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ABSTRACT 

The applications in science are creating huge amount of data sets. 

These data sets need to be classified into subsets in order to draw 

some meaningful conclusions. Data clustering is the statistical 

analysis process that groups similar objects into relatively 

homogeneous sets which are called clusters. The computational 

demands of data clustering grow rapidly. And it is very time 

consuming for single CPU to processing large data sets. To 

address this computational demands, we explored several parallel 

programming models for Fuzz C-means clustering algorithm on 

NVidia Fermi GPU architecture on the FutureGrid. We 

implemented C-means with CUDA and scale the program to 

GPUs cluster through a hybrid usage of MPI and OpenMP. In 

addition, a MapReduce implementation of C-means is also given 

and discussed. We evaluated the performance of different 

implementations of C-means on GPUs and compare their results 

with that of traditional Intel architecture chips. The results showed 

that CUDA implementation of C-means on single C2070 Fermi 

GPU card gave 70x and 10x speedup as compared to CPU 

implementation on Intel Xeon processor with 1 core and 12 cores 

respectively. 
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1. INTRODUCTION 
The applications in science are creating huge amount of data sets. 

These data sets need to be classified into subsets in order to draw 

some meaningful conclusions. Data clustering is the statistical 

analysis process that groups similar objects into relatively 

homogeneous sets which are called clusters. Data clustering has a 

wide variety of fields, such as data mining, machine learning, 

geology, astronomy, and bioinformatics, etc. The nature of the 

data similarity or distance varies significantly from one 

application to another. Therefore there has been extensive 

research and a myriad of clustering techniques developed in the 

past decades. 

 

Multivariate data clustering techniques were created several 

decades ago; however the application to the field of flow 

cytometry only has limited discussion. There has been a recent 

surge in research activity over the past few years applying 

multivariate data clustering to flow cytometry data. Multivariate 

techniques have the potential to use the full multidimensional 

nature of the data, to find cell populations of interest (that are 

difficult to isolate with sequential bivariate gating), and to allow 

analysts to make more sound statistical inferences from the 

results. Flow cytometry data sets are complex, containing millions 

of events, dozens of dimensions, and potentially hundreds of 

natural clusters. The multivariate clustering techniques require 

intensively computation, and the computational demands grow 

rapidly as the number of clusters, events, and dimensions increase. 

This makes it time consuming to analyze a flow cytometry data set 

thoroughly using a single CPU. Fortunately, many clustering 

techniques are of parallel processing capability. 

 

The GPUs have become booming parallel systems. GPUs have 

hundreds of processor cores and thousands of threads running 

concurrently on these cores, thus because of intensive computing 

power they are much faster than the CPU. The NVIDIA® Fermi 

architecture is the next-generation compute architecture for 

NVIDIA® CUDA™ applications.  

 

The performance of the GPUs applications highly depends on 

whether the programs can exploit parallelism provided by the 

underlying multiprocessor architecture. As a result, there is a large 

need to explore programing models to leverage the computational 

power of these new GPUs architecture. CUDA technology [5] is a 

new hardware and software solution for general purpose parallel 

computing from NVIDIA. CUDA is a parallel programming 

model and software environment that leverages the parallel 

computational horsepower of GPU for non-graphics computing in 

a fraction of the time required on a CPU. The latest version of 

CUDA can run parallel program on multi-core CPU as well.  

The programming paradigm provided by CUDA has allowed 

developers to utilize the power of these scalable parallel 

processors with relative ease, enabling them to achieve speedups 

of several times on a variety of sophisticated applications. Since 

NVIDIA released CUDA in 2007, a lot of scalable parallel 

programs were rapidly developed for a wide range of applications, 

including matrix solvers, sorting, searching, computational 

chemistry, and physics models. These applications scale 

transparently to hundreds of processor cores and thousands of 

concurrent threads.  

 

Figure 1: NVIDIA CUDA Framework 

2. Parallel Programming Models on GPUs 
GPU has shown its incredible power in high performance systems 

such as Tianhe 1A and Blue water. The programming model is 

critical to leverage these GPU systems in the respect of 

performance, programmability, and event power efficiency. In this 

report, we evaluated four parallel programming models for C-



means on Fermi GPU architecture which include: CUDA, 

OpenMP, MPI, and MapReduce.  

2.1 CUDA C++ 
Currently, NVIDIA's CUDA toolkit is the most widely used GPU 

programming toolkit available. It includes a compiler for 

development of GPU kernels in an extended dialect of C that 

supports a limited set of features from C++, and eliminates other 

language features (such as recursive functions) that do not map to 

GPU hardware capabilities. The CUDA programming model is 

focused entirely on data parallelism, and provides convenient 

lightweight programming abstractions that allow programmers to 

express kernels in terms of a single thread of execution, which is 

expanded at runtime to a collection of blocks of tens of threads 

that cooperate with each other and share resources, which expands 

further into an aggregate of tens of thousands of such threads 

running on the entire GPU device. Since CUDA uses language 

extensions, the work of packing and unpacking GPU kernel 

parameters and specifying various runtime kernel launch 

parameters is largely taken care of by the CUDA compiler. This 

makes the host side of CUDA code relatively uncluttered and easy 

to read. 

