
High-Performance Massive Subgraph Counting
using Pipelined Adaptive-Group Communication
Langshi Chen

School of Informatics, Computing and

Engineering, Indiana University

lc37@indiana.edu

Bo Peng

School of Informatics, Computing and

Engineering, Indiana University

pengb@indiana.edu

Sabra Ossen

School of Informatics, Computing and

Engineering, Indiana University

sossen@iu.edu

Anil Vullikanti

Virginia Tech

vsakumar@vt.edu

Madhav Marathe

Virginia Tech

mmarathe@vt.edu

Lei Jiang

School of Informatics, Computing and

Engineering, Indiana University

jiang60@indiana.edu

Judy Qiu

School of Informatics, Computing and

Engineering, Indiana University

xqiu@indiana.edu

ABSTRACT
Subgraph counting involves comparing a subgraph template across

a large input graph. Many domains have large networks (the In-

ternet of Things, social and biological networks) that can benefit

from fast subgraph isomorphism for billion- or trillion- edge graphs.

However, it is a NP-hard problem that is computationally challeng-

ing. The time complexity and memory space grow exponentially

with the increase in template size. In this paper, we investigate paral-

lel efficiency and memory reduction strategies and propose a novel

pipelined adaptive-group communication for massive subgraph

counting problems. In contrast to MPI point-to-point solutions, we

leverage fine-grained parallelism and communication optimization

and develop a high-level communication abstraction that is suitable

for irregular graph interactions. The proposed method also includes

1) an interleaved computation and group communication, 2) par-

titioning neighbor list of subgraph for better in memory thread

concurrency and load balance, and 3) a fine-grained pipeline com-

munication with regroup operation to significantly reduce memory

footprint. Experimental results on an Intel Xeon E5 cluster show

that our Harp-DAAL implementation of subgraph counting based

on color-coding algorithm achieves 5x speedup compared to the

current state-of-the-art work and reduces peak memory utilization

by a factor of 2 on large templates of 12 to 15 vertices and input

graphs of 2 to 5 billions of edges.

KEYWORDS
Subgraph Counting, Big Data, HPC, Communication Pattern

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

HPDC’18, June 2018, Tempe, Arizona, USA
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Subgraph analysis in massive graphs is a fundamental task in nu-

merous applications including analyzing the connectivity of social

networks [9], uncovering network motifs (repetitive subgraphs) in

gene regulatory networks in bioinformatics [19], indexing graph

databases [16], optimizing task scheduling in infrastructure mon-

itoring and detecting events in cybersecurity. Although these ad-

vanced graph analytics may provide a deep insight into the net-

work’s functional abilities, they require computing power to ana-

lyze the billion- and trillion-edge graphs generated by the Internet

of Things, ever-expanding social networks, biological, and future

sensor networks.

Given two graphsT onk vertices andG onn vertices as input, the
broad questions of subgraph analysis include determining whether

G = (V ,E) contains a subgraph that is isomorphic to template T ,
counting the number of such subgraphs, and finding the most sig-

nificant ones. In this paper, we focus on non-induced subgraph

isomorphism problem for which a formal definition is given in

Section 2. Problems such as subgraph counting and finding the

most significant ones generalize subgraph isomorphism, which is

NP-hard even for very simple templates. Even the best algorithms

for exact counting run in Ω(nk/2) time complexity which is expo-

nential to the tree template size k [24]. This motivates the use of

approximation algorithms.

Color-coding [2] is such an approximation algorithm to solve

the subgraph isomorphism problem and gives a fixed parameter
tractable algorithm with execution time exponential to template

size k but ploynomial to vertices number n on tree-like template.

Sequential fixed parametric algorithms other than color-coding to

detect subgraphs can be found in [10, 12]. Tree template counting

can also be used as a kernel to estimate the Graphlet Frequency

Distribution (GFD), which is another widely accepted tool to esti-

mate the relative frequency among all subgraphs of the same size.

[4] shows that a well-implemented tree template counting kernel

can push the limit of the state-of-the-art of GFD, both in terms of

the size of the input graph and the template.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

HPDC’18, June 2018, Tempe, Arizona, USA L.Chen et al.

The current parallel algorithms with rigorous guarantees for

counting trees involve parallelization of the color-coding technique,

either implemented with MapReduce (SAHAD [29]) or with MPI

(FASCIA [23]). However, both methods suffer from significant com-

munication overhead and large memory footprints, which prevents

them from scaling to templates with more than 12 vertices.

In this paper, we focus on tree template(treelet) counting problem

and identify the bottlenecks of scaling, and design a new approach

for parallelizing color-coding. Our main contributions in this paper

aim to address the following computation challenges:

• Communication: Many graph applications are based on

point-to-point communication. Thus the unavailability of

high-level communication abstraction that is adaptive for

irregular graph interactions.

• Load Balance: Sparsity of graph generates load imbalance

for computation.

• Memory:High volume of intermediate data owning to large

subgraph template (big model), which generates peak mem-

ory utilization at runtime.

We investigate computing capabilities to run subgraph counting at

a very large scale, and we propose the following solutions:

• Adaptive-group communication with regroup operation

developed to accelerate communication.

• Partitioning neighbor list for fine-grained task granular-

ity and load balance in concurrent threading of a single node.

• Model partition with pipelined communication and data

compression technique to reduce memory footprint.

We compare our results with the state-of-the-art MPI Fascia im-

plementation [23] and show applicability of the proposed method,

which can run large treelets (up to 15 vertices) and massive graphs

(up to 5 billion edges and 0.66 billion vertices) for subgraph counting

problems.

The rest of the paper is organized as follows. Section 2 introduces

the problem, color-coding algorithm and scaling challenges. Sec-

tion 3 presents our approach on Adaptive-Group communication

as well as a fine-grained intra-node thread optimization. Section 4

contains experimental analysis of our proposed methods and show

performance improvements. After Section 5 on related works, we

conclude in Section 6.

2 BACKGROUND OF COLOR-CODING
Let G = (V ,E) denote a graph on the set V of nodes and set E of

edges. We say that a graph H = (VH ,EH) is a non-induced subgraph
ofG ifVH ⊆ V and EH ⊆ E. We note that there may be other edges

in E − EH among the nodes inVH in an induced embedding. A tem-

plate graph T = (VT ,ET) is said to be isomorphic to a non-induced

subgraphH = (VH ,EH) ofG if there exists a bijection f : VT → VH
such that for each edge (u,v) ∈ ET , we have (f (u), f (v)) ∈ EH . In

this case, we also say that H is a non-induced embedding of T .
Color-coding is a randomized approximation algorithm, which

estimates the number of tree-like embeddings inO(ckpoly(n))with
a tree size k and a constant c . We briefly describe the key ideas of

the color-coding technique here, since our algorithm involves a

parallelization of it.

