
 1

Managing Grid Messaging Middleware 
Harshawardhan Gadgil, Geoffrey Fox, Shrideep Pallickara and Marlon Pierce 

 
Abstract— Management in distributed systems has gained much 
importance in recent years.  With the increasing complexity of 
applications, there is a need for effective management of 
components of the application. As application components span 
different administrative domains, differing security policies 
restrict access to these components. The problem gets more 
complicated in a dynamic environment where application 
components and the environment is in a constant state of flux, so 
that failure is the norm. In this paper we explore the issues 
related to management in dynamic and heterogeneous 
environments. We propose a scalable, fault-tolerant and Web 
Services - compliant management architecture that addresses 
these issues of management and also illustrate the functioning of 
our framework with respect to the NaradaBrokering messaging 
middleware. 
 

Index Terms— Messaging middleware, Web Services 
Management, Fault tolerance 
 

I. INTRODUCTION 
ANAGEMENT in distributed systems has gained much 
importance in recent years.  With the increasing 

complexity of applications, there is a need for effective 
management of components of the application.  Management 
usually involves common operations such as the ability to 
control the resource (e.g. start, stop), ability to configure the 
resource for a specific task and monitor the status (e.g. 
heartbeat) of the resource. The Web Service community has 
recently introduced two competing specifications, namely, 
WS-Management [1] and WS-Distributed Management [15] 
for service-oriented management. The key idea inherent to 
both these specifications is modeling manageable resources as 
Web Service endpoints and managing these services by 
sending an appropriate message to this endpoint. In 
heterogeneous environment, the ability to manage a resource 
is restricted by presence of network address translation 
                                                           

This work is supported by the NASA Advanced Information Systems 
Technology (AIST) program, NSF Information Technology Research (ITR) 
program, project number 0427264 and the NSF Division of Earth Sciences 
project number EAR-0446610. 

 Harshawardhan Gadgil is with the Community Grids Lab, Indiana 
University, Bloomington, IN 47404, USA. He is also a graduate student in the 
Computer Science Department, Indiana University, Bloomington, IN 47405 
USA (phone: 812-856-0756; e-mail: hgadgil@cs.indiana.edu).  

Geoffrey Fox is the director of Community Grids Lab, Indiana University, 
Bloomington, IN 47404, USA. He is also with the Department of Computer 
Science, Department of Physics and School of Informatics, Indiana 
University, Bloomington, IN 47405 USA (e-mail: gcf@indiana.edu). 

Shrideep Pallickara is with Community Grids Lab, Indiana University, 
Bloomington, IN 47404, USA. (e-mail: spallick@indiana.edu). 

Marlon Pierce is with Community Grids Lab, Indiana University, 
Bloomington, IN 47404, USA. (e-mail: marpierc@indiana.edu). 

devices, firewalls and restricted transports. In this paper we 
address issues related to management and show how we can 
make management scalable and fault-tolerant. 

A. Scalable and Fault-tolerant Management Framework 
Fig. 1 shows the various components of our framework. The 

entity being managed is any application specific component. 
We term such a resource as a manageable resource. Typically, 
existing Web Services would be augmented with specific ports 
for enabling remote management. A service adapter or a proxy 
is required when the entity being managed is not a Web 
Service. In such cases, the service adapter provides a Web 
Service interface for such entities. Thus this adapter is an 
entity specific proxy that has a Web Service interface on one 
end and an entity-specific interface on the other end.  The 
adapter serves as translator of messages to commands specific 
to the entity being managed.  

 

 

Manager 
Service 

Manager 
Service 

Manager 
Service 

Manager 
Service 

ADAPTER 

Entity being 
managed 

WS ADAPTER 

Entity being 
managed 

WS ADAPTER 

Entity being 
managed 

WS ADAPTER 

Entity being 
managed 

WS ADAPTER 

Entity being 
managed 

WS 

Network 

Registry 

Discover 

Registry Registry 

Statically 
configured 
bootstrap 
nodes 

Register / Renew 

 
Fig. 1.  Basic Management Framework 

 
 

In our architecture, we assume there could be multiple such 
services that require management. Examples of systems with 
large number of manageable resources are cell phone 
networks, large clusters of machines or even brokers in 
distributed brokering systems. The scheme should be scalable 
and incorporate management of a large number of manageable 
resources.  

A Manager Service is the component of management 
architecture responsible for actually managing the manageable 
resources and acts upon the management tasks specified the 
user. The Manager serves mainly to invoke management 
actions on the managed entity as specified by the user. System 
state is maintained mainly in the registry while the Managers 
store short term state such as heartbeat information of 
components which is useful for quickly detecting component 
failures. Thus in a general case, the manager process talks 
with the service adapter using messages based on one of the 
Web Service based management specifications. Thus multiple 

M 



 2

managers would be present in the system to achieve scalability 
while fault-tolerance of the management process is guaranteed 
when at-least one of the manager processes is running. If one 
or more manageable resources are unreachable (possibly 
because the manager and the manageable resources lie in 
different administrative domains), then the manager should try 
alternate means of transport for reaching the manageable 
resource. A simple load balancing technique may be used to 
determine which manager talks with which service adapter. 

The system employs a shared space (registry) which is 
implemented using a fault-tolerant database. The registry is 
used to store important system state information and is used 
by the managers and users to share management related tasks. 
The service adapters are responsible for registering their 
presence in a global registry such as a Universal Description, 
Discovery and Integration (UDDI) registry and renewing their 
existence at regular intervals. The registry also helps store 
system state such as required management actions specified by 
the user, which are picked by one or more manager processes 
and acted upon. 

