
GFD-I.XX Shantenu Jha, CCT, LSU
Andre Merzky, CCT, LSU

Geoffrey Fox, CGL, IU

Version: 1.0 January 15, 2008

Using Clouds to Provide Grids Higher-Levels of Abstrac-
tion and Explicit Support for Usage Modes

Status of This Document

This document provides information to the grid community, relating recent de-
velopments in the area of Cloud computing, to the area and standardization
landscpa in Grid computing. It is supposed to inform the OGF community.
Distribution is unlimited.

Copyright Notice

Copyright c© Open Grid Forum (2008). All Rights Reserved.

Abstract

Grids in their current form of deployment and implementation have not been
as successful as hoped in engendering distributed applications. Amongst other
reasons, the level of detail that needs to be controlled for the successful devel-
opment and deployment of applications remains too high. We argue that there
is a need for higher levels of abstractions for current Grids. By introducing the
relevant terminology, we try to understand Grids and Clouds as systems; we
find this leads to a natural role for the concept of Affinity, and argue that this
is a missing element in current Grids. Providing these affinities and higher-level
abstractions is consistent with the common concepts of Clouds. Thus this paper
establishes how Clouds can be viewed as a logical and next higher-level abstrac-
tion from Grids.

GFD-I.XX January 15, 2008

Contents

1 Introduction 4

2 Definitions 6

3 Examples 7

3.1 Resources . 8

3.2 Services . 8

3.3 Systems . 9

3.4 System Interfaces . 11

3.5 Virtualization . 13

3.6 Application . 13

3.7 Portal/Science Gateway/Application Environment 13

4 Usage Modes and System Affinities 14

4.1 Usage Modes . 14

4.2 Affinities . 15

4.3 Discussion . 15

5 Observations 16

6 Implications 18

6.1 For System Architects . 18

6.2 For Resource Providers . 19

6.3 For Application Developers and End Users 21

6.4 For OGF . 21

6.5 For SAGA . 23

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 2

GFD-I.XX January 15, 2008

7 Discussion and Open Issues 24

8 Conclusions 25

8.1 Contributors . 26

8.2 Intellectual Property Statement 27

8.3 Disclaimer . 27

8.4 Full Copyright Notice . 27

References 27

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 3

GFD-I.XX January 15, 2008

1 Introduction

There is a level of agreement that computational Grids have not been able to
deliver on the promise of better applications and usage scenarios. The lack of
possible applications is not completely unrelated to the significant challenges in
Grid deployment and management, the difficulty of providing interoperability,
and of composing cross-Grid applications and services. Although the reasons
are often context dependent and resist over-simplified explanations, if there is
a single factor that stands out it is probably the complexity associated with
Grids – both from a programmatic point of view as well as from a technology,
management and deployment perspective.

Grids as currently designed and implemented are difficult to interoperate: there
have been major attempts to create Grids that interoperate seamlessly, in par-
ticular by the ’Grid Interoperation Now (GIN)’ effort within OGF [14]. Un-
derstandably, the various Grid programming and run-time environments vary
significantly. But even if some level of homogenization could be imposed across
different Grids, managing control programmatically across different virtual or-
ganization will remain difficult. Additionally, the lack of any commonly ac-
cepted minimal level of deployment support for cross-Grid applications (e.g.
co-scheduling resource across more than one VO) makes aggregating cross-Grid
resources difficult. Many of these difficulties underscore GIN’s limited impact
on applications in spite of the groups extensive and sincere efforts.

From our own experience as both end-users and developers of Grid infrastruc-
ture, there is a need to expose less detail and provide functionality in a simplified
way. If there is a lesson to be learned from Grids it is that the abstractions that
Grids expose – to the end-user, to the deployers and to application develop-
ers – are inappropriate and they need to be higher level. As we will go on to
show, Web-Services and their multiple incarnations have interfaces that are at
a level that is too low, to enable the effective deployment of infrastructure and
application development.

Clouds are clearly related to Grids, both in goals and implementation, but there
are differences which are difficult to discuss as both terms do not have agreed
definitions. We believe that Clouds as systems are not orthogonal to Grids,
nor are they necessarily complementary to Grids: in some ways Clouds are
the evolution of Grids (and they can both in turn be viewed as evolution of
Clusters). In many ways Clouds may just be composed of regular, vanilla Grids
with suitable services and interfaces superimposed on them. Whether Clouds are
a somewhat fuzzily defined concept or possibly a simple repackaging of earlier
concepts from distributed systems, it is important to hash their relationship to
existing classic Grids.

A fundamental difference between Clouds and Grids, in our opinion, is the
support for interfaces that are syntactically simple, semantically restricted and

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 4

GFD-I.XX January 15, 2008

high-level; standardized or not is an open question. In this paper we will in-
troduce the notion of Usage Mode and Affinities of systems, which describe
the dominant usage patterns of the system and the system’s internal properties
that support these patterns, respectively. We argue, that an emphasis on Usage
Modes and Affinities is the putative cause for the simplicity of use of Clouds
and this will be a major focus of this paper.

To the best of our knowledge this is the first systematic attempt to characterize
Clouds in relation to Grids from the perspective of semantics and interface
abstractions. The importance of this approach is reiterated by discussions on
the next steps for existing Grid infrastructure projects such as the TeraGrid.
For example, of the approximately 15 position papers that were solicited and
submitted as part of the “Future of the TeraGrid” process, more than half
mention the need for the next generation of the TeraGrid to take cognizance of
the developments in Cloud computing – where Cloud computing is a catch-all
term for better contextualization, virtualization and most importantly simplicity
of use. Some such as Blatecky [1] advocate stronger positions, i.e. TeraGrid
should focus on an exit strategy and give way to developments in virtualization
such as Clouds and Web 2.0.