Counting colorful embeddings. The main idea is that if we as-

sign a color col(v) ∈ {1, . . . ,k} to each node v ∈ G, “colorful”
embeddings, namely those in which each node has a distinct color,

can be counted easily in a bottom-up manner.

For a tree template T = (VT ,ET), let ρ(T) denote its root, which
can be picked arbitrarily. Then T (v) denote a template T with

root v = ρ(T). Let T ′ and T ′′ denote the subtrees by cutting edge

(ρ(T),u) fromT . We pick ρ(T ′) = ρ(T) and ρ(T ′′) = u. LetC(v,T , S)
denote the number of colorful embeddings ofT with vertex v ∈ VG
mapped to the root ρ(T), and using the color set S , where |VT | = |S |.
Then, we can computeC(v,T , S) using dynamic programming with

the following recurrence.

C(v,T , S) =
∑

u ∈N (v)

∑
S=S1∪S2

C(v,T ′, S1) ·C(u,T
′′, S2) (1)

Figure 1 (a) shows how the problem is decomposed into smaller

sub-problems. In this partition process, one vertex arbitrarily is

picked up as the root which is marked in red, then one edge of it

is removed, splitting tree T into two small sub-trees. The arrow

lines denote these split relationships, with the solid line pointing

to the sub-tree with the root vertex and dotted line to the other.

This process runs recursively until the tree template has only one

vertex, T1. Figure 1 (b) shows an example of the colorful embed-

ding counting process which demonstrates the calculation on one

neighbour of the root vertex. Here, tree template T5 is split into
sub templates T2 and T3, in order to count C(w1,T5(v1), S), or the
number of embeddings of T5(v1) rooted atw1, using color set S =
{red,yellow,blue,дreen,purple}, we enumerate over all valid com-

bination of sub color sets onT2 andT3. For S1 = {д,p}, S2 = {y, r ,b},
we have C(w1,T2(v1), {д,p}) = 2 and C(w2,T3(v2), {y, r ,b}) = 2,

and for S1 = {д,b}, S2 = {y, r ,p}, we haveC(w1,T2(v1), {д,b}) = 1

, C(w2,T3(v2), {y, r ,p}) = 2. As T5 can be constructed by combi-

nations of these sub trees, C(w1,T5(v1), S) equals to the summa-

tion of the multiplication of the count of the sub trees, and results

2 × 2 + 1 × 2 = 6. In this example, the combination of two sub-

trees of T5 uniquely locates a colorful embedding. But for some

templates, some subtrees are isomorphic to each other when the

root is removed. E.g., for T3 in 1(a), the same embedding will be

over counted for 2 times in this dynamic programming process.

T
5

T
3

T
2

T
1

(a) Template Partition

v1

w1

w
2

v2

G
T

3

T
2

(b) Colorful Embedding Counting

Figure 1: An example showing the two main steps of color-coding
with tempate T5.

Random colorings. The second idea is that if the coloring is done
randomly with k = |VT | colors, there will be a reasonable probabil-
ity that an embedding is colorful, i.e., each of its nodes is marked

by a distinct color. Specifically, an embedding H of T is colorful

with probability
k !
kk

. Therefore, the expected number of colorful

High-Performance Massive Subgraph Counting
using Pipelined Adaptive-Group Communication HPDC’18, June 2018, Tempe, Arizona, USA

embeddings is n(T ,G) k !
kk

. Alon et al. [2] show that this estimator

has bounded variance, which can be used to estimate the number of

embeddings, denoted as n(T ,G), efficiently. Algorithm 1 describes

the sequential color-coding algorithm.

Algorithm 1 The sequential color-coding algorithm.

1: Input: Graph G = (V ,E), a template T = (VT ,ET), and param-

eters ϵ , δ
2: Output: A (1 ± ϵ)- approximation to n(T ,G) with probability

of at least 1 − δ

3: N = O(
ek log(1/δ)

ε2), δ and ε are parameters that control approx-

imation quality.

4: for j = 1 to N do
5: For eachv ∈ V , pick a color c(v) ∈ S = {1, . . . ,k} uniformly

at random, where k = |VT |.
6: Pick a root ρ(T) for T arbitrarily

7: Partition T into subtrees recursively to form T .

8: For each v ∈ V , Ti ∈ T and subset Si ⊆ S , with |Si | = |Ti |,
we compute:

c(v,Ti , Si) =
1

d

∑
u

∑
c(v,T ′i , S

′
i) · c(u,T

′′
i , S

′′
i), (2)

where Ti is partitioned into trees T ′i and T ′′i in T . d is the over

counting factor for Ti .

9: Compute C(j), the number of colorful embeddings of T in

G for the jth coloring as

C(j) = 1

q
kk
k !

∑
v ∈V c(v,T (ρ), S), (3)

where q denotes the number of vertices that cause T to be

isomorphic to itself when ρ is mapped to ρ ′ (ρ = ρ(T) and
ρ ′ ∈ VT).

10: end for
11: Partition the N estimates C(1), ...,C(N) into t = O(log(1/δ))

sets of equal size. Let Z j be the average of set j. Output the
median of Z1, ...,Zt .

DistributedColor-Coding andChallenges. As color-coding runs
N independent estimates in the outer loop at line 4 in the sequen-

tial Algorithm 1, it’s straightforward to implement the outer loop

at line 4 in a parallel way. However, if a large dataset cannot fit

into the memory of a single node, the algorithm must partition the

dataset over multiple nodes and parallelize the inner loop at line

8 of Algorithm 1 to exploit computation horsepower from more

cluser nodes. Nevertheless, vertices partitioned on each local node

requires count information of their neighbor u located on remote

cluster nodes, which brings communication overhead that com-

promises scaling efficiency. Algorithm 2 uses a collective AlltoAll

operation to communicate count information among processes and

updates the counts of local vertices at line 12. This standard com-

munication pattern ignores the impact of growing template size,

which exponentially increases communication cost and reduces the

parallel scaling efficiency. Moreover, skewed distribution of neigh-

bor vertices on local cluster nodes will generally cause workload

imbalance among processes and produce a "straggler" to slow down

the collective communication operation. Finally, it requires a local

node to hold all the transferred count information in memory be-

fore starting the computation stage on the remote data, resulting in

Algorithm 2 Distributed Color-Coding Algorithm

1: procedure Distributed Color-Coding(G(V ,E), T , P)
2: Input Graph G(V ,E) is randomly partitioned into P processes

Input Tree Template T is partitioned into subtemplates Ti ∈ T
ρ is the root of T

3: for it=1 to Niter do ▷ Out-loop iterations

4: for Each process p do ▷ Process-level parallelism

5: Color local graph Gp (V ,E)
6: for all Ti ∈ T in reverse order of partitioning do
7: for all v ∈ Gp (V ,E) do ▷ Thread-level

parallelism

8: Compute cp (v,Ti , Si) from neighbour ver-

tices of v within process p
9: end for
10: Process p All-to-All exchanges local counts

cp (,Ti , Si) with other processes

11: for all v ∈ Gp (V ,E) do ▷ Thread-level

parallelism

12: Update cp (v,Ti , Si) by computing received

neighbour vertices of v from other processes

13: end for
14: end for
15: end for
16: end for
17: Counts ← Reduce(cp (v,Tρ , S))
18: ScaleCounts based on Niter and embed colorful probability

19: end procedure

high peak memory utilization on a single cluster node and become

a bottleneck in scaling out the distributed color-coding algorithm.