Finally the system contains a set of statically configured 
bootstrap nodes which can be leveraged to start discovering 
the system components and tying them together. The bootstrap 
nodes function as a scalable messaging substrate to deliver 
messages between managers and service adapters. Fault-
tolerance of these nodes is achieved by employing multiple 
bootstrap nodes. This is akin to the DNS (Domain Name 
Service) system where, if one DNS Server is unavailable, the 
client tries the next DNS service to achieve fault-tolerance. 
Thus failure of one of these nodes does not affect the entire 
management system and we expect that the failed node can be 
restored in finite amount of time. 

B. Desiderata 
We now summarize the desired characteristics of the 

management architecture, below: 
Remote Management: The management system should 

enable us to manage resources irrespective of their location as 
long as there exists a way to access the resource.  

Traverse firewalls and NAT: Application components 
may span administrative domains. The presence of firewalls 
and network address translation further complicates 
management by preventing specific transports and / or 
blocking access to internal machines. Frequently, by providing 
correct authentication, it is possible to tunnel messages, such 
as over the HTTP transport. The management architecture 
should work equally well in such heterogeneous environments 
by leveraging available transports.  

Extensible: Management interfaces are generally resource 
specific. As the application infrastructure evolves, it should be 
possible to incorporate management of newer services with 
little or no modification. We address this issue by employing 
service-oriented management architecture. 

Scalable: The management architecture should be 
administratively scalable such that, the complexity of 
management does not increase when a subset of the 
components are distributed over multiple administrative 

domains. Further, the management architecture should also be 
scalable in terms of the number of resources managed. We 
show how we can leverage a distributed messaging 
middleware to achieve scalability. 

Fault-tolerant: The management architecture should itself 
be fault-tolerant. Failure of any services or transport should 
automatically trigger search for next possible transport. As an 
illustration, a resource may become unreachable due to 
various network conditions such as blocked ports, disabled 
transport such as UDP or multicast and failed services. In 
these cases the management adapter should try to avoid 
faulting by doing a best-effort-try to check for alternate means 
of services and transports. The architecture ensures fault-
tolerance by employing multiple managers. Failure of a 
manger keeps the management process running when at-least 
one manager process is running. This is achieved by 
reassigning management tasks to a running manager when the 
original task manager has failed. This is possible because the 
managers are stateless services and the system state is 
maintained in the registry. 

C. Scope of this paper 
In this paper we present a WS-Management based 

architecture for managing services. We specifically target the 
management of a distributed messaging infrastructure since it 
employs a large number of distributed dynamic peers. We 
present results on the overhead introduced by our system and 
also present ways to improve performance. We also present an 
architecture which leverages a distributed messaging substrate 
to make management scalable. 

The rest of the paper is organized as follows. We introduce 
NaradaBrokering and discuss the need for management in 
Section II. We describe the broker management architecture in 
Section III. Section IV presents the resources modeled using 
WS-Management. We present results obtained by testing our 
prototype implementation in Section V. Section VI is 
conclusion. 

II. MANAGING THE DISTRIBUTED BROKERING 
INFRASTRUCTURE 

Messaging based distributed brokering infrastructures have 
gained much popularity in recent years in the distributed 
computing community. They have been instrumental in 
helping to provide clear demarcation between the application 
logic and Quality of Service aspects such as reliable delivery, 
security, persistent storage, compression / decompression and 
fragmentation / de-fragmentation of messages. These 
brokering systems employ a large number of connected peers 
called brokers which form a messaging substrate. To get the 
maximum benefit from the services provided by the 
messaging substrate, it is required to setup these brokers and 
connect them in topologies specific to the application.  

Various topologies [2] on connecting these peers exists, 
each based on differing routing, fault-tolerance and cost 
characteristics. Run-time metrics are gathered using 
monitoring techniques [3] which measure various aspects of 
the system that enable us to understand the performance of the 



 3

system and in some cases, provide hints on improving the 
performance. This naturally leads to re-deployment of the 
brokering network with a different configuration. To 
summarize, we need an architecture that enables us to rapidly 
bring-up and tear down a broker network. It is also required to 
set specific configuration settings for every broker and have 
the ability to change the configuration on-the-fly. We term 
these actions collectively, as management of the brokering 
infrastructure.  

 
 

Fig. 2.   Teacher - student relationship based collaborative session 

A. Example 
Consider the problem of deploying a brokering network for 

supporting 10000 clients in a collaborative [4] fashion. Ref. 
[5] shows that a single broker can support up to 1500 
simultaneous participants with audio streams with very good 
quality audio while about 400 participants can simultaneously 
receive video with acceptable quality. For a higher number of 
participants, we can employ a tree-based structure as 
illustrated in  

Fig. 2. The problem lies in deploying the brokering 
topology suitable for supporting multiple clients. With a 
growing number of clients, one may wish to deploy a network 
of multiple brokers (For e.g., 10000 / 400 = 25 brokers in the 
above scenario) so that all clients may receive acceptable 
audio / video transmission. Further, for fault-tolerance 
purposes, one may also want to have multiple links between 
brokers such that the failure of a subset of links may not crash 
the entire system 

B. NaradaBrokering 
NaradaBrokering [6] - [9] is an open-source, distributed 

messaging infrastructure based on the publish/subscribe 
paradigm. The smallest unit of this distributed messaging 
substrate intelligently processes and routes messages, while 
working with multiple underlying communication protocols. 
We refer to this unit as a broker. The broker network in 
NaradaBrokering is based on hierarchical, cluster-based 
structure [6]. This cluster-based architecture allows 
NaradaBrokering to support large heterogeneous client 
configurations. The routing of events within the substrate is 
very efficient [9] since for every event, the associated targeted 
brokers are usually the only ones involved in disseminations. 

Furthermore, every broker, either targeted or en route to one, 
computes the shortest path to reach target destinations while 
eschewing links and brokers that have failed or have been 
failure-suspected.  

