 column. This described a two-level programming
model for the Grid and more generally the Internet shown in fig.1. At the lower level,

there is “microscopic”
software controlling
individual CPU’s and written
in familiar languages like
Fortran, Java and C++ . We
assume that these languages
generate “nuggets” or code
modules and it is making
these nuggets associated with
a single resource that
“traditional” programming
addresses. To give examples
illustrated in fig.1, the nugget
could be the SQL interface to
a database, a parallel image
processing algorithm or a
finite element solver. This

well understood (but of course still unsolved) “nugget programming” must be augmented
for the Grid by the integration of the distributed nuggets together into a complete
“executable” exemplified in fig. 1(c). For the Internet, nuggets are Web services; for the
Grid they are Grid services; for CORBA nuggets are distributed objects and for Java they
are Java objects communicating by RMI (Remote Method Invocation). We described in
the September/October 2002 column, how the Grid programming model and support
technologies are very different from those for parallel computing which at first glance
must tackle similar problems in integrating nuggets together. Thus if one is simulating a
physical system, one typically divides into regions with each region simulated in a
different node of the parallel computer. The software simulating each region becomes the
nuggets and they must communicate together in a fashion analogous to fig. 1(c). Parallel
computing is characterised by relatively small very frequent messages operating between
synchronized processing nodes. This requires high bandwidths but more importantly low

Nugget1 Nugget2

Nugget3 Nugget4

Nugget

> file6 a.out < file5

Nugget Data
JDBC

OGSA-DAI

a) Compute/File Nugget

b) Database Nugget

c) Workflow linking Nuggets

Fig. 1: Two-level Grid Programming Model

latency. For a typical node with gigaflop per second performance, one might use gigabyte
per second internode communication bandwidth and 0.01 millisecond latency. In the
corresponding Grid situation, one's nodes are more loosely coupled and one might expect
similar bandwidth to the parallel computing case but much higher latency. As discussed
in the September/October 2002 column the Grid latencies are determined by network
transit times which are 100's of milliseconds for transcontinental links. Of course the
different network performance and the different programming models is reflected in
different requirements for those applications suitable for parallel and distributed systems.
Parallel computers support nuggets coming typically from domain or data decomposition
of single large application. Grid systems support loosely coupled components and
functional decompositions of problems. The loosely coupled case is illustrated by the
analysis of billions of events from accelerator collisions where each event can be
processed independently with only access to the raw event data and accumulation into
common statistical measures linking the nuggets together. Functional decompositions
such as image processing of satellite data are often latency insensitive as information can
be pipelined through different filters as it travels from the source to final store. These
latency insensitive applications can cope with the hundreds or thousands of milliseconds
communication latencies implied by a Grid implementation. However we are not
studying this issue here. Rather we assume that for such Grid applications, the synergy
with the commercial Web service area, will insure the development of excellent
programming tools and runtime. Already standards like BPEL (Business Process
Execution Language) and Web Service Choreography are being developed in OASIS and
W3C respectively; these involve the commercial heavy hitters including IBM, Microsoft,
Oracle and Sun. This is workflow area is critical for commercial applications and their
use in science was for example surveyed in a recent workshop at Edinburgh
http://www.nesc.ac.uk/action/esi/contribution.cfm?Title=303.

When can Grid Programming Tools be used?
Now the Grid applications were characterized by hundreds of millisecond delays.
However this represents some typical inter-enterprise or global network delay. The actual

overhead in the software is characteristic of
single CPU network processing times,
process switching times, response of a
typical servlet-based Java server or perhaps
thread or process invocation times. These
are more like a millisecond for a typical
network response. Thus Grid programming
tools can be used in any application where
around a millisecond delay is acceptable.
These uses need not be network based but
include the linkage of software components
within a single CPU. We can identify
several application classes where the
millisecond delay is acceptable.