3 SCALING OF DISTRIBUTED
COLOR-CODING

To address the challenges analyzed in Section 2, we propose a

novel node-level communication scheme named Adaptive-Group

in Section 3.1, and a fine-grained thread-level optimization called

neighbor list partitioning in Section 3.2. Both of the approaches are

implemented as a subgraph counting application to our open source

project Harp-DAAL [8][14]. Harp-DAAL is part of the High Perfor-

mance Computing Enhanced Apache Big Data Stack (HPC-ABDS)

to run data intensive workload on HPC clusters. At the cluster

node level, we use Harp [27][26][20] as an extension of Hadoop

MapReduce to implement in-memory collective communication

operations. At the intra-node level, we develop C/C++ computation

kernels running on high-end HPC processors and contribute to

Intel DAAL open source project [15].

3.1 Adaptive-Group Communication
Adaptive-Group is an interprocess communication scheme based

on the concept of communication group. Given P parallel comput-

ing processes, each process p belongs to a communication group

where it has data dependencies, i.e., sending/receiving data, with

other processes in the group. In an AlltoAll operation, such as

MPI_AlltoAll, each process p communicates data with all the other

processes in a collective way, namely all processes are associated to

HPDC’18, June 2018, Tempe, Arizona, USA L.Chen et al.

Figure 2: An example of ring-ordered steps in the adaptive-group
communication

a single communication group with size P . In Adaptive-Group com-

munication, the collective communication is divided intoW steps,

where each process p only communicates with processes belonging

to a communication group of size m at each step w . The size m
and step numberW are both configurable on-the-fly and adaptive

to computation overhead, load balance, and memory utilization of

irregular problems like subgraph counting.

A routing method is required to guarantee that no missing and

redundant data transfer occurs during all theW steps. Figure 2

illustrates such a routing method, where the AlltoAll operation

among 5 processes is decoupled into 4 steps, and each process only

communicates with two other processes within a communication

group of size 3 at each step. Line 4 to 13 of Algorithm 3 gives out the

pseudo code of Adaptive-Group communication that implements

the routing method in Figure 2. Here the communication is adaptive

to the template size |T |. With a large template size |T |, the algorithm
adopts the routing method in Figure 2 with a communication group

size of 3, while it switches to the traditional AlltoAll operation if

the template size is small.

Figure 3: Pipelined adaptive-group communication

3.1.1 Pipeline Design. When adding up allW steps in Adaptive-

Group, we apply a pipeline design shown in Figure 3, which includes

a computation pipeline (red) and a communication pipeline (blue).

Given an Adaptive-Group communication inW steps, each pipeline

followsW + 1 stages to finish all the work. The first stage is a cold

start, where no previous received data exists in the computation

pipeline and only the communication pipeline is transferring data.

For the followingW stage, the work in communication pipeline

can be interleaved by the work in computation pipeline. This in-

terleaving can be achieved by using multi-threading programming

model, where a single thread is in charge of the communication

pipeline and the other threads are assigned to the computation

Algorithm 3 Adaptive-Grouping in Distributed Color-Coding

1: procedure Adpative-Grouping in Distributed Color-

Coding(Gp (V ,E), Ti , P)
2: Gp (V ,E) is partition of the input graph at process p

Ti is the subtemplate to compute

P is the total number of processes to communicate

T is the template

3: if (|T | is large) then ▷ Adaptive to large T
4: for r = p + 1,p + 2, . . . , P − 1, 0, . . . ,p − 1 do
5: if threadIdx = 0 then ▷ Communication Pipeline

6: Compress and Send < I ,C >p,r to process r
7: Receive < I ,C >2p−r,p from process 2p − r
8: else ▷ Computation Pipeline

9: for all v ∈ Gp (V ,E) do ▷ Thread-level

parallelism

10: Update cp (v,Ti , Si) by computing

received neighbour vertices of v
from process 2p − r − 1

11: end for
12: end if
13: end for
14: else ▷ Adaptive to small T
15: Process p All-to-All exchanges local counts

cp (v,Ti , Si) with other processes

16: for all v ∈ Gp (V ,E) do ▷ Thread-level parallelism

17: Update cp (v,Ti , Si) by computing received

neighbour vertices of v from other processes

18: end for
19: end if
20: end procedure

pipeline (See Algorithm 3 line 5 to 12). Since at each stage, the com-

putation pipeline relies on the data received at the previous stage

of the communication pipeline, a synchronization of two pipelines

at the end of each stage is required (shown as a dashed line in

Figure 3). The saved time by using pipeline depends on the ratio

of overlapping computation and communication in each stage of

two pipelines. We will estimate the bounds of computation and

communication in pipeline design for large templates through an

analysis of complexity.

3.1.2 Complexity Analysis. When computing subtree Ti , we
estimate the computation complexity on remote neighbors at step

w as:

Compw,p = O(

(
k

|Ti |

) (
|Ti |

|T ′i |

) ∑
v ∈Vp

Nr,w (v)) (4)

where k is the number of colors, |Ti | is the size of subtree Ti in
template T , and T ′i is a subtree partitioned from Ti according to

Algorithm 1.

We divide the neighbors of v into local neighbors Nl (v) and
remote neighbors Nr (v). The Nr (v) is made up of neighbors re-

ceived in each step, Nr (v) =
∑W
w=1 Nr,w (v). With the assumption

High-Performance Massive Subgraph Counting
using Pipelined Adaptive-Group Communication HPDC’18, June 2018, Tempe, Arizona, USA

of random partitioning G(V,E) by vertices across P processes,

E[Nr,w (Vp)] = E[
∑
v ∈Vp

Nr,w (v)]

=
∑
v ∈V

E[Nr,w (v)] Pr[v ∈ Vp]

=
∑
(u,v)∈E

Pr[v ∈ Vp ,u ∈ Nr,w (v)] = |E |/P
2

(5)

where |E | is the edge number. Further by applying Chernoff bound,

we have Nr,w (Vp) = Θ(|E |/P2) with probability at least 1 − 1/n2.
Therefore, we get the bound of computation as

Compw,p =

(
k

|Ti |

) (
|Ti |

|T ′i |

)
Θ(Nr,w (Vp)) = Θ(

(
k

|Ti |

) (
|Ti |

|T ′i |

)
|E |/P2)

(6)

Similarly, the expectation of peak memory utilization at stepw
is

PeakMemw,p = O(
∑
v ∈Vp

[
c(v,Ti) +

∑
u ∈Nr ,w (v)

c(u,Ti)
]
)

= O(

(
k

|Ti |

)
(|V |/P + |E |/P2) (7)

where c(u,Ti) is the length of array (memory space) that holds

the combination of color counts for each u, and its complexity is

bounded by O(
(k
|Ti |

)
) (refer to line 8 of Algorithm 1).