The substrate incorporates support for both JMS and the 
WS-Eventing specification. Work is currently underway on 
incorporating support for the WS-Notification suite of 
specifications. The NaradaBrokering substrate also 
incorporates support for WS-ReliableMessaging [10] and WS-
Reliability [11] that facilitates reliable messaging between 
Web Services. Subscription formats supported within the 
substrate include “/” separated Strings, Integers, <tag, value> 
pairs, regular expressions, XPath and SQL queries. In 
NaradaBrokering entities can also specify constraints on the 
qualities of service (QoS) related to the delivery of events. The 
QoS pertain to the reliable delivery, playbacks, order, 
duplicate elimination, global timing services, security and size 
of the published events and their encapsulated payloads. 
Additional information regarding NaradaBrokering can be 
found in Refs [6] - [9].  

C. Related Work 
The most commonly used management protocol is the 

Simple Network Management Protocol (SNMP) [12]. SNMP 
is an application layer protocol that facilitates the exchange of 
management information between network devices. Based on 
a reliable connection oriented protocol, SNMP enables 
network administrators to manage network performance, find 
and solve network problems. SNMP however lacks any 
authentication capabilities, which results in vulnerability to a 
variety of security threats such as masquerading occurrences, 
modification of information, message sequence and timing 
modifications, and disclosure. Due to lack of authentication 
many vendors do not implement Set operations, thereby 
reducing SNMP to a monitoring facility. CMIP [13], an 
improvement over SNMP provides improved security that 
supports access control, authorization and security logs. CIM 
[14] is an object-oriented model that represents and organizes 
the information in a "managed environment" while 
consolidating and extending existing management standards.  

Brokering Network 

… 

… 

400 Participants 

… 

400 Participants 

…

400 Participants 

A single participant sends audio/video 
to multiple subscribers 

A teacher-student web collaboration where the teacher participant sends 
audio/video to multiple students 

To make management more interoperable, the Grid 
community has been implementing support for Web Service 
Distributed Management (WSDM) by treating all managed 
resources as a WS-Resource. WSDM [15] based management 
leverages the Web Service Resource Framework [16] 
principles to create managed resources with specific lifetimes. 
Work [17] is underway to map CIM constructs to Web Service 
based management standards such as WSDM. Our 
architecture does not specify lifetimes for created resources 
(brokers) and we expect the broker resource to remain 
available and running until the machine hosting the broker 
goes down or the broker is explicitly killed by sending an 
appropriate message. The brokering network may use topic 
lifetime to determine the period until when a peer may 
subscribe to receive specific events generated by the managed 
entity. Further, WS Management and WSDM only specify the 
wire-protocol using SOAP messages for enabling 



 4

management. The architecture presented in this paper 
implements the WS Management specification while 
leveraging a distributed messaging infrastructure to provide 
scalability to the management process. 

In the area of P2P systems, deployment of peers is usually 
done via some static rules and the overall topology is not 
easily modifiable at runtime. TreeP [18] uses a B+-Tree based 
topology for range querying. Baton [19] is a Peer-to-Peer 
(P2P) network based on balanced tree structure useful for 
exact and range queries. Both the systems use a fixed tree 
structure topology to connect individual peers. P2P systems 
based on distributed hash table such as Chord [20] use a 
bootstrap node to get a node address. Future additions 
automatically get address from one or more previously 
initialized nodes when they join the network. CAN [21] uses a 
similar approach where an incoming node contacts a bootstrap 
node to retrieve a set of randomly chosen nodes. The new 
node then connects to a randomly chosen node from the 
retrieved set. However, CAN and Chord do not take network 
distances in to account when creating the routing table. This 
may result in certain lookups resulting in overlay hops 
spanning the entire diameter of the network. Tapestry [22] and 
Pastry [23] construct and maintain locally optimal routing 
tables at initialization that helps reduce routing stretch. 

III. ARCHITECTURE 
We now describe the application of the management 

framework from the broker management point of view. The 
architecture consists of two main components, the Broker 
Service Adapter (henceforth, BSA) for configuring and 
initializing brokers and the Broker Network Manager 
(henceforth BNM) that functions as a client to the BSA and 
helps deploy specific topologies. A BSA is required because 
NaradaBrokering brokers are not Web Services. 

We have modeled the most commonly used management 
actions on brokers using simple GET, PUT, CREATE and 
DELETE verbs from the WS – Transfer [24] specification of 
WS-Management. Since the broker does not create extensive 
log of activities, we do not require support for WS – 
Enumeration [25] in the BSA. A broker however may wish to 
send notifications on events such as broker liveness 
(heartbeat) and link failure which may help the BNM take 
decisions at runtime.  

A. Broker Service Adapter (BSA) 
The Broker Service Adapter (shown in  
Fig. 3) is the component that wraps a broker and is 

responsible for invoking management related commands on 
the broker. Specifically, the Broker is the managed entity and 
the BSA functions as the adapter. For purposes of or 
architecture, we assume that the BSA instantiates a broker 
(when it receives a CREATE message) in the same JVM as 
the BSA. The BSA models various properties of the Broker as 
resources as specified by WS Management. 

 

Broker Service Adapter 

Modeled Resources 
• Broker 
• Link 
• Configuration 
• … 

Web-Service 
Management Interface 
• Multiple transport 

interfaces possible 

Response Buffer Service Broker 

WS-Management 
Interface 
SOAPTransport 
• HTTP 
• NaradaBrokering 

 
Fig. 3.   Broker Service Adapter Architecture manages NaradaBrokering 

brokers. 
 

