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ABSTRACT 
We summarize important overall issues affecting use of clouds to 
support Data Science. We describe the mapping of different 
applications to HPCC and Cloud systems and the architecture that 
support data analytics that is interoperable between these 
architectures. 

Categories and Subject Descriptors 
D.1.3 [Software Programming Techniques]: Concurrent 
Programming: Distributed programming; Parallel programming 

General Terms 
Performance, Design, Experimentation 

Keywords 
Clouds, Exascale, MapReduce, Iterative MapReduce, MPI, Data 
Science, HPCC, Programming Paradigms 

1. CLOUDS+EXASCALE ECOSYSTEM 
There are several important trend driving computing. We have the 
Data Deluge from Commercial (e.g. Amazon, e-commerce), 
Community (e.g. Facebook, Search), and Scientific applications 
(e.g. Analysis of LHC data, Genomics) with examples given just 
being representative of many others[1]. We have light weight 
clients from smartphones, tablets to sensors. The multicore chip 
architecture is reawakening parallel computing while it and 
GPGPU’s (even more cores) are behind Exascale initiatives, 
which will continue drive to high end with a simulation 
orientation. Clouds with cheaper, greener, easier to use IT for 
(some) applications are growing in importance. They enable the 
lightweight clients by acting as a backend resource and answer the 
difficult question “what do we do all with all those cores on a 
chip”. As that’s not so easy to answer on a conventional client, 
this is one driver to lighter weight client (using smaller CPU 
chips) but on a server, each core can host a separate cloud service. 
These developments drive both research and education and will 
weave together as we look at data analysis in the clouds. 
Curricula based on the “Science of Clouds”[2, 3] and/or “Data 
Science” [4] are attractive as both area are predicted to generate 
several million jobs and not find the needed skills. Finally the 
need for data analytics links old (e.g. finance, retail) business and 

new (Web 2.0) business with science. 
Clouds have many interesting characteristics including on-
demand service, measured service, scalable elastic service, broad 
any-time any-where network access, pooling of resources leading 
to economies of scale in performance and electrical power (Green 
IT). These correspond to Infrastructure as a Service but there are 
also powerful new software models corresponding to Platform as 
a Service that are also important. We will see examples such as 
cloud support of sensors (lightweight clients) where IaaS with 
broad access drives cloud data analysis and others where novel 
MapReduce algorithms (i.e. PaaS) are most important. Areas like 
genomics are driven both by the need for the most effective 
computing combined with interest in new programming models 
like MapReduce[5]. The most visible and major data intensive 
area – analysis of LHC data from CERN – could use clouds (as 
can typical high throughput computing loads) but they have an 
effective operational grid solution.  
Simulations have been explored on clouds but traditional super 
computers are typically required to get good performance on large 
highly parallel jobs. Clouds are currently only clearly get good 
performance on “bags of simulation tasks” with many small jobs 
that are not individually sensitive to synchronization costs.  
Synchronization costs are higher in clouds as virtualization leads 
to overheads both from software costs and difficulties in 
preserving locality. Thus we get classic HPC systems now moving 
inevitably to Exascale as likely to remain a critical part of the 
computing Cyberinfrastructure. 
The above analysis suggests a “Clouds+Exascale” 
Cyberinfrastructure scenario and in next section we ask how data 
intensive applications map into this ecosystem. 

2. EXAMPLE APPLICATIONS 
Previously we have used the MapReduce paradigm to classify 
parallel applications into four major groups [6-9].. 
Map-only applications are bags of independent tasks and clearly 
are suitable for clouds. This pleasingly parallel case includes not 
only LHC and similar science analysis but also support of the 
“Internet of Things” (IoT)  [10] where each of the world’s 
distributed devices (including smart phones) is backended by the 
cloud. The IoT is forecast to grow to 24 billion devices on the 
Internet by 2020. Robots are important sub-class of the IoT and 
cloud-backed robotics is very promising. The map-only case 
included “the long tail of science” (or indeed the “the long tail of 
most things”) where one has parallelism over users each running 
smallish jobs that run effectively on clouds. 
MapReduce jobs consist of independent maps and reducers with 
communication between tasks happening at the link between Map 
and Reduce. These of course cover many “Life-style Informatics” 
applications such as those used in the social media and search 
industries. Clouds can support this problem class well. There are 
some scientific applications of this class including for example 
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basic statistical analysis (such as histogramming ) common for 
example at final stage of LHC analysis. 
Classic MPI jobs are those identified for supercomputers above 
and typically involve many small size point to point messages. 
This class is target of HPC systems and the domain of “Exascale” 
component of the computing ecosystem. 
The final category has been called Iterative MapReduce [11-16] 
and is very clear in many data analysis applications. Many data 
analytics algorithm involve linear algebra at their core where the 
parallelism is well understood. These do not have the geometric 
parallelism of simulations but rather that of matrix rows, columns 
or blocks. Correspondingly we do not get many small messages 
but large reduction of broadcast (multicast) messages that are not 
as sensitive to latency overheads that are important for MPI 
structure of particle dynamics or partial differential equation 
solvers. Thus clouds are an interesting architecture and one can 
introduce a “Map Collective” programming abstraction that can 
be supported by either MPI or iterative versions of MapReduce. 
Supporting the three categories suitable of clouds has important 
issues including especially the data architecture where one needs 
to move the computing to the data which is typically not easy in 
today’s HPC or cloud environments. We discussed this in a 
previous note. In the last section we discuss a missing component 
that must be addressed. 
 

3. DATA ANALYTICS LIBRARY 

Here we note that in the hugely successful but largely simulation-
oriented HPCC activities starting around 1990, an important 
activity was the design and construction of core libraries such as 
PETSc, SCALAPACK (becoming PLASMA now [17]) and 
underlying technologies such as BLACS and MPI. Data intensive 
cloud applications require scalable parallel analysis routines and 
that these will cross many application areas just as the earlier 
HPCC libraries enable differential equation solvers and linear 
algebra across many disciplines. We further expect that reliable 

data analysis will need new robust algorithms to mimic the oft-
quoted observation that HPC progress has benefited equally from 
Moore’s Law-driven hardware improvements and from new 
algorithms. These observations motivate the introduction of 
SPIDAL, or the Scalable Parallel Interoperable Data Analytics 
Library, to address the analysis of big data. Figure 1 shows the 
components of the project. We include communities with data 
intensive applications which need to identify what library 
members need to be built. Good existing examples are R [18] and 
Mahout [19] but these are not aimed at high performance needed 
for large scale applications. As shown in Figure 1, we identify six 
layers and also five broad abstraction areas [20] whose definition 
allows library members to be built in a way that is portable. One 
abstraction is Jobs where we can identify the Pilot job concept 
[21, 22] to obtain interoperably; Communication where we need 
both MPI and MapReduce patterns and will use iterative 
MapReduce to design a common abstraction; a Data Layer where 
one needs abstractions to support storage, access and transport 
(since SPIDAL algorithms will need to run interoperably with 
databases, NOSQL, wide area file systems and file systems like 
Hadoop’s HDFS[23]). One also needs an Application Level Data 
abstraction between L2 and L3. Our final abstraction is the virtual 
machine or Appliance to deploy applications, where one could 
use a recently developed template approach [24-30] that can be 
realized on bare metal or commercial and private cloud VM 
managers. This supports both interoperability between different 
resources and preservation so that scientific results using SPIDAL 
will be reproducible. 
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Figure 1: A Data Analytics Architecture with abstractions 
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