The communication complexity at stepw byHockneymodel [13]

is

Comw,p = O(α + δw,p + β
∑
v ∈Vp

∑
u ∈Nr ,w (v)

c(u,Ti))

= O(α + δw,p + β

(
k

|Ti |

)
|E |/P2) (8)

where α is the latency associated to the operations in stepw , β is the

data transfer time per byte, and δw,p is the time spent by process p
in waiting for other processes because of the load imbalance among

P processes at stepw , which is bounded by

δw,p = O(Maxq,p (Timew−1,q −Timew−1,p))

= O(Maxq,p (Timew−1,q)) (9)

where Timew−1,q is the execution time of process q at stepw − 1
which is expressed as

Timew−1,q = Max(Compw−1,q ,Comw−1,q). (10)

When it comes to the total complexity of allW steps, we assume a

routing algorithm described in Figure 2 is used, whereW = P − 1.
We obtain the bound for computation as

Comp
pip
total,p =

W∑
w=1

Compw,p

= Θ(

(
k

|Ti |

) (
|Ti |

|T ′i |

)
|E |(P − 1)/P2) (11)

While the peak memory utilization is

PeakMem
pip
total,p = O(Maxw (PeakMemw,p))

= O(

(
k

|Ti |

)
(|V |/P + |E |/P2) (12)

The total communication overhead in the pipeline design of all

stepsW is calculated by,

Com
pip
total,p = Comw=1,p +

W∑
w=2
(1 − ρw)Comw,p (13)

where ρw is defined as the ratio of effectively overlapped commu-

nication time by computation in a pipeline stepw

ρw =
Min(Compw−1,p ,Comw,p)

Comw,p
, (w > 1) (14)

As the computation per neighbor u ∈ Nr,w (v) for Ti is bounded

by

(k
|Ti |

) (|Ti |
|T ′i |

)
and communication data volume per u bounded by

its memory space complexity

(k
|Ti |

)
, Compw,p increases faster than

Comw,p with respect to the template size |Ti |. Therefore, for large
templates, the computation term Compw,p is generally larger than

the communication overhead Comw,p at each step, and we have

ρw ≈ 1. Equation 13 is bounded by

Com
larдeT ,pip
total,p = O(Comw=1,p)

= O(α + δw=1,p +
β

P

(
k

|Ti |

)
|E |/P2) (15)

With large |Ti |, we have

δw=1,p = O(Maxq,p (Compw=1,q))

= O(
1

P2

(
k

|Ti |

) (
|Ti |

|T ′i |

)
|E |) (16)

which is inversely proportional to P2. The third term in Equation 15

is also inversely proportional to P . Therefore Com
larдeT ,pip
total,p shall

decrease with an increasing P , which implies that the algorithm

is scalable with large templates by bounding the communication

overhead.

For small templates, there is usually no sufficient workload to

interleave communication overhead, which gives a relatively small

ρw value in Equation 13 and compromises the effectiveness of

pipeline interleaving. Even worse, as the transferred data at each

stepw is small, it cannot well leverage the bandwidth of intercon-

nect when compared to the AlltoAll operation. In such cases, the

Adaptive-Group is able to switch back to AlltoAll mode and ensure

a good performance.

3.1.3 Implementation. We implement the pipelined Adaptive-

Group communication with Harp. In Harp, a mapper plays the

role of a parallel process, and mappers can do various collective

communications that are optimized for big data problems. In im-

plementation like MPI_AlltoAll, each process p out of P prepares a

slot Slot(q) for any other process q that it communicates with, and

pushes data required by q to Slot(q) prior to the collective communi-

cation. The ID label of sender and receiver are attached to the slots

in a static way, and the program must choose a type of collective

operation (E.g., AlltoAll, Allgather) in the compilation stage.

HPDC’18, June 2018, Tempe, Arizona, USA L.Chen et al.

Figure 4: Adaptive-Group tags each data packet with a meta ID,
which is used by a routing algorithm for data transfer. Both the
meta ID and the routing algorithm are re-configurable on-the-fly

In contrast, each Harp mapper keeps a sender queue and a re-

ceiving queue, while it is the data packet that has been labeled

by a meta ID as shown in Figure 4. For Adaptive-Group, the meta

ID for each packet consists of three parts (bit-wise packed to a 32

bit Integer): The sender mapper ID, the receiver mapper ID and

the offset position in the sending queue. A user-defined routing

algorithm then decodes the meta ID and delivers the packet in a

dynamically-configurable way. The routing algorithm is able to

detect template and workload sizes, and switch on-the-fly between

pipeline and AlltoAll modes.

3.2 Fine-grained Load Balance
For an input graph with high degree skewness (distribution of

vertex out-degree), it imposes a load imbalance issue at the thread-

level. In Algorithm 1 and 2, the task of computing the counts of a

certain vertex by looping all entries of its neighbor list is assigned

to a single thread. If the max degree of an input graph is several

orders of magnitudes larger than the average degree, one thread

may take orders of magnitude workload than average. For large

templates, this imbalance is amplified by the exponential increase

of computing counts for a single vertex in line 9 of Algorithm 1.

To address the issue of workload skewness, we propose a neigh-

bor list partitioning technique, which is implemented by the multi-

thread programming library OpenMP. Algorithm 4 illustrates the

process of creating the fine-grained tasks assigned to threads. Given

maximal task size s , the process detects the neighbor list length n
of a vertex v . If n is beyond s , it extracts a sub-list sized s out of the
n neighbors and creates a task including neighbors in the sub-list

associated to vertex v . The same process applies to the remaining

part of the truncated list until all neighbors are partitioned. If n is

already smaller than s , it creates a task with all the n neighbors

associated to vertex v .
The neighbor list partitioning ensures that no extremely large

task is assigned to a thread by bounding the task size to s , which
improves the workload balance at thread-level. However, it comes

with a race condition if two threads are updating tasks associated to

the same vertex v . We use atomic operations of OpenMP to resolve

Algorithm 4 Create Parallel Tasks via Neighbour List Partitioning

1: procedure Task Creation(s)
2: s is user-defined maximal task size

3: V is local vertices

4: Nv is neighbour list of v ∈ V
5: n is the number of neighbours

6: l is the length of new task

7: pos is the offset of sub-list
8: Q stores created tasks

9: for all v ∈ V do
10: if |Nv | < s then
11: Q add task(v, Nv)
12: else
13: n ← |Nv |
14: pos ← 0

15: while n > 0 do
16: l ← Min(n, s)
17: Q add Task(v, Nv (pos : pos + l))
18: pos+ = l
19: n− = l
20: end while
21: end if
22: end for
23: shuffle tasks in Q
24: end procedure

the race condition and shuffle the created task queue at line 23 of

Algorithm 4 to mitigate the chance of conflict.