Specifically, we model the following characteristics of the 
Broker interface, namely, Broker, Link and Configuration. 
Additional resources that have been modeled is the 
NetworkAddress and GatewayAddress that are required 
whenever a broker which does not have a network address 
connects to a broker which has a network address.  

The event delivery is handled by the SOAPTransport 
interface that can either use a direct HTTP connection for 
sending and receiving SOAP messages or use the brokering 
infrastructure to deliver SOAP messages wrapped as 
NaradaBrokering events. The response can be sent to a 
specific endpoint by inspecting the ReplyTo field in the 
endpoint reference. Sometimes, a direct connection between 
the service and client is not possible, in which case responses 
to requested operations may not be delivered directly. In such 
cases, the responses are buffered by the 
ResponseBufferService. This approach is similar to the one 
illustrated in [26] and [27]. These responses can then be 
retrieved from the buffering service by a separate call to the 
service.  

An advantage of using NaradaBrokering wrapped transport 
for delivering SOAP messages is that it allows the managed 
entities to scale in number. Further, NaradaBrokering supports 
a variety of transports for event delivery such as TCP, UDP, 
NIOTCP, HTTP, SSL and MULTICAST. On initialization, 
the BSA cycles through a list of all possible transports and 
connects via the first available transport. This provides fault-
tolerance against unavailable network protocols. 

B. Broker Network Manager (BNM) 
In our initial implementation a broker network manager 

(Refer Fig. 4) functions as a manager as well as a user of the 
system. This component essentially provides 2 services, (1) 
provide a function interface to manipulate various resources 
managed by the BSA and (2) provide an interface to deploy 
arbitrary topologies. A TopologyGenerator allows users to 
create application specific topologies given a set of BSA 
endpoints. This topology is then translated to appropriate 
commands and submitted to the broker network manager. In 
case a certain action cannot be carried out, the broker network 
manager throws an exception and allows the user to take 
corrective action.  



 5

 
Fig. 4.   Broker Network Manager (aids in deployment of Broker network) 

 
The broker network manager also has a HTTP to 

NaradaBrokering transport mapper that wraps SOAP 
messages and publishes it to a specific topic. This scheme is 
described in more detail in Section 2). The HTTP Mapper 
service can either be part of the static broker or a separate 
process running on the same host as the static broker. 

C. Deploying topologies 
The overall architecture is illustrated in  
Fig. 5. The system consists of a set of 3 static brokers which 

serves as bootstrap nodes. These nodes are only responsible 
for providing NaradaBrokering wrapped transport for SOAP 
messages. We have placed these static brokers on 3 
geographically distributed machines. Specifically we have 
used a machine at Indianapolis, and two machines in the lab at 
Indiana University, Bloomington and are accessible through 
the domain names gridservicelocator.org, 
messageservicelocator.org and webservicelocator.org.  

 

 
 

Fig. 5.   Overall Architecture 
Consider the 5 BSAs shown in above figure. These BSAs 

are distributed over different machines. BSAs (1 and 2) are 
directly accessible and hence the broker network manager may 
communicate directly with these services. BSAs (3 – 5) 
however are possibly in different administrative domain with 
respect to the broker network manager. The broker network 
manager then leverages NaradaBrokering wrapped message 
delivery for sending and receiving SOAP messages. Although 
the broker network manager may directly behave as a client to 
the static brokers, we use a HTTP Mapper service to wrap 
SOAP Message as an NaradaBrokering Event. This process is 
detailed in Section 2). 

1) Registering BSAs 
Broker Network 

Manager 

• WS – 
Management 
Client 

• Request 
Response 
Client 

• Topology 
Generator 

NaradaBrokering 
Events wrapped 
Transport 

Direct HTTP 
Connection 
Transport 

Allows users to define specific 
topologies (E.g. A linear 
connection, tree-based connection, 
hypercube  

If a timeout occurs, tries 
to retrieve the response 
from the buffering service 

Provides basic functionality such as 
Create/Delete Broker(), 
Create/Delete Link(), Get/Set 
ConfigProperties() 

When the BSA starts up, it can be started to either use the 
direct HTTP transport or leverage the brokering network to 
transfer SOAP messages. The advantage of the later is that 
BSA present in a different administrative domain can be 
accessed by transporting SOAP messages wrapped as 
NaradaBrokering Events using HTTP tunneling. Once the 
BSA has initialized, it registers itself in a registry service such 
as a UDDI registry. For our purpose, we have implemented a 
simple registry service that stores the endpoint address for 
each registered BSA.  

The BSA cycles through all three static brokers trying 
connection to each of these brokers. This helps us provide 
fault-tolerance against unreachable hosts. Broker Discovery 
mechanism [28] may be used to find the nearest best broker to 
connect to. As long as the BSA can connect to at least one of 
the static brokers, it can be managed by the BNM.  

2) Mapping topics to Endpoint References 
To route SOAP messages to each BSA, the BSA creates a 

unique 128-bit UUID based topic during initialization. The 
BSA then proceeds to register this UUID as its endpoint 
address in the registry.  

To interact with the BSA, an interested BNM publishes 
events on topic of the form BSA/UUID. However, to provide 
transparency of operation, we use a HTTP Mapper service that 
runs on the same host as the static broker. The BNM makes a 
normal HTTP call to the HTTP Mapper service. The <wsa:To> 
addressing header in the SOAP message is then modified as 
follows 

<wsa:To>http://gridservicelocator.org:6000/1234567
8-1234-1234-123456789012</wsa:To> 

This specifies that the SOAP Message is sent to the HTTP 
Mapper service running on gridservicelocator.org on port 
6000 and it should be forwarded to the BSA whose UUID is 
12345678-1234-1234-123456789012.  