2.2 Combining OpenMP and CUDA 
Since NVIDIA's GPU driver allows only one CPU thread talk to 

one GPU device at a time, you'll need to use multiple CPU 

threads to cooperate with multiple GPU devices in a single 

program. OpenMP (Open Multiprocessing) is an API that 

supports multi-platform shared memory multiprocessing 

programming in C, C++. OpenMP uses a portable, scalable model 

that gives programmers a simple and flexible interface for 

developing parallel applications for platforms ranging from the 

standard desktop computer to the supercomputer. Combining 

OpenMP and CUDA framework can make use of multiple GPUs 

cards that deployed on single compute node. 

2.3 Combining OpenMP, MPI, and CUDA 
Many of the HPC applications have been implemented using MPI 

for parallelizing the application. The simplest way to start 

building an MPI application that uses GPU-accelerated kernels is 

to use NVIDIA’s nvcc compiler for compiling everything. The 

nvcc compiler wrapper is somewhat more complex than the 

typical mpicc compiler wrapper, so it is easier to make MPI code 

into .cu (since CUDA is a proper superset of C) and compile with 

nvcc than the other way around. The important point is to resolve 

the INCLUDE and LIB paths for MPI since by default nvcc only 

finds the system and CUDA libs and includes. 

In one scenario, one could run one MPI thread per GPU, thus 

ensuring that each MPI thread has access to a unique GPU and 

does not share it with other threads. On Lincoln this will result in 

unused CPU cores. In another scenario, one could run one MPI 

thread per CPU. In this case, on Lincoln multiple MPI threads 

will end up sharing the same GPUs, potentially oversubscribing 

the available GPUs. On AC the outcome from both scenarios is 

the same. 

2.4 Combining MapReduce and CUDA 
We investigated a MapReduce framework named Mars on 

graphics processors (GPUs). MapReduce is a distributed 

programming framework originally proposed by Google for the 

ease of development of web search applications on a large number 

of CPUs. Compared with commodity CPUs, GPUs have an order 

of magnitude higher computation power and memory bandwidth, 

but are harder to program since their architectures are designed as 

a special-purpose co-processor and their programming interfaces 

are typically for graphics applications. Mars hides the 

programming complexity of the GPU behind the simple and 

familiar MapReduce interface. It is up to 70 times faster than its 

CPU-based counterpart for C-means application. We implemented 

C-means with Mars on an NVIDIA T2070 GPU on FutureGrid, 

which contains hundreds of processors. 

3. Data Clustering Applications 

3.1 C-means Application 
Fuzzy c-means is an algorithm of clustering which allows one 

element to belong to two or more clusters with different 

probability. This method is frequently used in multivariate 

clustering. This algorithm is based on minimization of the 

following objective function: 

 

M is a real number greater than 1, N is the number of elements. 

Uij is the value of membership of Xi in cluster Cj. ||Xi-Cj|| is the 

norm expressing the similarity between the measured and the 

center. where m is any real number greater than 1, uij is the degree 

of membership of xi in the cluster j, xi is the ith of d-dimensional 

measured data, cj is the d-dimension center of the cluster, and ||*|| 

is any norm expressing the similarity between any measured data 

and the center. Fuzzy partitioning is performed through an 

iterative optimization of the objective function shown above. 

Within each iteration, the algorithm updates the membership uij 

and the cluster centers cj by: 

  (1) 

  (2) 

This iteration will stop when , where 'e' is a 

termination criterion between 0 and 1, whereas k are the iteration 

steps. 

Algorithm of C-means with CUDA: 

 1) Copy data to GPU 

 2) DistanceMatrix kernel 

 3) MembershipMatrix kernel 

 4) UpdateCenters kernel, copy partial centers to 

host from GPUs 

 5) ClusterSizes kernel, copy cluster sizes to 

host from each GPU 

 6) Aggregate partial cluster centers and reduce 

 10) Compute difference between current cluster 

centers and previous iteration. 

 11) Compute cluster distance and memberships 

using final centers.  

4. Performance Evaluation 
To provide an advanced and uniform evaluation platform, the 

FutureGrid systems are used. The FutureGrid project provides a 

capability that makes it possible for researchers to tackle complex 

research challenges in computer science related to the use and 

security of grids and clouds. Table1 summarizes characteristic of 

GPUs cluster named Delta on the FutureGrid. 



Table 1. GPUs cluster on FutureGrid 

GPU Type nVIDIA Tesla C2070 

GPUs per node 2 

RAM 16 GB DDR3 1333 MHz 

Memory per node [GB] 192 

Total GPUs 32 

Cores per GPU 448 

CPU type Intel Xeon 5660 

CPU Speed 2.80 GHz 

CPUs (cores) per node 2 (12) 

 

As shown in Table 1, Delta is a new 16-node experimental cluster, 

where each node has 2 NVIDIA Tesla C2075 GPUs with 448 

processing cores. The NVIDIA cards were used to evaluate 

performance of the C-means GPU programs. The corresponding 

sequential or threaded CPU code was executed as normal on the 

Intel Xeons under the normal process scheduling mechanisms 

provided under Red Hat Enterprise Linux 6.   