4 EVALUATION OF PERFORMANCE AND
ANALYSIS OF RESULTS

4.1 Experimentation Setup
We conduct a set of experiments by implementing 4 code versions

of distributed color-coding algorithm with Harp-DAAL: Naive,

Pipeline, Adaptive and AdaptiveLB (Load Balance). Table 1 lists

individual optimization technique for experiments. They aim to

systematically investigate the impact of each optimization, which

addresses the sparse irregularity, the low computation to commu-

nication ratio or the high memory footprint issues of subgraph

counting.

Table 1: Harp-DAAL code version in experiments

Harp-DAAL

version

Communication

Mode

Adaptive

Switch

Neighbor list

partitioning

Naive AlltoAll Off Off

Pipeline Pipeline Off Off

Adaptive AlltoAll/pipeline On Off

AdaptiveLB AlltoAll/pipeline On On

We use synthetic and real datasets in our experiments which

are summarized in Table 2. Miami, Orkut [3][18][25], Twitter [5],

SK-2005 [11], and Friendster [18] are datasets generated by real

applications. RMAT synthetic datasets are generated by the RMAT

model [7] by specifying the size and skewness. Specifying a higher

skewness generates a highly imbalanced distribution of out-degree

High-Performance Massive Subgraph Counting
using Pipelined Adaptive-Group Communication HPDC’18, June 2018, Tempe, Arizona, USA

Table 2: Datasets in Experiments (K=103, M=106,B=109)

Data Vertices Edges Avg Deg Max Deg Source Abbreviation

Miami 2.1M 51M 49 9868 social network MI

Orkut 3M 230M 76 33K social network OR

NYC 18M 480M 54 429 social network NY

Twitter 44M 2B 50 3M Twitter users TW

Sk-2005 50M 3.8B 73 8M UbiCrawler SK

Friendster 66M 5B 57 5214 social network FR

RMAT-250M(k=1,3,8) 5M 250M 100,102,217 170,40K,433K PaRMAT R250K1,3,8

RMAT-500M(k=3) 5M 500M 202 75K PaRMAT R500K3

Figure 5: Tree Templates used in experimentation with growing
sizes and different shapes

Table 3: Computation Intensity of Templates

Template Memory Space

Complexity

Computation

Complexity

Computation

Intensity

u3-1 3 6 2

u5-2 25 70 2.8

u7-2 147 434 2.9

u10-2 1047 5610 5.3

u12-1 4082 24552 6.0

u12-2 3135 38016 12

u13 4823 109603 22

u14 7371 242515 32

u15-1 12383 753375 60

u15-2 15773 617820 39

for input graph datasets. Therefore we can use different skewness

of RMAT datasets to study the impact of unbalanced workload

on the performance. The different sizes and structures of the tree

templates used in the experiments are shown in Figure 5, where

templates from u3-1 to u12-2 are collected from [23], while u13 to

u15 are the largest tree subgraphs being tested to date.

We observe that the size and shape of sub-templates affect the

ratio of computation and communication in our experiments. This

corresponds to code line 8 of Algorithm 1, where each sub-template

Ti is partitioned into trees T ′i and T ′′i . The space complexity for

each neighbor u ∈ N (v) is bounded by

(k
|Ti |

)
when computing

sub-template Ti , and is proportional to the communication data

volume. The computation, which depends on the shape of the tem-

plate, is bounded by

(k
|Ti |

) (|Ti |
|T ′i |

)
. In Table 3, the memory space com-

plexity is denoted as

∑
i
(k
|Ti |

)
, and the computation complexity is∑

i
(k
|Ti |

) (|Ti |
|T ′i |

)
. In this paper, we define the computation intensity

as the ratio of computation versus communication (or space) for a

template in Figure 5. For example, the computation intensity gen-

erally increases along with the template size from u3-1 to u15-2,

However, for the same template size, template u12-2 has a com-

putation intensity of 12 while u12-1 only has 6. We will use these

definitions and refer to their values when analyzing the experiment

results in the rest of sections.

All experiments run on an Intel Xeon E5 cluster with 25 nodes.

Each node is equipped with two sockets of Xeon E5 2670v3 (2×12

cores), and 120 GB of DDR4 memory. We use all 48 threads from

by default in our tests, and InfiniBand is enabled in either Harp or

the MPI communication library. Our Harp-DAAL codes are com-

piled by JDK 8.0 and Intel ICC Compiler 2016 as recommended by

Intel. The MPI-Fascia [23] codes are compiled by OpenMPI 1.8.1 as

recommended by its developers.

4.2 Scaling with Adaptive Communication

Comp
u5-2

Comm
u5-2

Comp
u12-2

Comm
u12-2

0

200

400

600

{Comp - Computation, Comm - Communication} - Template

E
xe

cu
tio

n
Ti

m
e

(s
ec

) 4 Nodes
8 Nodes

Figure 6: Scaling up template sizes on dataset R500K3 for Harp-
DAALNaive implementation from4 cluster nodes to 8 cluster nodes

We first conduct a baseline test with the naive implementation

of distributed color-coding. When the subgraph template size is

scaled up as shown in Figure 6, we have the following observations:

1) For small template u5-2, computation decreases by 2x when

scaling from 4 to 8 nodes while communication only increases

by 13%. 2) For large template u12-2, doubling cluster nodes only

reduces computation time by 1.5x but communication grows by

5x. It implies that the AlltoAll communication within the naive

implementation does not scale well on large templates.

To clarify the effectiveness of Harp-DAAL Pipeline on large tem-

plates, Figure 7 compares strong scaling speedup, total execution

time, and ratio of communication/computation time between the

Naive and Pipeline implementation versions on Dataset R500K3,

which has skewness similar to real application datasets such as

HPDC’18, June 2018, Tempe, Arizona, USA L.Chen et al.