As a side note, the attention given to Clouds is partially due to the (coinci-
dental but) simultaneous development in interests in green computing. Green
computing may not be the most critical architectural design point [13], but if
green practices arise naturally then that is an advantage. A natural way to
construct a Cloud is ab initio and thus there is significant scope to utilize green
locations and green energy sources. 1 It is conceivable that current social and
political trends may lead to a situation where green computing considerations
play an important role along side technical ones; we are not advocating green
computing trends or technologies – for that matter we are not advocating Cloud
computing either, but surely, the alignment of industrial trends and academic
computing cannot be harmful for either. It is important to mention that for the
purposes of this paper, we do not venture into the analysis of business models
associated with Clouds; our focus is on Clouds as technology.

The remainder of this paper is structured as follows: In the next section we
briefly outline and discuss the main recurring concepts in this paper, followed
by specific examples of these concepts. We will then discuss Cloud Affinity as
arising from the focus on interfaces and not on implementations. An analysis
of the concepts involved leads to a strawman architecture for Clouds; we then
analyze the implications of the proposed high-level architecture for Clouds and
Grids, and close with some outstanding questions of relevance that we hope will
be addressed by the community in the near future.

1Grids on the other hand are mostly constructed from a set of existing resources.

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 5

GFD-I.XX January 15, 2008

2 Definitions

This section attempts to list definitions for terms frequently encountered through-
out the paper. These definitions are working definitions which are probably not
universally applicable nor rigorous. Detailed definitions would have been impos-
sible with the limited scope of this paper. We feel that these working definitions
whilst simple and basic, are enough to facilitate discussions of the issues in hand.

Resource: A physical or virtual entity of limited availability. Physical resources
are compute, storage and communication resources, etc. Virtual resources are
usually services, which provide direct or indirect access to physical resources.

Service: An entity which provides a capability on a resource, or which allows
actions to be performed on resources. Services can in turn be Low Level Services
– which act primarily on physical resources, or High Level Services which act
primarily on virtual resources (i.e. on other services). Services expose their
capabilities via service interfaces.

System: A set of services and resources, which form an integrated whole. The
concept of a system is inherently hierarchical, i.e. there are systems of systems.
Higher Level Systems are systems which make use of other systems (i.e. Lower
Level Systems), through aggregation.

Semantics (of Systems): The set of capabilities, or features, available within
a system. The semantics of a system can be greater (more powerful) than the
semantics of its individual (lower level) systems combined.

System Interface: A set of interfaces that allow an application (and other
higher level systems) to access the capabilities of a system. APIs provide pro-
grammatic access to these interfaces. Application Environments provide user
level abstractions to APIs and thus also access to service interfaces System
interfaces often expose only parts of the entire semantics of the system.

Virtualization: An additional layer between real systems and applications
which translates concurrent access to real systems into seemingly exclusive ac-
cess to the virtual system. The virtualization interface often hides details and
differences of the real system components.

Application: An entity making use of a system, e.g. by using an API, or an
application environment (see below).

Portals and Science Gateways: High level application environments that
are oriented towards facilitating end usage; these access interfaces allows the
description, instantiation, deployment and management of applications – both
abstract and concrete – on a system. Application environments may provide

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 6

GFD-I.XX January 15, 2008

additional, often application specific, semantics which is originally not available
in the underlying system.

Usage Mode: A commonly occurring resource access and deployment pattern
for an application or a class of applications. For example, Usage Modes maybe
parameter sweeps, logical coupling of components (such as in workflows) etc.

Affinity: An inherent property of a system that describes a relationship be-
tween two or more (real or virtual) resources. The relationship is indicative of
the types of Usage Modes that the system supports. Affinities can be indica-
tive of support for data-oriented, compute intensive, or communication intensive
computing, etc.

Compute
Resource

Storage
Resource

High Level
Service

High Level
Service

High Level
Service

Low Level
Service

Low Level
Service

Comm.
Resource

System

Application

Interface
API

Figure 1: Figure showing the relationship between the different concepts associ-
ated with a system. Systems are composed of services, which provide access to
resources. Interfaces allow systems to be accessed and used; APIs in turn allow
applications to access interfaces.

3 Examples

We will show through concrete examples that although, the above definitions are
prima facie simple and limited, they permit a description of real world systems.

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 7

GFD-I.XX January 15, 2008

In the following examples, we discuss the semantic properties of various entities,
and provide a motivation for a later discussion of affinities and usage modes.

3.1 Resources

Resources can be classified as either compute, storage or communication, amongst
other types. Some simple examples of (physical) compute resources are dedi-
cated clusters and idle CPU cycles on workstations; single hard drives or large
shared file systems are examples of storage resources; the Internet in various
physical representations is an ubiquitous example of a communication resource.
Numerous other types of resources exist, such as remote instruments, sensors,
software licenses, human experts etc.

The semantics of a resource consist of a set of core capabilities specific to the
resource and the ability to manage those capabilities (provisioning, availability,
QoS, security etc.) The core capabilities are usually variable – a CPU can run
many kinds of applications; a disk can store many types of data; a network can
connect to many types of endpoints etc. The means provided to exploit resource
semantics, say via the resource interface, are thus also often flexible (assembly
for CPUs; various file systems or driver interfaces for disks; TCP and other low
level protocols for networks, etc.). The tradeoff is between the flexibility and
complexity of these interfaces.

3.2 Services

Low Level Services

There are many low level services that allow actions on resources; OS level file
systems, OS process schedulers etc. are low level services. Note that these
services limit the exposed semantic capabilities of the resources (i.e. using a file
system, a user will not be able to explicitly address individual blocks on the
disk anymore: she must adhere to the notion of files and directories.)

In distributed environments, typical low level services are:

• job/batch schedulers: LSF, GRAM, Mauii, . . .

• file systems: Google file system, AFS, GFS, . . .

• communication: TCP streams, monitoring systems, . . .

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 8

GFD-I.XX January 15, 2008

High Level Services

High level services often build upon multiple low level services and resources.
For example, a replica service such as the Globus RLS would exploit storage
resources (e.g., a global virtual file system), other storage resources (e.g., a
database for meta data storage), and communication resources (e.g. a network
for data movement). The semantic power is often greater than that of the
individual pieces combined (a replica service may have the notion of replication
policies, which make no sense on the level of the individual resources). On
the other hand, the service interface will often limit the exposed semantics,
according to the target use cases (e.g., the RLS API does not allow the creation
of arbitrary tables in the meta-data database).