4.1 C-means performance on single GPU 

 

Figure 2: relative speedup of GPU implementation as compared to 

CPU implementation with 12 cores and 1 core respectively.  

We first look at the performance comparision between CPU and 

GPU implementations of C-means. Figure 2 is the relative 

speedup of CUDA implementation of C-means as compared to 

CPU implementations. The job turnaround time of CUDA C-

means program included the GPU kernel, CPU sequential, and 

memcpy between host and device memory. As shown in figure 2, 

GPU implementation is 10 times and 70 times faster than CPU 

implmentations with 12 core and 11 cores respectively. One 

should note there is only minor performance fluctuation for 

different input data as both CPU and GPU have the very large 

memory space on each node as shown in table 1.  

 

Figure 3: performance of MapReduce implementaiton of C-means 

Next, we evalute performance of MapReduce implementation of 

C-means on single GPU card with input data size range from 

1million to 7 million events. The results indicated that the 

MapReduce implementation has a very slow performance as 

comapred to pure CUDA implementation. The reason is because 

the MapReduce framework (Mars) used in this report is designed 

for previous Tesla GPU architecture, and more importantly there 

is no local combiner in Mars to perform the parallel reduce 

computation. As a result, the overhead of reduce stage in 

MapReduce implementation is similar to that sequntial version 

run on single CPU. By profiling the MapReduce program, we 

found that overhead in reduce stage of MapReduce C-means take 

up to 80% of overall overhead.  

4.2 C-means performance on multiple GPUs  

 

Figure 4: performance CUDA implementation on multiple GPUs 

As each compute node in table 1 has two GPU cards, we 

implemented C-means by combining OpenMP and CUDA to 

leverage both GPU cards. Results in Figure 4 indicated the super 

linear speedup of OpenMP implementation with two GPU cards. 

We profiled overhead components of each OpenMP process, and 

found the performance gain come from GPU kernel due to 

reduced size of input data. When running the GPU program with 

half input data size, there is less memory bandwidth contention 

among thousands of threads on each GPU card.   

4.3 C-means performance on GPU cluster 
 



 

Figure 5: Speedup of MPI/OpenMP implmenetation of C-means 

on multiple GPUs. 

One flaw of current GPUs architecture (including Fermi) is the 

lack of connection between GPUs nodes in both software and 

hardware. The message passaing interface, MPI, is the tradition 

approach to connect distributed program on ditributed memory 

archticture. And we use a hybrid of MPI, OpenMP, and CUDA to 

bridge the hardware gap between socket and PCI interface of 

GPUs nodes. Figure 5 showed the speedup of 

MPI/OpenMP/CUDA implementation of C-means for 7 million 

events using up to 18 GPU cards (9nodes with 2 cards each) on 

GPU cluster. The kernel speedup is cacluated by only measuring 

the GPU kernel overhead, while overall speedup is caculated by 

measuring GPU kernel, CPU overhead, and memcpy between 

device and host memory. As expected, the kernel speedup is 

higher than overall speedup which contains overhead in 

sequetnail component. In addition, as showed in Figure 5, there is 

big performance fluctuation for different number of GPU nodes 

due to the memory coalesced issue related with input granularity.  

5. Conclusion and Future Work 
We evaluated four parallel programming models for C-means 

application on Fermi GPUs on the FutureGrid, which include 

CUDA, OpenMP, MPI, and MapReduce. The CUDA 

implementation of C-means gave 70x and 10x speedup as 

compared to CPU implementation with 1 core and 12 cores 

respectively. We showed that the traditional parallel programming 

technical -- OpenMP and MPI can scale the data clustering 

program to multiple GPU nodes on the FutureGrid with 

reasonable parallel overhead and at the cost of put more software 

development burden on developers. The MapReduce/CUDA 

implementation required less programming effort, but it just gave 

2x speedup as compared to the CPU implementation on single 

core. As a result, more research work should be done to optimize 

the MapReduce framework on GPUs. For example, a local 

combiner for threads within the same block, can increase speedup 

of C-means significantly.  

While CUDA gave comparable performance, achieving the 

maximum throughput and utilization of the GPUs is still difficult 

task even for the simple parallel applications. The developers need 

have sophisticated knowledge about the details of warps, the 

memory hierarchy, and the efficient use of a limited PCIX bus. In 

addition, if developers want to scale their program to multiple 

GPU nodes, they have to make a hybrid use of MPI, OpenMP, 

and CUDA framework, and handle the messaging very carefully. 

Therefore a user-friendly programming model that aids rather than 

thwarts efficient implementations is needed. This parallel 

programming model must seamlessly transition not only between 

intra-node CPU-GPU computation, but also inter-node CPU-CPU 

communication.  While there is a number of hybrid MPI+CUDA 

applications that exist, this is not a robust enough programming 

model to be used at much large scale system. A higher level, 

uniform programming model that works on HPC Clusters or 

Cloud (virtual clusters) cores on traditional Intel architecture chip, 

cores on GPU could be a solution.  
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