4 6 8 10

4

6

8

10

S
pe

ed
up

(T
1/

Tn
)

R500K3, u10-2

4 6 8 10

4

6

8

10

R500K3, u12-1

4 6 8 10

4

6

8

10

R500K3, u12-2

4 6 8 10
0

1

2

Ti
m

e
(x

10
0

se
c)

4 6 8 10
0

5

10

4 6 8 10
0

5

10

4 6 8 10 4 6 8 10
0

50

100

Naive Pipeline

R
at

io
of

Ti
m

e
(%

)

4 6 8 10 4 6 8 10
0

50

100

Naive Pipeline
4 6 8 10 4 6 8 10

0

50

100

Naive Pipeline

Harp-DAAL Naive Harp-DAAL Pipeline linear speedup

Harp-DAAL Naive Harp-DAAL Pipeline

Computation Communication

Number of Nodes

Figure 7: Strong Scaling Tests on dataset R500K3 from 4 to 10 cluster nodes with large templates (u10-2, u12-1, u12-2). First row gives the
speedup starting from 4 cluster nodes since a single node cannot hold the dataset; The second row compares the total execution time from
two implementations; The third row is the ratio of compute/communicate time in the total execution time

4 6 8 10
0

20

40

R
at

io
of

O
ve

rla
pp

ed
C

om
(%

) R500K3

u10-2 u12-1 u12-2

10 15 20 25
0

20

40

Twitter

u3-1 u5-2

10 15 20 25
0

20

40

Sk-2005

u3-1 u5-2

10 15 20 25
0

20

40

Friendster

u3-1 u5-2

Number of Nodes

Figure 8: The ratio ρ of overlapped communication/total communication by Harp-DAAL pipeline, tests on R500K3 for large templates (u10-2,
u12-1, u12-2), and Twitter, Sk-2005, Friendster for small templates u3-1, u5-2

Orkut. For template u10-2, Harp-DAAL Pipeline only slightly out-

performsHarp-DAALNaive in terms of speedup and total execution

time. However, for u12-2, this performance gap increases to 2.3x (8

nodes) and 2.7x (10 nodes) in execution time, and the speedup is

significantly improved starting from 8 nodes. The result is consis-

tent with the Table 3, where u12-2 has 2 times higher computation

intensity than u10-2, which provides the pipeline design of suf-

ficient workload to interleave the communication overhead. The

ratio charts of Figure 7 also confirm this result that Harp-DAAL

Pipeline has more than 65% of computation on 8 and 10 nodes,

while the computation ratio for Harp-DAAL Naive is below 50%

when scaling on 8 and 10 nodes. Although template u12-1 has the

same size as template u12-2, it only has half of the computation

intensity as shown in Table 3. According to Equation 13, the low

computation intensity on u12-1 reduces the overlapping ratio ρ,
and we find in Figure 8 that Harp-DAAL Pipeline has less than 10%

of overlapping ratio for u12-1, while u12-2 keeps around 30% when

scaling up to 10 cluster nodes.

High-Performance Massive Subgraph Counting
using Pipelined Adaptive-Group Communication HPDC’18, June 2018, Tempe, Arizona, USA

10 15 20 25

10

15

20

25

Number of Nodes

S
pe

ed
up

(T
1/

Tn
)

Twitter, u3-1

Harp-DAAL Adaptive
Harp-DAAL Pipeline
linear speedup

10 15 20 25

10

15

20

25

Number of Nodes

Sk-2005, u3-1

Harp-DAAL Adaptive
Harp-DAAL Pipeline
linear speedup

10 15 20 25

10

15

20

25

Number of Nodes

Friendster, u3-1

Harp-DAAL Adaptive
Harp-DAAL Pipeline
linear speedup

10 15 20 25

10

15

20

25

Number of Nodes

S
pe

ed
up

(T
1/

Tn
)

Twitter, u5-2

Harp-DAAL Adaptive
Harp-DAAL Pipeline
linear speedup

10 15 20 25

10

15

20

25

Number of Nodes

Sk-2005, u5-2

Harp-DAAL Adaptive
Harp-DAAL Pipeline
linear speedup

10 15 20 25

10

15

20

25

Number of Nodes

Friendster, u5-2

Harp-DAAL Adaptive
Harp-DAAL Pipeline
linear speedup

Figure 9: Strong Scaling Tests on large dataset Twitter, SK-2005, Friendster from 10 cluster nodes to 25 cluster nodes with small templates
(u3-1, u5-2). Harp-DAAL Adaptive switches to AlltoAll mode and outperforms pipeline.

4 6 8 10

5

10

15

Number of Nodes

To
ta

lT
im

e
(x

10
0

se
c)

Harp-DAAL Naive

Harp-DAAL Pipeline

4 6 8 10 4 6 8 10
0

50

100

Naive Pipeline

Number of Nodes

R
at

io
of

Ti
m

e
(%

)

Computation Communication

Figure 10: Weak Scaling of RMAT with skeweness 3; The workload
is proportional to the cluster nodes: e.g., 5 million vertices with 250
million edges on 4 cluster nodes, and 7.5 million vertices with 375
million edges on 6 cluster nodes.

For small templates similar to u3-1 and u5-2 which have low

computation intensities, we shall examine the effectiveness of adapt-

ability in Harp-DAAL Adaptive, where the code switches to All-

toAll mode. In Figure 9, we did the strong scaling tests with small

templates u3-1 and u5-2. Results show that when compared to Harp-

DAAL Pipeline, Harp-DAAL Adaptive has a better speedup for tests

of both u3-1 and u5-2 on three large datasets Twitter, Sk-2005, and

Friendster. Also, the poor performance of Harp-DAAL Pipeline is

due to the low overlapping ratio in Figure 8 for Twitter, Sk-2005,

and Friendster, where ρ drops to near zero quickly after scaling to

more than 15 nodes.

In addition to strong scaling, we present weak scaling tests in

Figure 10 for template u12-2. We generate a group of RMAT datasets

with skewness 3 and an increasing number of vertices and edges

proportional to the running cluster nodes. By fixing the workload

on each cluster node, the weak scaling on Harp-DAAL Pipeline

reflects the additional communication overhead when more cluster

nodes are used. For Harp-DAAL Pipeline, execution time grows

only by 20% with cluster nodes growing by 2 (from 4 nodes to 8

nodes). From the ratio chart in Figure 10, it is also clear that the

Naive implementation has its communication ratio increased to

more than 50% by using 8 cluster nodes while that communication

ratio of Pipeline implementation keeps under 40%.

4.3 Fine-grained Load Balance
Although Adaptive-Group communication and pipeline design mit-

igate the node-level load imbalance caused by skewness of neigh-

bor list length for each vertex in input graph, it can not resolve

fine-grained workload imbalance at thread-level inside a node. By

applying our neighbor list partitioning technique, we compare the

performance of Harp-DAAL AdaptiveLB with Harp-DAAL Adap-

tive on datasets with different skewness. In Figure 11, we first

compare the datasets with increasing skewness shown in Table 2.