In distributed environments, typical high level services are:

• job managers: meta-schedulers, supporting reservation and co-allocation,
registries, . . .

• file systems: replica systems, federated file systems, . . .

• communication: message passing infrastructures, component systems, pub-
lish/subscriber systems, . . .

3.3 Systems

An inherent generality in the definition of the term ’system’ permits a wide
variety of examples. We limit the discussion however, to examples which are
of particular interest to this discussion, viz., Operating Systems, Grids, and
Clouds.

3.3.1 Operating Systems

Broadly defined[2], an Operating System (OS) can be considered as the software
that manages the resources of a computer and provides programmers with an
interface used to access those resources.’ The focus here is on a single computer.
Although distributed operating systems exist, one can argue that the existence
of the OS implies the existence of a single distributed computer. Interestingly,
a system interface is an intrinsic part of the (operating) system; indeed, most
systems would be useless without an interface to use that system (possibly apart
from truly autonomous systems).

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 9

GFD-I.XX January 15, 2008

3.3.2 Grids

Grids are systems which, according to Ref [9], fulfill the following checkpoints:

• coordinate resources that are not subject to centralized control,

• use standard, open, general-purpose protocols and interfaces,

• deliver non-trivial qualities of service.

The TeraGrid[6], for example, is a system which provides more than 750 Teraflop
of compute resources, more than 30 Petabyte of storage, and high performance
network connections. Resources are administrated by individual TeraGrid sites.
The infrastructure is based on open source software which implements (at least
some) open standards. TeraGrid’s ’native’ system interface is increasingly com-
plemented by a number of application oriented ’Science Gateways’. That is a
typical and interesting development: the powerful but complex system inter-
faces are wrapped and abstracted by domain specific portals, which provide a
limited, but simpler interface to the end-users.

The TeraGrid is a General Purpose Grid, as its interfaces provide access to a
wide variety of capabilities, and does not limit the usage of the Grid resources
for a specific application domain. In contrast to general purpose Grids, Narrow
Grids (i.e. domain specific Grids) provide more focused services and interfaces.
For example, the Cern Data Grid aims to create a Grid with the ability to store
and distribute large amounts of data, with less emphasis on high performance
computing. A number of high level services have been created to provide that
functionality on top of a general purpose Grid, effectively limiting its semantic
capability, but increasing its ease-of-use for the target domain of distributed
data management.

3.3.3 Clouds

Cloud systems (or just Clouds) are, in some respects, narrow Grids, with a
limited set of features exposed, while still being able to serve a large fraction
of the domain specific use cases (the Cloud’s Usage Mode). For example, the
Simple Storage Service by Amazon[3] (S3, details below) is a data Grid which,
if compared to the Cern Data Grid, has less exposed semantics. The exposed
feature set is, however, large enough to attract a significant user base and meet
application requirements, which is also due to the simplicity of the exposed
system interface.

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 10

GFD-I.XX January 15, 2008

Amazon’s S3 and EC2

These are probably some of the best known examples of Clouds. S3 provides
the ability to outsource data – temporary store or archive with a given tightly
defined quality of service guarantee on availability, durability, persistence of
data. S3 has a simple cost model based upon usage measured in GB/month,
with a certain cost for data transfer across S3 boundaries. Users are not charged
for transfer if they use the “cooperative” EC2 compute Cloud – another service
by Amazon, although they are charged for the compute time. S3 in principle
provides infinite data storage, continuous availability, and durability.

Similarly EC2 (Elastic Compute Cloud[4]) represents the ability to accommo-
date a very large number of compute jobs (if not in principle an infinite number),
without the end-user realizing that it is a shared resource. EC2 is a nice ex-
ample of an infrastructure’s explicit support for different usage modes (bursty,
high-throughput and parameter-sweep).

Ref [15] concluded, controversially at best, that S3 although a useful concept
may not suitable for scientific projects and applications such as particle physics
experiments, due to reasons primarily related to security, cost model and also
performance. That claim is disputed though [11]. In any case, it is unclear if
performance (or lack thereof) will be an issue in the uptake of these systems (S3
and EC2 specifically, but Clouds in general) for niche high-end applications; we
argue that a “sweet spot” balancing the high-level interfaces and abstractions
on the one hand, with the need for performance requirements on the other, is
to be an important consideration.

Cloud vendors such as IBM are working towards composite Clouds built from
sub Clouds, called ensembles[16].

3.4 System Interfaces

As defined above, interfaces expose the semantics of systems. We will elaborate
on the interfaces of the systems examples presented earlier.

3.4.1 Operating Systems

A modern Linux OS has, for example, a number of interfaces: system calls,
system tools (which mostly use the system calls), the /proc file system, raw
devices, and others. These interfaces expose different aspects of both the OS
itself, and also of the underlying resources. Often two interfaces expose different
aspects of an underlying resource (think file system and raw disk device).

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 11

GFD-I.XX January 15, 2008

3.4.2 Grids

The interfaces exposed by general purpose Grids are mostly programmatic in-
terfaces, e.g. web service interfaces plus client libraries to these web service
interfaces. Additionally, tools (using a subset of the programmatic interface)
provide the most commonly used capabilities in a convenient way to the end-
user, e.g. as command line tools or GUIs.

One of the major reasons why Grids have not been as successful as hoped in
engendering distributed applications has been because the exposed interfaces
are too rich, and the level of detail that needs to be controlled for the successful
development and deployment of applications remains too high. In particular,
the WS-* services often employed by Grid systems expose very rich distributed
system semantics. There is circumstantial evidence that this level of detail
has failed the Grid user community, as (a) it is in practice not interopera-
ble, as real implementations of these WS-* are rarely faithful to the standard
or just wrong[14]; and (b) it is too hard to build software against these rich
interfaces[12].