The HTTP Mapper puts its topic as an immutable property 
in the NaradaBrokering event header while the SOAP message 
is copied as the payload. This event is then published on the 
topic BSA/12345678-1234-1234-123456789012. Once the 
response is generated by the destination BSA, the response is 
sent back to the HTTP Mapper service which was responsible 
for forwarding the SOAP message. The BSA uses the HTTP 
Mapper’s topic represented by the immutable header property 
in the original event to determine the correct destination. 

IV. WS – MANAGEMENT BASED MODELING 
WS-Management requires all managed resources to be 

identified by a <ResourceURI>.  This has been defined in the 
BSA schema available at 
http://www.hpsearch.org/schemas/2005/11/BSA. Our 
initial model defines the following Resource URIs, 

BROKER that identifies the broker in question 
LINK that identifies a link between 2 brokers 
CONFIGURATION that identifies the broker configuration with 

which the broker is to be initialized 
CONFIGURATIONPROPERTY that identifies each individual 

property in the broker configuration 

Registry  
Simple registry of 
available BSAs and 
access information 

BSA-4 

BSA-2 

BSA-3 

BSA-5 

BSA-1 

Broker Broker 

Broker 

A static broker 
network 

Listen on 
specific topics 

Register BSA with global 
registry 

BNM 

BNM communicates with the BSAs via SOAP 
Messages 

Static (bootstrap) brokers are used for SOAP Message 
delivery to remote (directly unreachable) brokers 



 6

NODEADDRESS that refers to a node address as required by the 
broker when it joins a broker network 

GATEWAYADDRESS that refers to a gateway address when a 
broker in cluster connects to a broker in another cluster 

BUFFEREDMESSAGE that is used to retrieve the response to a 
previously sent request from the request buffering service. 

The BSA is an implementation of the WS Management 
processor which is part of a framework for deploying WS-
Management compatible management services. Our initial 
implementation consists of WS – Transfer and WS-
Enumeration while we plan on leveraging WS – Eventing [29] 
provided by NaradaBrokering. 

A. Management Operations 
In this section we list the various management operations as 

defined by the BSA. Note that not all resources may support 
all operations. In the case where an operation is requested on a 
resource which is not supported, an UnSupportedOperation 
fault is thrown. The various operations are listed in Table 1.  

B. Enumeration and Eventing 
WS-Management allows managed resources to enumerate 

large set of values from managed containers using the 
interface defined in WS-Enumeration.  

 
TABLE 1 SUMMARY OF VARIOUS OPERATIONS MODELED IN THE BROKER 

SERVICE ADAPTER 

Resource Supported 
Operations Operation Detail 

Create 

Initializes a broker using the current 
configuration and returns a unique 
BrokerID. This broker is initialized in 
the same JVM as the BSA. 

Delete Kills the broker identified by the 
BrokerID 

BROKER 

Get Retrieves information about the 
broker specified by the BrokerID 

   

Create 

Creates a link by trying a connection 
to the specified broker using the 
specified transport. On success, 
returns a LinkID corresponding to the 
link 

LINK 

Delete Deletes the link identified by the 
LinkID 

   

Get Retrieves the value(s) of specified 
configuration property CONFIGURATION 

 
CONFIGURATION 
PROPERTY Put 

Replaces the value(s) of the specified 
configuration with a new value. If the 
broker has already initialized we do 
not allow this operation. 

   

NODEADDRESS 
 
GATEWAY-
ADDRESS 

Create 

When a broker is initialized and 
connects to an existing broker in the 
broker network, this operation 
enables the new broker to request a 
node address from the broker to 
which it is connected to. This is a 
required step because of the inherent 
design of NaradaBrokering. 

   

BUFFERED-
MESSAGE Get Retrieves a previously buffered 

response 
 
Although we provide support in the framework for WS-

Enumeration, we do not see any suitable requirement in BSA 

that requires us to provide any implementation. WS-
Management also allows managed resources to publish events 
that give regular updates on the status of the resources. 
Although our initial implementation does not provide any 
support for WS-Eventing, we are currently working on 
integrating support for WS-Eventing by leveraging the WS-
Eventing container recently added in NaradaBrokering. 

C. Discovery of Managed Resources 
WS – Management Catalog [30] defines a metadata format 

for the discovery of management functionality of resources. 
Current implementation provides static binding to the BSA’s 
WS-Management interface in the BNM. We provide discovery 
by means of a simple registry service that lists the endpoints 
associated with individual BSAs. 

V. RESULTS 
WS-Management relies heavily on SOAP 1.2 specification 

for conveying various faults and details associated with 
exceptions. During development we noted that the Soap with 
Attachments API for JAVA (SAAJ API) library provided with 
JDK 1.4 implements SOAP 1.1 while support for SOAP 1.2 is 
provided in the newer releases of SAAJ (version 1.3 EA) 
which is shipped with Java WSDP 2.0. In order to provide 
maximum compatibility with various leveraged 3rd party 
softwares we have implemented our own SOAP message 
sender and receiver. 

We benchmarked our architecture with 2 topologies. In both 
cases, we employed as simple topology generator that 
generated links such that the ith broker is connected to (i-1)th 
broker (for all i > 1). Table II summarizes the machine 
configuration.  