With R250K1 and MI having small skewness, the neighbor list parti-

tioning barely gains any advantage, and its benefit starts to appear

from dataset OR by 2x improvement of the execution time. For

dataset with high skewness such as R250K8 with u12-2 template,

this acceleration achieves up to 9x of the execution time as shown

in Figure 11.

When scaling threads from 6 to 48, for dataset MI having small

skewness, the execution time does not improve much. While for

R250K8, Harp-DAAL AdaptiveLB keeps a good performance com-

pared to Naive implementation. In particular, the thread-level per-

formance of Harp-DAAL Naive drops down after using more than

physical core number (24) of threads, which implies a suffering from

hyper threading. However, Harp-DAAL AdaptiveLB is able to keep

the performance unaffected by hyper threading. To further justify

HPDC’18, June 2018, Tempe, Arizona, USA L.Chen et al.

R250K1 MI OR R250K3 R250K8
0

2

4

6

8

Dataset

To
ta

lT
im

e
(x

10
00

se
c)

Datasets with increasing skewness

Harp-DAAL Naive
Harp-DAAL AdaptiveLB

6 12 24 48
0

200

400

600

Number of Threads

To
ta

lT
im

e
(x

10
00

se
c)

Dataset MI, u12-2

Harp-DAAL Naive
Harp-DAAL AdaptiveLB

6 12 24 48
0

10

20

Number of Threads

To
ta

lT
im

e
(x

10
00

se
c)

Dataset R250K8, u12-2

Harp-DAAL Naive
Harp-DAAL AdaptiveLB

10 20 30 40 50 60 70 80 90
0

5

10

Partitioning Task Size

To
ta

lT
im

e
(x

10
0

se
c)

Harp-DAAL AdaptiveLB, u12-2

R250K3 R250K8

10 20 30 40
0

20

40
AdaptiveLB
Avg 28Naive

Avg 22

Number of Concurrent Threads

Ti
m

e
(s

ec
)

VTune, Dataset MI, u12-2

Harp-DAAL AdaptiveLB
Harp-DAAL Naive

10 20 30 40
0

20

40

60

80

AdaptiveLB
Avg 40

Naive
Avg 18

Number of Concurrent Threads

Ti
m

e
(s

ec
)

VTune, Dataset R250K8, u12-2

Harp-DAAL AdaptiveLB
Harp-DAAL Naive

Figure 11: Execution details on a single Xeon E5 node (x2 sockets, and a total of 24 physical cores). The default thread number in test is 48 and
partitioned neighbor list is 50.

4 6 8 10
0

20

40

60

80

Number of Nodes

Pe
ak

M
em

or
y

U
til

iz
at

io
n

(G
B

)

R500K3, u10-2

Harp-DAAL Naive
Harp-DAAL Pipeline

4 6 8 10
0

50

100

Number of Nodes

R500K3, u12-1

Harp-DAAL Naive
Harp-DAAL Pipeline

4 6 8 10
0

20

40

60

80

Number of Nodes

R500K3, u12-2

Harp-DAAL Naive
Harp-DAAL Pipeline

Figure 12: Peak memory utilization for Harp-DAAL Naive and Harp-DAAL Adaptive on dataset R500K3 with templates u10-2,u12-1, u12-2
from 4 to 10 nodes

the thread efficiency of Harp-DAAL AdaptiveLB, we measure the

thread concurrency by VTune. The histograms show the distribu-

tion of execution time by the different numbers of concurrently

running threads. For dataset MI, the number of average concurrent

threads of Harp-DAAL Naive and AdaptiveLB are close (22 versus

28) because the dataset MI does not have sever load imbalance

caused by skewness. For dataset R250K8, the number of average

concurrent threads of Harp-DAAL AdaptiveLB outperforms that of

Harp-DAAL Naive by around 2x (40 versus 18).

Finally, we study the granularity of task size and how it affects

partitioning of the neighbor list. In Algorithm 4, each task of up-

dating neighbor list is bounded by a selected size s . If s is too small,

there will be a substantial number of created tasks, which adds ad-

ditional thread scheduling and synchronization overhead. If s is too
large, it can not fully exploit the benefits of partitioning neighbor

list. There exists a range of task granularity which can be observed

in the experiments on R250K3 and R250K8. To fully leverage the

neighbor list partitioning, a task size between 40 and 60 gives better

performance than the other values.

4.4 Peak Memory Utilization
Adaptive-group communication and pipeline design also reduce the

peak memory utilization at each node. According to Equation 12,

peak memory utilization depends on two terms: the c(v,T) from
local vertices Vp and c(u,T) from remote neighbors u ∈ Nr,w (v).
When total |V | of dataset is fixed, |Vp | decreases with increasing

process number P and thus reduces the first peak memory term.

The second term associated withu at stepw is also decreasing along

with P because more steps (W = P − 1) leads to small data volume

involved in each step. In Figure 12, we observe this reduction of

peak memory utilization along with the growing number of cluster

nodes from 4 to 10. Compared to Harp-DAAL Naive, Harp-DAAL

Pipeline reduces the peak memory utilization by 2x on 4 nodes, and

this saving grows to around 5x for large templates u10-2, u12-1,

and u12-2.

4.5 Overall Performance
The overall performance combines the optimization for scaling,

load imbalance, and peak memory utilization. Figure 13 shows a

comparison of Harp-DAAL AdaptiveLB versus MPI-Fasica in total

execution time with growing templates on Twitter Dataset. For

High-Performance Massive Subgraph Counting
using Pipelined Adaptive-Group Communication HPDC’18, June 2018, Tempe, Arizona, USA

u3-1 u5-2 u7-2 u10-2
0

5

10

15

Template

To
ta

lT
im

e
(x

10
0

se
c)

Twitter, 16 Nodes

u12-2 u13 u14 u15-1 u15-2
0

20

40

60

Template

To
ta

lT
im

e
(x

10
0

se
c)

Twitter, 25 Nodes

u12-2 u13 u14 u15-1 u15-2
0

50

100

O
ut

of
M

em
or

y

O
ut

of
M

em
or

y

O
ut

of
M

em
or

y

O
ut

of
M

em
or

y

Template

Pe
ak

M
em

or
y

(G
B

)

Twitter, 25 Nodes

Harp-DAAL AdaptiveLB MPI-Fascia

Figure 13: Overall Performance of Harp-DAAL AdaptiveLB vs. MPI-Fascia with increasing template sizes from u3-1 to u15-2

8 10 12 14 16
0

50

100

Number of Nodes

R
at

io
in

E
xe

cu
tio

n
Ti

m
e

(%
)

Harp-DAAL, u3-1

Computation Communication

8 10 12 14 16
Number of Nodes

Harp-DAAL, u5-2

Computation Communication

8 10 12 14 16
Number of Nodes

Harp-DAAL, u10-2

Computation Communication

8 10 12 14 16
Number of Nodes

Harp-DAAL, u12-2

Computation Communication

8 10 12 14 16
0

50

100

Number of Nodes

R
at

io
in

E
xe

cu
tio

n
Ti

m
e

(%
)