General purpose Grids tend to expose a maximal set of the available
semantics to the end-user, while narrow Grids tend to focus on a
domain specific subset of the Grids semantics. So called high level Grid
APIs such as SAGA and CoG are an additional layer on top of Grids, which pro-
vide additional system interfaces with increased simplicity and usability, while
limiting the degree of semantics exposed.

3.4.3 Clouds

In contrast to the Grid system interfaces, cloud system interfaces are mini-
malistic and they do not expose internal system characteristics. Typically the
exposed capability set is usually much more limited than the set of capabilities
available in the Cloud system itself. The dominant consideration determining
which parts of the system semantics are exposed via the Cloud interface are the
Cloud’s target Usage Mode (clouds seem to target exactly one usage mode).

A distinguishing feature of Cloud interfaces are that instead of exposing the
largest possible amount of semantics for a specific domain, Clouds tend to
expose a minimal amount of semantics to the end-user, while still
being useful.

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 12

GFD-I.XX January 15, 2008

3.5 Virtualization

Recent virtual machine technologies such as Xen, VMWare, amongst others pro-
vide excellent examples for virtualization: a well known system interface (the
virtual machine and its OS) is provided on top of another similar system inter-
face (the host resource), hiding details of the host system, providing seemingly
exclusive access to the system resource (on the virtual machine), while actu-
ally performing concurrent resource sharing within the system (multiple virtual
machines can run on the host resource).

3.6 Application

Although it may be intuitively obvious to the reader what an application is, we
want to give an explicit example here.

Assume a distributed map-reduce creating a genome index of a genome data-set
is running on the Amazon EC2 compute Cloud, using data from the Amazon
S3 cloud. The map-reduce components (executable) are running on virtualized
resources, which utilize physical resources, managed by EC2’s Cloud system.
For the end-user of the genetic information, the index creation algorithm is the
application, with map-reduce being the programming model, and EC2/S3 being
the systems used to run that application. The system interfaces utilized are the
virtual machines of EC2, the REST/HTTP based interface of S3 for data access,
and the REST/HTTP based interface for starting jobs on EC2.

It is important to stress however, that what may be an application for one user,
may be consider as a system by another: Amazons EC2 cloud itself can well be
considered an application of the underlying service layer.

3.7 Portal/Science Gateway/Application Environment

The usability of a system is greatly increased if a high level interface is provided
to the end-user, which is designed to specifically support that users native work
modus2. That can be achieved in multiple ways, depending on the prefered
work environment of that user, or on the need to integrate with other, existing
user tools.

With respect to the genetics application example discussed above: a portal
which allows the end-user to easily switch from a data acquisitions applica-
tion (genome sequencing) to a data analysis application (the indexing described

2’work modus’ in the sense of a day-to-day sequence of actions performed by an end-user
to achieve a specific scientific, or commercial etc, goal.

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 13

GFD-I.XX January 15, 2008

above) will greatly facilitate the usability of a system to the geneticist. Other
styles of application environments, such as workflow environments, or command
line tools etc, may achieve the same goal. The key here is the integration into
the prevalent working environment of the end-user in a minimally disruptive
way.

4 Usage Modes and System Affinities

We state above that Grid system interfaces (in particular for general purpose
Grids) tend to be complete (i.e. they try to expose a complete set of available
system capabilities), and that Cloud interfaces tend to be minimalistic (i.e. they
expose only a limited set of capabilities, just enough to ’do the job’).

4.1 Usage Modes

It is important to understand the reason for this difference. In our experience,
general purpose Grids are mostly designed bottom-up: existing, often heteroge-
nous resources are federated as VOs, and their combined capabilities, plus ad-
ditional capabilities of higher level Grid services, are offered to the end-user.
This is not applicable for Clouds: the design of Clouds seems to be, mostly,
top down. Clouds are designed to serve a limited, specific set of use cases and
usage modes, and the Cloud system interface is designed to provide that func-
tionality, and no other. Furthermore, the Cloud system itself, and in particular
its high level services, may be designed to implement specific target use cases,
while not supporting others (e.g., a Cloud could be homogenous by design).
These differences do not imply that Clouds are trivial to implement. In practise
the opposite is most likely true (due to issues of scale, amongst other things).
Clouds may very well build upon general purpose Grids, or narrow Grids, and
at least face the same challenges; but their system interfaces do not expose those
internal capabilities.

Specific users and user communities tend to create different applications but
with shared characteristics. For example, the particle data community tends to
focus on very loosely coupled, data intensive parameter sweeps involving Monte
Carlo simulations and statistical analyzes. Systems used by these communities
are thus designed to support these application classes before others.

The Usage Mode defined earlier tries to catch the dominant properties of the
main application classes, insofar they are relevant to the design of the system,
and to the operational properties of the system. For example, the usage mode
’massively distributed, loosely coupled’ implies that the system’s design priori-

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 14

GFD-I.XX January 15, 2008

tizes on compute resources (e.g. cycle scavanging, large clusters), an to a lesser
degree on communication (no need for fast links between application instances),
or on reservation and co scheduling.

In contrast, the usage mode ’massively distributed, tighly coupled’ would imply
a system’s design to focus on compute resources, but importantly also on fast
communication between near nodes, and on (physical) co-location of processes.

4.2 Affinities

Currently Clouds seem to be designed to mostly support exactly one usage
mode, e.g. data storage, or high throughput computing, or databases, etc.
This does not preclude Clouds targeting more than one domain or usage mode,
however. The overarching design guideline to support the main target usage
mode, of Cloud systems, we defined as its affinity . In other words, affinity
is the term we use to indicate the type of computational characteristics that a
Cloud supports. That property can very often be expressed as the need to use
different aspects or elements of a system together (hence the term ’Affinity’, in
the sense of ’closeness’).

For example, the usage mode ’distributed, tightly coupled’ implies that an appli-
cation requires the use of multiple compute resources, which need to be ’near’
to each other, together with fast communication links between these compute
resources. The system needs to have a ’compute-communication affinity’, and a
’compute-compute affinity’.