TABLE II TEST MACHINE CONFIGURATION 
Machine Machine 

Specification 
Java Version Network 

Benchmarking 
machine 
trex.ucs.indiana.edu 

Linux, 2.6.5-
7.155.29-default, 
Pentium 4 2.53 GHz 
512 MB RAM 

Grid Farm machines 
in CGL, 
Bloomington 
(gf1.ucs.indiana.edu 
– 
gf8.ucs.indiana.edu) 

Linux 2.4.22-
1.2188.nptlsmp, 4 - 
Intel Xeon 2.4 GHz 
CPUs, 2 GB RAM 

Java 
HotSpot(TM) 
Client VM 
(build 
1.4.2_03-b02, 
mixed mode) 

Linked 
via 100 
Mbps 
link 

Home Machine:  
For Testing between 
different 
administrative 
domains (behind a 
home DSL router) 

Athlon 64 3400+ 
Processor 2.41 GHz, 
1 GB RAM 
Windows XP Pro w/ 
SP2 

Java 
HotSpot(TM) 
Client VM 
(build 
1.4.2_08-b03, 
mixed mode) 

Linked 
via a 1.5 
Mbps 
Home 
DSL 
network 

For manipulating XML, we leveraged Apache XMLBeans 
toolkit (version 2.0.0). Table III lists the specifications that 
were implemented during the development phase. 
 

We tested the time it takes to deploy a broker topology 
consisting of 8 brokers. This test uses direct HTTP transport 
since all machines are accessible from the machine running 
the BNM. We first set different configuration in each BSA and 
then initialize all 8 brokers. Once all of them have initialized, 



 7

we also time the process of creating links between brokers. 
Finally we shutdown all brokers. We have used a high 
resolution timer which reports times to microsecond accuracy 
to time the various operations. 

 
TABLE III VERSIONS OF WEB SERVICE RELATED SPECIFICATIONS THAT WERE 

IMPLEMENTED 
WS - Specification Spec Release Date 
WS Management June 2005 
WS Transfer Sep 2004 
WS Enumeration Sep 2004 
WS Addressing Aug 2004 
SOAP Version 1.2 

 
The average timing was found by running the test several 

times, removing outliers (to remove effects of initialization 
costs) and selecting last 10 readings. We report the average 
cost and the standard deviation of each step. The actual time is 
the time it takes to execute the operation while the total time 
includes the actual time plus the overhead in marshalling / 
unmarshalling XML and transporting the request and reply 
between communicating entities. We also compute the 
overhead as the difference of the total and actual time. The last 
column shows the average overhead per broker involved in the 
operation. We note that the average overhead is (about 72 
mSec) consists of marshalling the SOAP Envelope, 
transporting the SOAP message, unmarshalling the SOAP 
Envelope and extracting the actual request / response. Table 
IV shows the results. The “Actual Time” reported for the 
GetConfiguration operation is 0 since, in the 
implementation, the BSA always updates the configuration 
whenever an operation occurs. There is no special processing 
done during this call and the only work done comprises of 
marshalling the already existing information as XML and 
shipping it across to the BNM. 

 
TABLE IV TIMINGS AND OVERHEAD WHEN DEPLOYING A NETWORK OF 8 

BROKERS 
(All values reported are in milliseconds) 

Total Time 
benchmarked on 

trex.ucs.indiana.edu 

Actual Time 
benchmarked on 
(benchmarked 
on Gridfarm 
machines) 

Action 

N
um

be
r o

f B
ro

ke
rs

 

Mean Std. 
Dev. Mean Std. 

Dev. 

Over-
head 

Avg. 
Over-
head 

Set 
Config 8 717.24 118.4 128.78 7.93 588.46 73.56 

Create 
Broker 8 729.02 81.59 237.79 42.87 491.23 61.40 

Get 
Config 8 488.88 132.7 0 0 488.88 61.11 

Create 
Link 7 746.52 343.3 128.07 14.92 618.45 88.35 

Get 
Node 

Address 
7 594.69 106.03 112.12 13.41 482.57 68.94 

Delete 
Broker 8 828.59 279.54 228.43 155.59 600.16 75.02 

 
The second test involves using the NaradaBrokering 

wrapped transport for delivering SOAP Messages. Here we 
tested with 3 brokers and 2 links. Note that using this 
particular method of transport, we can access BSAs in 
different administrative domains. Due to the restriction on the 
need of IP address for connecting brokers, it may not be 
always possible for brokers in different administrative 
domains to be connected together. In this case we propose 
using a proxy broker that sits in the open network and links 
the two different broker networks. A set of brokers can 
however be managed from a different administrative domain. 
We believe that with the proliferation of IPv6 address space, 
this problem may be resolved to some extent. Table V shows 
the timing associated with this topology. 

To simulate heterogeneous environments with restricted 
transports and open ports, we turn off the relevant transport 
links in the bootstrap broker hosted on 
www.webservicelocator.org. The average overhead was 
found to be significantly higher than the direct HTTP 
connection. This was due to wrapping of SOAP message using 
NaradaBrokering, which resulted in multiple hops between the 
BNM and the BSA. 

We also observe that in both cases all of the operations 
listed above are executed serially. Certain operations such as 
setting individual configurations and starting brokers are 
independent of each other and could be parallelized in order to 
decrease the total time to deploy the broker network. 

 
TABLE V TIMINGS AND OVERHEAD WHEN DEPLOYING A NETWORK OF 3 

BROKERS WITHIN A DIFFERENT ADMINISTRATIVE DOMAIN (BEHIND A HOME 
DSL ROUTER) 

(All values reported are in milliseconds) 

Total Time 
benchmarked on 

gf4.ucs.indiana.edu 

Actual Time 
benchmarked 

on home 
machine 

Action 

N
um

be
r o

f B
ro

ke
rs

 

Mean Std. 
Dev. Mean Std. 

Dev. 