The basic distributed service integration typical of Grid programming includes as we
stated in the introduction the linkage of multiple data and computing components. The

Fluid Flow Structural
Analysis

Electromagnetic
Signature

Fig. 2: Designing a Stealth
Biplane with coupled simulations

data category includes streaming sensors, file systems, and databases. The computing
category include both on-the-fly filtering and large scale simulations with perhaps real
time assimilation of data from the Grid. This style of problem is similar to “application
integration” in enterprise computing and multidisciplinary applications in scientific
computing. The former class could include the integration of human resources, marketing
and customer sales and satisfaction databases. The latter class is exemplified by the
integration of fluid structural and electromagnetic signature simulations shown in fig. 2
and needed in the design of stealth aircraft. However essentially all fields of
computational science need some sort of this “code coupling” for advanced applications.
This coupling could be loose as in “run program A” and feed results into program B or
“close” where two or more programs A and B exchange data interactively throughout the
simulation. Loose coupling can always use the Grid programming model and if the
amount of data exchanged is large enough to mask the latency, the close coupling case
can also use these commodity technologies. This type of integration is used in most so-
called “problem solving environments” or PSE's that offer domain specific portals to
access needed services. PSE's need some sort of software bus to integrate the services and
applications they control. We suggest the Grid Programming model will become the
technology of choice here and replace either Java or Python coupling as used often today.

There is another very different class of
millisecond tolerant applications where
one can use the Web service approach to
building interactive applications. These
exploit the observation that people don't do
very much in a millisecond and so one can
use these technologies to build “traditional
desktop or client” applications such as
Word or PowerPoint using this approach.
One can put the “meat” of the application
into a Web Service and use messaging to
transport user input (such as mouse and

keyboard events) as messages from the user to the Service. This is the so-called MVC
(model-view-control) paradigm for applications and was used in our discussion of Grid
Computing Environments and portlets in the March/April 2003 column. MVC is very old
but typically is not implemented with explicit messaging. Building integrated applications
like our current desktop applications gives higher performance than the Grid
programming model. However computers keep getting faster and the modularity and
power of the Grid approach gets more attractive as Moore's law increases our client's

Web Service

Model Control View

Millisecond
Overhead

Fig.3: MVC Application built using
explicit messaging for control

Input/Output
Port

Web Service

Participant Model Master Client
Fig. 4: Collaboration using shared output port of a MVC Message-based Application

Output port

Input port

performance. The Grid approach allows applications to be easily retargeted to different
client platforms – Windows, Linux, MacOS, PDA, Kiosk or an interface supporting
access for the disabled. Figure 4 shows another obvious application to support
collaboration with a single “model” web service driving multiple “views” or clients. We
think these ideas could provide a compelling software architecture for a new generation
of clients as we might see developed to support Linux or cellphone clients. Note the
architecture of figures 3 and 4 works wherever the client and Web service are placed –
they can be separated by the 100's of milliseconds characteristic of continental networks.
However they only give acceptable interactive performance if the model and view are run
on the same or nearby machines.

There are other commodity technologies like the use of scripting languages such as
Python and Perl which can tackle some of the above applications. One can expect support
to be good for both Grid and scripting approaches. In fact as scripting tends to use method
calls and not explicit messaging, the intrinsic overhead can be substantially lower than
our millisecond for the Grid case. We can counter with two arguments in favor of the
Grid model – firstly message based interfaces give greater modularity than method calls
which allow side effects. Secondly the message based model allows Grid or Web service
implementation if that should be desired. Thus we suggest that there are perhaps different
regimes characterized by the typical transaction time of a module:

• A millisecond or greater: Grid and Web Service based technologies for linking
modules.

• 10 microseconds or less: high performances technologies such as MPI

• 10 to 1000 microseconds: scripting and other object-based environments. Further
refinements of the millisecond rule can help to refine this third regime and we will
return to it later.

Conclusions
This article has espoused the view that one should use sustainability of software as a
major criterion in building software systems. We have introduced and exemplified “the
rule of the millisecond” to define cases where commodity Grid and Web service
technologies can be used. We gave three application areas -- “conventional MVC”
applications, Problem solving Environments and code coupling were these ideas could be
applied. We suspect one can derive more refined such rules to clarify better when it is
really needed to use specialized and hard to maintain technologies. We also note that
computers are still getting faster and so the overhead of commodity technologies is
getting less and less relevant in many cases. This should lessen the need for specialized
approaches.