Affinities as used in this paper are, however, not always mappable to ’closeness’.
For example, we say that a system that supports ’persistent storage, data repli-
cation, data intensive’ usage mode, may have ’bulk storage affinity’ – in the
sense that it needs to be designed to have bulk storage properties (availability
guarantees, long term consistency guarantees etc). This example also shows
that affinities are, in some sense, related to Quality of Service (QoS) properties
exposed by the system, and thus to Service Level Agreements (SLAs) about
these qualities of service.

4.3 Discussion

Affinity is thus a high level characterization of the kind of application that
could be beneficially executed on a particular Cloud implementation, without
revealing the specifics of the underlying arhitecture. In some ways, this is the
“ideal abstraction” for the end-user who would like to use infrastructure as a
black-box. Some classic examples of affinity are: tightly-coupled/MPI affin-
ity, high-throughput affinity (capacity), fast-turnaround affinity (capability), or

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 15

GFD-I.XX January 15, 2008

bulk storage affinity. Our observation is that Clouds have at least one affinity,
a corollary to which is that Cloud system interfaces are, designed to serve at
least one specific set of users or usage modes

One can argue that narrow Grids also expose affinity, e.g. that a Data Grid
has data affinity. That may well be true, and we think that the term affinity
may be useful for the discussion of narrow Grids as well, but the main difference
between Clouds and Grids remain that the interfaces of narrow Grids are still
designed so as to expose the complete set of capabilities related to the affin-
ity of narrow Grids, whereas Cloud system interfaces expose the minimal set
of capabilities related to its affinities. For the application developer, but more
likely the application deployer, information about the affinity of Clouds should
be complemented by SLA information, e.g. providing replicated data in case of
loss, co-scheduling at the application level, or low latency communication. Tra-
ditionally SLAs are, implicitly or explicitly, provided by the “service provider”
based upon infrastructure, policy, usage modes, or negotiation. For Clouds,
SLAs are an implicit part of the system interface: the Cloud’s affinities imply a
certain QoS to be met, for every use of the system.

5 Observations

In this section, we list a number of high level observations made while investi-
gating real world systems. It would go beyond the scope of the paper to discuss
these observations in full detail. They are, however, useful in discussing the
matter at hand.

Observation 1

System interfaces expose a complete semantic feature set as required by the set
of target applications.

This observation may seem either trivial or run contradictory to our earlier
examples, where we claim that broad Grids, for example, expose as much se-
mantics as possible. The resolution of the apparent contradiction emerges when
the large target application space is factored in, i.e., broad Grids have large
semantic feature sets because they try to address a broad range of appplications
and usage modes.

On the other hand, narrow Grids expose a subset of the semantics exposed by
broad Grids. This is wholly consistent with the fact that narrow Grids are used
by a smaller (narrower) set of target applications. Within the target semantic
space, however, narrow Grids expose a complete set of semantics that any single

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 16

GFD-I.XX January 15, 2008

application could use. So, a corollary to the observation above is: If the target
application space of a system is very narrow, the system interfaces tend to be
narrow, too, i.e. tend to expose only the semantics required by that application
space, ±ε.

Example: Operating systems have an extremely broad target application space,
and thus expose semantically powerful interfaces, which allow a range of ser-
vices, distributed applications, purely number crunching codes, graphical user
interfaces and others to be programmed. There are hardly any applications
which require richer semantics to access the underlying resources, and if there
were, extensions to the OS interface will emerge shortly (e.g., many operating
systems allow for additional drivers and libraries to (ab)use the graphics card
resources for number crunching).

Observation 2

Higher-level systems tend to support more specific target application and usage
modes than lower-level systems.

Although higher-level systems, by aggregation or otherwise, can have richer
semantics than lower level systems, they expose only a subset of that semantics
via their interfaces, specifically targeting increasingly specific applications and
application usage modes.

Example: Compared to the operating system example above, Grids expose
only a small subset of semantics internally available: it is not possible to access
resources like graphics cards directly via their service interfaces, but only via
the underlying operating system interfaces. The reason is that applications
performing graphical rendering on these cards are not in the target application
space for Grids.

Observation 3

The narrower a system interface, the easier it is to use.

This observation has a definite subjective element, but in spite of that, we
observe that narrow interfaces, by virtue of Observation 2, target specific usage
scenarios, and are thus easier to use for these specific scenarios.

Example: Some people may find MPI more difficult to use than BSD sockets,
although MPI is, without doubt, much narrower than sockets. One should keep
in mind that the comparision should be done for the same application: sockets
are certainly not that easy to use if you have to implement performance collective

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 17

GFD-I.XX January 15, 2008

operations on a dynamically changing set of processes. MPI, as a narrow system
interface, makes that specific use case simple.

6 Implications

6.1 For System Architects

The observations above allude to order the real world systems discussed before
by the semantic expressiveness of their interfaces. Please note that this order, as
shown in fig. 2, does not neccessarily imply a system architecture, but is really
just an ordering.

Obviously, applications can use any of the systems shown. We want to argue,
however, that applications tend to use the highest level system possible, as that
makes the appliciation development as simple as possible (Observation 2 & 3).

Resources
Storage NetworkCompute

Operating System

Clouds

Grids

Application Environments

Resources Resources

Figure 2: Semantic ordering of an abstract representation of the entities dis-
cussed in this paper. The semantic complexity of entities decreases towards
higher-levels; the usability of the entities from end-users perspective increases
as the semantic complexity decreases.

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 18

GFD-I.XX January 15, 2008

Further, we think is is useful to consider the abover system order when designing
systems. In particular, we find that the system order allows for a very generic
architecture of real systems, as shown in fig. 3: this figure shows the same system
order as above (Operating systems left out), but the annotations connect the
examples we gave in the earlier discussion very nicely.