Over-
head 

Avg. 
Over-
head 

Set 
Config 3 517.59 61.2 1.56 0.64 516.03 172.01 

Create 
Broker 3 512.16 46.87 63.61 3.61 448.55 149.52 

Get 
Config 3 536.07 27.85 0 0 536.07 178.69 

Create 
Link 2 308.35 22.78 22.36 4.52 285.99 143.00 

Get 
Node 

Address 
2 290.22 33.14 1.55 0.27 288.67 144.34 

Delete 
Broker 3 415.67 46.36 21.45 1.74 394.22 131.41 

 
We also conducted preliminary tests to see how many 

clients a single broker can support before it saturates and is 
unable to deliver events. Note that in our architecture there is 
typically only one sender (publisher) and one receiver 
(subscriber) per message being sent. In Ref. [5] there are 



 8

potentially multiple subscribers per publisher. In our tests we 
ran one broker on www.webservicelocator.org. WS-
Management recommends that if a MaximumEnvelopeSize is 
specified in the request then it should have a value of at-least 
8192 octets which is the safe minimum in which all faults can 
be reliably encoded. We noted that a single broker can support 
about 300 simultaneous publishers publishing at a rate of 1000 
messages per second, each message of size 8192 bytes. The 
latency was found to be about 30ms (average) and about 95 
ms (maximum) over 150 runs. 

A. Addressing Requirements 
In this section we show how each of the desiderata 

mentioned in Section I-B is addressed through this 
architecture. 

Since the architecture uses a distributed messaging substrate 
to handle communication between manageable resources and 
managers, we can enable remote management of resources.  

Our system uses bootstrap nodes based on the 
NaradaBrokering messaging middleware for delivering 
messages. NaradaBrokering supports a variety of protocols 
such as TCP, NIOTCP, UDP, HTTP and tunneling through 
firewalls. The service adapter is responsible for connecting to 
an available bootstrap node by leveraging one of the supported 
transport protocols. Once the service adapter is connected to a 
bootstrap node the managed entity served by this service 
adapter can be managed. Thus the architecture can enable 
management by traversing through firewalls and NAT 
devices. 

Our management architecture is based on the Web Services 
paradigm. Evolving management specifications such as WS-
Management and WSDM allow management to be extensible 
by providing the basic management framework consisting of 
common operations such as creation and deletion of resources 
and setting and querying resource specific properties. An 
implementation is free to extend beyond the basic operations 
by supporting functionality specific to the target resource. 
Discovery of available functionality is done via a Web Service 
discovery mechanism such as WS-Management Catalog. 

Service adapters (BSA, in our case) are responsible for 
connecting to a bootstrap node. In presence of firewalls or 
blocked ports, alternate means of transport may be used. The 
architecture ensures management if the BSA can connect to at-
least one of the bootstrap nodes via available protocols. This 
ensures administrative scalability. Further we noted that a 
single bootstrap node (message broker) can handle about 300 
simultaneous clients before it saturates. We can achieve 
scalability in terms of the number of resources managed by 
adding more bootstrap nodes and managers. 

This paper specifically targets quality of service by 
addressing fault-tolerance against unavailable protocols. The 
architecture is composed of several crucial components. 
Bootstrap nodes are assumed to be highly failure resilient and 
we assume that a failed node can be brought up in a finite 
amount of time. If a bootstrap node fails, the service adapters 
may switch to another bootstrap node. Although one would 
employ multiple managers to improve scalability of the 

system, the management process would run as long as there is 
at-least one manager process running. Data sharing is handled 
through the registry which we expect to be fault-tolerant 
thorough some implicit means. 

VI. CONCLUSION AND FUTURE WORK 
In this paper we have presented our scheme for Web 

Service based management interface for easy configuration 
and deployment of middleware components. We have shown 
how management can be made scalable and fault-tolerant in 
presence of heterogeneous environments and have presented 
results associated with a prototype of the management 
architecture that manages the NaradaBrokering messaging 
infrastructure. The costs obtained are one-time initialization 
costs during deployment of the network and are hence quite 
acceptable.  

We are currently working on implementing a heartbeat 
mechanism based on WS-Eventing to monitor broker liveness 
and various other events that enable the BNM to take runtime 
decisions. We plan on investigating support for WS – 
Management Catalog for describing BSA interaction schema 
and set of managed resources. The WS Management and WS 
Distributed management specifications are converging [30] 
towards a common specification. Our current work is based on 
WS Management specification and we plan to incorporate the 
changes as the new specification is published. We also plan on 
researching suitable means of effectively providing multiple 
managers to manage a large set of resources and conducting 
detailed tests that stress the scalability of the architecture.  

ACKNOWLEDGEMENT 
The authors would like to thank Prof. Gordon Erlebacher 

(erlebach@csit.fsu.edu) for his critique on the HPSearch 
project. 

REFERENCES 
[1] Web Service Management (WS – Management), Sun, Microsoft, Intel, et 

al., June 2005. Available from 
https://wiseman.dev.java.net/specs/2005/06/management.pdf 

[2] Network Topologies: 
http://en.wikipedia.org/wiki/Network_topology, Visited Feb 6, 
2006 

[3] Gurhan Gunduz, Shrideep Pallickara and Geoffrey Fox An Efficient 
Scheme for Aggregation and Presentation of Network Performance in 
Distributed Brokering Systems (To Appear) in Journal on Systemics, 
Cybernetics and Informatics 2004. Available from 
http://grids.ucs.indiana.edu/ptliupages/publications/PAS-Framework-
journal.pdf 

[4] GlobalMMCS (Global Multimedia Conferencing System), Project page: 
http://www.globalmmcs.org 

[5] Ahmet Uyar, Scalable Service Oriented Architecture for Audio/Video 
Conferencing, Ph.D. Thesis, May 2005 

[6] Shrideep Pallickara and Geoffrey Fox. NaradaBrokering: A Middleware 
Framework and Architecture for Enabling Durable Peer-to-Peer Grids. 
Proceedings of ACM/IFIP/USENIX International Middleware 
Conference Middleware-2003. 