Assuming that this architecture is indeed able to describe real world systems, it
seems that Grids are required to expose a number of core capabilities, required
to implement scalable Clouds. Amongst these core capabilities we would count:

• system management and monitoring

• authorization / authentication / accounting

• resource virtualization (compute, data, communication)

• scalability, fail safety, QoS, SLA

These are all capabilities which are certainly required within a Cloud system, but
are only partially (if at all) exposed to the Cloud application layer. One should
also note that these capabilities are amongst the declared target capabilities for
current Grid systems[10]!

6.2 For Resource Providers

Resource providers and thus system implementers should carefully look at their
target user space. Ignoring the level of semantic abstraction required by the
application space, and thus providing system interfaces which either expose
too much semantics, or too little, will always result in interfaces which are
cumbersome to use, or not to use at all.

There are clear imperatives for high level resource providers to adopt the Cloud
model of utility computing: as Grids, Clouds are able to leverage economies of
scale, and by supporting a limited but very common set of application classes,
Clouds are able to reach out to a large fraction of the user base.

Given that Clouds are large, it is not obvious at the moment whether there is a
strong need for Clouds to inter operate; but there is possibly a need for passive
inter operation, often referred to as seamless access, i.e. the ability to submit
to NSF or Amazon Clouds. Cloud’s high level interfaces should make this easy,
relative to current Grid interoperability efforts [14].

Further, Clouds seem to native support an evolving internal infrastructure: it
seems perfectly acceptable to keep engineering “the base” infrastructure, as
long as this high-level interface is stable. In contrast, the detailed interfaces

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 19

GFD-I.XX January 15, 2008

Data Grids Campus Grids

Storage Cloud Compute Cloud

Domain Specific Services

Storage NetworkCompute
Elements

General Purpose Grids

Lower Level Services

OGC Portal Workflow
Environment

Higher Level Services

Application Domain Specific Solutions

Resources (physical)

Figure 3: A concrete realization of the abstract ordering in Figure 2, in form
of a system architecture. This is a validation that although simple, the ab-
stract ordering and relationship between entities can be useful to represent real
systems.

that Grids expose makes a straight forward evolution very difficult. This may
pose an important advantage to resource providers, as it allows the evolution of
their internal infrastructure, without major disruption of the service provided
to the end users.

Finally, we want to shortly discuss the role of CPU virtualization in Clouds:

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 20

GFD-I.XX January 15, 2008

Clouds have so far emphasized the utility of intra-CPU virtualization, as for
example provided by systems such as Xen and VMWare. This could possibly be
integrated with the inter-CPU virtualization provided by Grids, where brokers
manage the deployment of services and applications on the most appropriate
resource.

6.3 For Application Developers and End Users

We believe that program developers should be able to develop applications in
the environment they are most comfortable with, and should not have to include
details of their run-time environment into their development process in anything
but the most simple way. This is in contrast to the approach where many
applications are developed to be explicitly aware of their run-time distributed
environment. Applications for Clouds can almost by definition be unaware of
the the distributed environment they run.

Related to the need to be unaware of runtime environment details, is the need to
provide simple interfaces, potentially in multiple renderings, to keep the appli-
cation agnostic of the underlying system implementation. Clouds do have these
simple interfaces, which are sometimes rendered in different technologies (For
example, the S3 interfaces is provided as REST, SOAP, HTTP and BitTorrent
renderings).

Both, the abstraction from resource mapping, and abstraction from resource
details, lead us to the notion of abstarct applications: (i.e. applications that do
not have run-time environment dependencies built into them). As an example,
workflow descriptions are usually abstract applications: they can be mapped to
different systems and resources, as long as the individual components do not
depend on specific resource details.

Clouds, and other high level systems, seem to support that notion of abstract
applications, and and provide a mechanism to create instances of these abstract
applications, by binding them to specific resources. An additional bonus for the
application developer is that abstract applications provide horizontal interoper-
ability, in that these applications can be instantiated on different systems, with
no or moderate porting effort, depending on the standardization of the system
interfaces. That also avoids vendor lock-in, which may be crucial for a wider
acceptance of Cloud technologies.

6.4 For OGF

The observation is that the development of Grid applications has proven diffi-
cult, as has the managment and deployment of Grids. How should a primarily

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 21

GFD-I.XX January 15, 2008

Grid oriented standards organization such as the OGF respond to seemingly
broad industrial support for Clouds?

In general, the discussed architecture for Grids and Clouds motivates oppor-
tunities for standards at two levels: on infrastructure level (core capabilities),
and on Cloud interface level. We stated already that the need for latter is ar-
guable, but motivated by passive interoperability for applications. The need for
infrastructure standardization may also be arguable (Are the current Clouds
built upon standards? Does it matter?), but (a) we feel that standardization is
important for any future academic Cloud efforts, and (b) we believe that infras-
tructure standardization will enable companies to offer Cloud services on top of
externally provided resources.

6.4.1 Standardization at the Interface Level

We have discussed earlier that the need for standard on Cloud interface level is
arguable, as the current Clouds indicate that these interfaces are so simple that
porting an application may be trivial. Nevertheless, we feel that for users who
wish to composing interface from different Cloud systems into their thin or thick
client applications will also want standards to enable them to interact with any
Cloud service. Standardization activities to this Cloud service interface may be
premature at this time as the Cloud usage models are not yet fully understood,
but it is certainly an area that OGF could be involved in. The obvious next
steps are to better understand the usage models.

There is currently no international group that is dealing with the standardiza-
tion of interfaces to Cloud systems, the closest being the Computing Community
Consortium who are organizing events to try to get parts of the Cloud commu-
nity together. This is therefore a relatively green field for the OGF, who has
the expertise and mandate to show how interfaces defined within OGF can be
used to access Clouds. OGF also has the community to define use cases and
develop core architectures/technologies.

Access to many of the services specified by OGF can be encapsulated within
APIs such as those produced from the SAGA-WG. Applications developed using
these high-level interfaces should seamlessly migrate to Clouds. In fact, the far
future with standardized Cloud system interfaces may very well make the need
for SAGA obsolete.

6.4.2 Standardization at the Core Capability Level

OGF offers a set of standards to support the compute aspects of resource ser-
vices (HPC-BP, BES, DRMAA), and an emerging set of standards to support

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 22

GFD-I.XX January 15, 2008

data resource services. To the OGF community’s credit, impressive strides in
the development of standard interfaces which are agnostic to the underlying
architecture and infrastructure details have been made. We believe that these
standards can form an essential core when designing and implementing Cloud
systems.

Current Cloud implementations seem not to be overly concerned about the in-
ternal use of standardized system components (or at least do not document
this). We want to remind the reader though that the percieved need for stan-
dardization is usually small when a technology is new, and only increases above
a certain threshold with the broadness of adoption of that technology. We pre-
dict that, if Clouds continue to deliver to the application community, and if
Clouds tecnology uptake will thus increase in the future, then the need for the
standardization of Cloud internal system components will also increas. If these
components will ultimately be Grids is a different question, and may well de-
pend as much on technical as on social and political issues. Crucial however will
be an early and open engagement of OGF and the Grid standards community,
for any chance of involvement in Cloud system standardization.

6.5 For SAGA

SAGA3 is an application level interface that provides a unified and consis-
tent API to the most commonly used distributed functionality. Given possible
changes in the development landscape, a pertinent question is: what might be
the implications for SAGA? As a first step, there is clearly a need to under-
stand the interfaces that are typically exposed by Clouds. However simple the
native system interface, there is a need for programmatic support for applica-
tion development and deployment via abstractions, e.g., providing abstractions
to express and address the affinity of Clouds. The SAGA group in OGF should
try to analyze if the notion of affinity can help by designing APIs which are
oriented toward specific application domains and usage modes.

In general, the emergence of the Clouds with an emphasis on usage modes is
an interesting complement to the SAGA approach, in that both are a top-down
approaches to provide application oriented interfaces to developers. Whereas
SAGA addresses that at the generic level of system interfaces, Clouds provide
this, to some extent, at the internal system level, i.e. by providing capabilities
required by applications as intrinsic part of the Cloud system. For example,
support for MapReduce/Hadoop by major providers such as Google and Yahoo
is just one indication of the utility and need for programming abstractions.

3Simple API for Grid Applications, an OGF proposed recommendation. Disclaimer: two
of the authors are co-chairs of the SAGA Working Group.

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 23

GFD-I.XX January 15, 2008

7 Discussion and Open Issues

We have barely begun to understand Clouds as a viable distributed computing
architecture and there are many technical issues, both internal and external, to
a Cloud that remain to be formally addressed. A limited, random sampling of
these are given below:

• The model of computing that a Cloud can support needs to be well de-
fined, and is arguably the most important public attribute of a Cloud; we
have introduced the concept of Cloud Affinity to address this important
attribute. What types of internal configuration are available to support
these? For example, can Clouds with suitable network connectivity be-
tween compute nodes provide affinity for capability distributed computing
(i.e. multiple modest size MPI jobs)? We argue that the internal configu-
ration should not be a public attribute that is exposed. We currently find
“homogenous” Clouds, i.e. Clouds are currently either just data (S3) or
compute Clouds (EC2) or just very large private (commercialized) data
centers. Is that an intrinsic property, or can future Clouds be hetero-
geneous? That question would certainly revitalize the discussion about
Grid/Cloud relationships!

• For most scientific computing needs, Clouds that provide only data storage
facilities are probably going to be insufficient. Thus there is a need to
introduce data-computing affinity, i.e. how easily can compute power
be provided to data, or possibly how can data be moved across to the
compute (without significant costs of transfer). Currently S3’s business
model charges for data transfer across S3 boundaries; but with network
capacity on average doubling faster than compute capacity (though not
storage capacity) there is clearly scope for “integrated” Clouds, at least
at the logical level if not physically.

• Both Grid and Cloud systems are evolving technological fields, and thus
there is a mine-field of unanswered questions, the answers to many of
which will become obvious possibly only with hindsight:

– Is there going to be a situation where we would want to link Clouds
together either from different providers or between different function-
alities (data Cloud to compute Cloud)?

– If interoperability is required widely (if not universally), then what
will be the model of aggregation of Cloud resources? A “Cloud of
Grids”? A “Grid of Clouds”?

– Will Clouds internally span cross-domain?

– Are individual institutions or groups going to want to construct their
own Clouds, as they have campus Grids?

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 24

GFD-I.XX January 15, 2008

– Is there an underlying scheduler for the use case where demand ex-
ceeds supply and how would this affect externally available services?

– What can end users expect in terms of fail safety of the Cloud system
as a whole? How can users avoid vendor lock-in?

• Cloud Security has currently not been seriously explored. Note that
Clouds do not cross administrative domains, at the moment, and this
could simplify the discussion of security models compared to Grids. But
if they do, is it likely that the security model will remain simpler? Either
way, an important point will be that this does not show on the Cloud
interface level.

• High-level interfaces have a role to play in making Clouds and other infras-
tructure easy to use. There is a need to address how utilizing distributed
systems can be made easier via the use of abstractions, i.e. via support
for commonly occuring patterns, which could be either programming pat-
terns, application usage patterns and/or infrastructure usage patterns.
High-level interfaces should make supporting programming abstractions
easy, whether it be widely known and exploited abstractions such as Map-
Reduce [8], or more recently adopted approaches such as All-Pairs [7] for
data-intensive computing.

• Do Clouds have an effect on the distribution of computing infrastructure,
as is commonly represented by the Branscomb Pyramid[5]? Clouds with
different affinities and support for different usage modes, would seem to
flatten the pyramid into several isolevel blocks.

Understanding these issues will be critical to a fuller appreciation of how Clouds
are related to Grids beyond the obvious enhanced support for virtualization.
Additionally, before any intellectually honest conjecture that Clouds are viable,
useful systems can be made with any level of rigour, many of these open issues
and questions will need to be placed on a firm footing.