[7] Geoffrey Fox, Shrideep Pallickara, Marlon Pierce, Harshawardhan 
Gadgil. Building Messaging Substrates for Web and Grid Applications. 
In special Issue on Scientific Applications of Grid Computing in 
Philosophical Transactions of the Royal Society, London, Volume 363, 
Number 1833, pp 1757-1773, August 2005. 



 9

[8] Geoffrey Fox and Shrideep Pallickara. Deploying the NaradaBrokering 
Substrate in Aiding Efficient Web & Grid Service Interactions. Invited 
paper for Special Issue of the Proceedings of the IEEE on Grid 
Computing. Vol 93, No 3. pp 564-577. March 2005. 

[9] Shrideep Pallickara and Geoffrey Fox. On the Matching Of Events in 
Distributed Brokering Systems. Proceedings of IEEE ITCC Conference 
on Information Technology. April 2004. pp 68-76 Volume II. 

[10] Web Services Reliable Messaging Protocol (WS-ReliableMessaging) 
ftp://www6.software.ibm.com/software/developer/library/ws-
reliablemessaging200403.pdf  

[11] Web Services Reliable Messaging TC WS-Reliability. http://www.oasis-
open.org/committees/download.php/5155/WS-Reliability-2004-01-
26.pdf 

[12] Simple Network Management Protocol (RFC: 1157, 
http://www.ietf.org/rfc/rfc1157.txt, Also 
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/snmp.htm 

[13] The Common Management Information Services and Protocols for the 
Internet, http://www.ietf.org/rfc/rfc1189.txt 

[14] Common Information Model, http://www.dmtf.org/standards/cim/ 
[15] Web Service Distributed Management (WSDM), HP ; et al. Refer: 

http://devresource.hp.com/drc/specifications/wsdm/index.jsp 
[16] The Web Services Resource Framework. http://www.globus.org/wsrf/ 
[17] Proposal for a CIM mapping to WSDM, IBM. Available from 

ftp://www6.software.ibm.com/software/developer/library/ws-wsdm.pdf 
[18] B. Hudzia, M-T. Kechadi, and A. Ottewill, "TreeP: A Tree-Based P2P 

Network Architecture", International Workshop on Algorithms, Models 
and tools for parallel computing on heterogeneous networks (HeteroPar' 
05), Boston, Massachusetts, USA, September 27-30, 2005. 

[19] H.V. Jagadish, Beng Chin Ooi, Quang Hieu Vu, BATON: A Balanced 
Tree Structure for Peer-To-Peer Networks, In Proceedings of the 31st 
VLDB Conference, Trondheim, Norway, 2005 

[20] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek and Hari 
Balakrishnan, “Chord: A scalable peer-to-peer lookup service for 
internet applications” in Proceedings of SIGCOMM, Aug 2001. 

[21] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp and Scott 
Schenker, “A scalable content-addressable network” in Proceedings of 
SIGCOMM, Aug 2001 

[22] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. 
Joseph, and John Kubiatowicz Tapestry: A Resilient Global-scale 
Overlay for Service Deployment, IEEE Journal on Selected Areas in 
Communications, January 2004, Vol. 22, No. 1 

[23] Antony Rowstron and Peter Druschel, “Pastry: Scalable, distributed 
object location and routing for  large-scale peer-to-peer systems” in 
Proceedings of Middleware, Nov 2001 

[24] Web Service Transfer (WS – Transfer), Microsoft et al., September 
2004. Available from http://msdn.microsoft.com/library/en-
us/dnglobspec/html/ws-transfer.pdf 

[25] Web Service Enumeration (WS – Enumeration), Microsoft, BEA, et al., 
September 2004 Available from http://msdn.microsoft.com/library/en-
us/dnglobspec/html/ws-enumeration.pdf 

[26] Aleksander Slominski, Alexandre di Costanzo, Dennis Gannon, and 
Denis Caromel. Asynchronous Peer-to-PeerWeb Services and Firewalls. 
(To Appear) In 7th International Workshop on Java for Parallel and 
Distributed Programming (IPDPS 2005), April 2005 

[27] Kyle Brown, et al., Web Services Polling, Oct 2005. Available from 
http://www.w3.org/Submission/ws-polling/ 

[28] Shrideep Pallickara, Harshawardhan Gadgil, Geoffrey Fox; On the 
Discovery of Brokers in Distributed Messaging Infrastructure, (To 
Appear) In Proceedings of the IEEE Cluster 2005 Conference. Boston, 
MA 

[29] Web Services Eventing (WS – Eventing), Microsoft, IBM & BEA, 
August 2004. Available at http://ftpna2.bea.com/pub/downloads/WS-
Eventing.pdf 

[30] The Web Services Management Catalog, Sun et al., June 2005 Available 
from 
http://developers.sun.com/techtopics/webservices/management/WS-
Management_Catalog.June.2005.pdf 

[31] HP, IBM, Intel and Microsoft, Toward Converging Web Service 
Standards for Resources, Events, and Management, Available from 
http://msdn.microsoft.com/library/en-us/dnwebsrv/html/convergence.asp 

 

http://www.cluster2005.org/

	I. INTRODUCTION
	A. Scalable and Fault-tolerant Management Framework
	B. Desiderata
	C. Scope of this paper

	II. Managing the Distributed Brokering Infrastructure
	A. Example
	B. NaradaBrokering
	C. Related Work

	III. Architecture
	A. Broker Service Adapter (BSA)
	B. Broker Network Manager (BNM)
	C. Deploying topologies
	1) Registering BSAs
	2) Mapping topics to Endpoint References


	IV. WS – Management based modeling
	A. Management Operations
	B. Enumeration and Eventing
	C. Discovery of Managed Resources

	V. Results
	A. Addressing Requirements

	VI. Conclusion and Future Work