8 Conclusions

These are interesting times: Grids are clearly evolving both due to internal and
technological pressures as well as external developments including market forces.
As the efforts to build scalable systems with standardized interfaces have begun
to yield dividends, Clouds – with the not so insignificant commercial interest
behind – have emerged as potentially competing approach for architecting large
distributed systems.

We hope to be able to contribute to that discussion, (a) by providing a common
terminology to build an analysis of Grids and Clouds, including the notion of

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 25

GFD-I.XX January 15, 2008

affinity ; and (b) by discussing the key differences between them: Grids on the
one hand provide a wide semantic scope to a broad target space of distributed
systems and applications; Clouds on the other hand expose a limited, if not
minimal set of semantics to support a set of well defined usage modes.

These key differences allow us to re-evaluate a number of observations, and
further to investigate a number of implications, for system architects, resource
providers, application developers and end users, and for OGF and its SAGA
effort. Finally, and not surprising, we are able to identify a significant number
of open issues which need to be addressed in order to arrive at an considered
opinion about the near term future of large scale distributed systems.

8.1 Contributors

The authors listed here and on the title page are those taking responsibility for
the content of the document, and all errors. The editors (underlined) are com-
mitted to taking permanent stewardship for this document and can be contacted
in the future for inquiries.

Shantenu Jha Andre Merzky
s.jha@cct.lsu.edu andre@merzky.net
Center for Computation and Center for Computation and
Technology Technology
Louisiana State University Louisiana State University
216 Johnston Hall 216 Johnston Hall
70803 Baton Rouge 70803 Baton Rouge
Louisiana, USA Louisiana, USA

Geoffrey Fox
gcf@grids.ucs.indiana.edu
Community Grids Lab
Indiana University
Lindley Hall 215
47405 Bloomington
Indiana, USA

Shantenu Jha would like to acknowledge support from the e-Science Institute,
Edinburgh for supporting the theme, “Distributed Programming Abstractions”.
We thank Malcolm Atkinson for helpful discussions, and Steven Newhouse for
slides of his presentation at OGF-Boston which lead to the formalization of the
ideas around support for abstractions and usage modes.

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 26

GFD-I.XX References January 15, 2008

8.2 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual
property or other rights that might be claimed to pertain to the implementation
or use of the technology described in this document or the extent to which
any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Copies of
claims of rights made available for publication and any assurances of licenses to
be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of
this specification can be obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights,
patents or patent applications, or other proprietary rights which may cover tech-
nology that may be required to practice this recommendation. Please address
the information to the OGF Executive Director.

8.3 Disclaimer

This document and the information contained herein is provided on an ”As
Is” basis and the OGF disclaims all warranties, express or implied, including
but not limited to any warranty that the use of the information herein will not
infringe any rights or any implied warranties of merchantability or fitness for a
particular purpose.

8.4 Full Copyright Notice

Copyright (C) Open Grid Forum (2008). All Rights Reserved.

This document and translations of it may be copied and furnished to others,
and derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright
notice and this paragraph are included on all such copies and derivative works.
However, this document itself may not be modified in any way, such as by
removing the copyright notice or references to the OGF or other organizations,
except as needed for the purpose of developing Grid Recommendations in which
case the procedures for copyrights defined in the OGF Document process must
be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked
by the OGF or its successors or assignees.

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 27

GFD-I.XX References January 15, 2008

References

[1] The Future of the TeraGrid, Position Papers.

[2] Wikipedia.

[3] Amazon, Inc. Amazon Simple Storage Service.

[4] Amazon, Inc. Amazon Elastic Compute Cloud.

[5] L. Branscomb, T. Belytschko, P. Bridenbaugh, T. Chay, J. Dozier, G. S.
Grest, E. F. Hayes, B. Honig, N. Lane, J. William A. Lester, G. J. McRae,
J. A. Sethian, B. Smith, and M. Vernon. NSB 93-205 – NSF Blue Ribbon
Panel on High Performance Computing, October 1993.

[6] C. Catlett. The philosophy of TeraGrid: building an open, extensi-
ble, distributed TeraScale facility. Cluster Computing and the Grid 2nd
IEEE/ACM International Symposium CCGRID2002, pages 5–5, 2002.

[7] e. a. Christopher Moretti. All-Pairs: An Abstraction for Data-Intensive
Cloud Computing. submitted to IPDPS08), 2008.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Operating Systems Design and Implementation (OSDI ’04),
2004.

[9] I. Foster. What is the Grid? A Three Point Checklist. Grid Today, 1(6):22–
25, 2002.

[10] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the
Grid. Grid Computing: Making the Global Infrastructure a Reality, 2003.

[11] Interview with Kate Keahey. Converging Virtualization with Distributed
Computing.

[12] S. Jha, H. Kaiser, A. Merzky, and O. Weidner. Grid Interoperability at
the Application Level Using SAGA. IEEE International Conference on
e-Science and Grid Computing, pages 584–591, 2007.

[13] C. Lee. Evolutionary Pressures on the TeraGrid and the Larger
Grid/Distributed Computing Community. The Future of the TeraGrid,
Position Papers.

[14] M. Marzolla, P. Andreetto, V. Venturi, A. Ferraro, S. Memon, S. Memon,
B. Twedell, M. Riedel, D. Mallmann, A. Streit, et al. Open Standards-
Based Interoperability of Job Submission and Management Interfaces
across the Grid Middleware Platforms gLite and UNICORE. IEEE In-
ternational Conference on e-Science and Grid Computing, pages 592–601,
2007.

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 28

GFD-I.XX References January 15, 2008

[15] e. a. Mayur Palankar. Amazon S3 for Science Grids: a viable solution?
submitted to DADC08 (private communication), 2008.

[16] I. Wladawsky-Berger. OGF-22 Keynote: Cloud Computing, Grids and the
Coming IT Cambrian Explosion, February 2008.

sjha@cct.lsu.edu, andre@merzky.net, gcf@grids.ucs.indiana.edu 29