MPI-Fascia, u3-1

Computation Communication

8 10 12 14 16
Number of Nodes

MPI-Fascia, u5-2

Computation Communication

8 10 12 14 16
Number of Nodes

MPI-Fascia, u10-2

Computation Communication

Figure 14: The ratio of computation versus communication in total execution time for Harp-DAAL AdaptiveLB and MPI-Fascia

8 10 12 14 166

8

10

12

14

16

Number of Nodes

S
pe

ed
up

(T
1/

Tn
)

Harp-DAAL-AdaptiveLB u3-1 MPI-Fascia u3-1
Harp-DAAL-AdaptiveLB u5-2 MPI-Fascia u5-2
Harp-DAAL-AdaptiveLB u7-2 MPI-Fascia u7-2
Harp-DAAL-AdaptiveLB u10-2 MPI-Fascia u10-2
Harp-DAAL-AdaptiveLB u12-2 linear speedup

Figure 15: Strong scaling of Harp-DAAL AdaptiveLB vs. MPI-Fascia
on Twitter with template sizes from u3-1 to u12-2

small templates u3-1, u5-2, and u7-2, Harp-DAAL AdaptiveLB per-

forms comparably or slightly better. Small templates can not fully

exploit the efficiency of pipeline due to low computation inten-

sity. For large template u10-2, Harp-DAAL AdaptiveLB achieves

2x better performance than MPI-Fascia, and it continues to gain

by 5x better performance for u12-2. Beyond u12-2, Harp-DAAL

AdaptiveLB can still scale templates up to u15-2. MPI-Fascia can

not run templates larger than u12-2 on Twitter because of high

peak memory utilization over the 120 GB memory limitation per

node.

Figures 14 and 15 further compare the strong scaling results

between Harp-DAAL AdaptiveLB and MPI-Fascia. Scaling from 8

nodes to 16 nodes, Harp-DAALAdaptiveLB achieves better speedup

than MPI-Fascia for templates growing from u3-1 to u12-2. MPI-

Fascia even can not run Twitter on 8 nodes due to its high peak

memory utilization. The ratio charts in Figure 14 give more details

about the speedup, where MPI-Fascia has a comparable communi-

cation overhead ratio in execution time for small tempaltes u3-1

and u5-2, however, the communication ratio increases to 80% at

template u10-2 while Harp-DAAL AdaptiveLB keeps communica-

tion ratio around 50%. At template u12-2, Harp-DAAL AdaptiveLB

further reduces the communication overhead to around 40% be-

cause the adaptive-group and pipeline favors large templates with

high computation intensity.

5 RELATEDWORK
Subgraphs of size k with an independent set of size s can be counted

in time roughlyO(nk−spoly(n)) throughmatrixmultiplication based

methods [17, 24]. There is substantial work on parallelizing the

color-coding technique. ParSE[28] is the first distributed algorithm

HPDC’18, June 2018, Tempe, Arizona, USA L.Chen et al.

based on color-coding that scales to graphs with millions of ver-

tices with tree-like template size up to 10 by a few hours. SAHAD

[29] expands this algorithm up to 12 vertices labeled template on

a graph with 9 million vertices within less than an hour by using

a Hadoop-based implementation. FASCIA [21–23] is the state-of-

the-art color-coding treelet counting tool. By highly optimized data

structure and MPI+OpenMP implementation, it supports tree tem-

plate of size up to 10 vertices in billion-edge networks in a few

minutes. Recent work [6] also explores the topic of a more complex

template with treewidth 2, which scales up to 10 vertices for graphs

of up to 2M vertices. The original color-coding technique has been

extended in various ways, e.g., a derandomized version [1], and to

other kinds of subgraphs.

6 CONCLUSION
Subgraph counting is a NP-hard problem with many important

applications on large networks. We propose a novel pipelined com-

munication scheme for finding and counting large tree templates.

The proposed approach simultaneously addresses the sparse ir-

regularity, the low computation to communication ratio and high

memory footprint, which are difficult issues for scaling of complex

graph algorithms. The methods are aimed at large subgraph cases

and use approaches that make the method effective as graph size,

subgraph size, and parallelism increase. Our implementation lever-

ages the Harp-DAAL framework adaptively improves the scalability

by switching the communication modes based on the size of sub-

graph templates. Fine-grained load balancing is achieved at runtime

with thread level parallelism. We demonstrate that our proposed

approach is effective in particular on irregular subgraph counting

problems and problems with large subgraph templates. For exam-

ple, it can scale up to the template size of 15 vertices on Twitter

datasets (half a billion vertices and 2 billion edges) while achieving

5x speedup over the state-of-artMPI solution. For datasets with high

skewness, the performance improves up to 9x in execution time.

The peak memory utilization is reduced by a factor of 2 on large

templates (12 to 15 vertices) compared to existing work. Another

successful application has templates of 12 vertices and a massive

input Friendster graph with 0.66 billion vertices and 5 billion edges.

All experiments ran on a 25 node cluster of Intel Xeon (Haswell 24

core) processors. Our source code of subgraph counting is available

in the public github domain of Harp project[14].

In future work, we can apply this Harp-DAAL subgraph count-

ing approach to other data-intensive irregular graph applications

such as random subgraphs and obtain scalable solutions to the

computational, communication and load balancing challenges.

ACKNOWLEDGMENTS
We gratefully acknowledge generous support from the Intel Paral-

lel Computing Center (IPCC) grant, NSF OCI-114932 (Career: Pro-

gramming Environments and Runtime for Data Enabled Science),

CIF-DIBBS 143054: Middleware and High Performance Analytics

Libraries for Scalable Data Science. We appreciate the support from

IU PHI, FutureSystems team and ISE Modelling and Simulation Lab.

REFERENCES
[1] Noga Alon and Shai Gutner. 2010. Balanced Families of Perfect Hash Functions

and Their Applications. ACM Trans. Algorithms 6, 3, Article 54 (July 2010),

54:1–54:12 pages.

[2] Noga Alon, Raphael Yuster, and Uri Zwick. 1995. Color-Coding. J. ACM 42, 4

(July 1995), 844–856.

[3] C. L. Barrett, R. J. Beckman, M. Khan, V. S. A. Kumar, M. V. Marathe, P. E. Stretz,

T. Dutta, and B. Lewis. 2009. Generation and Analysis of Large Synthetic Social

Contact Networks. In WSC. 1003–1014.
[4] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro

Panconesi. 2017. Counting Graphlets: Space vs Time. In WSDM. 557–566.

[5] Meeyoung Cha, Hamed Haddadi, Fabrício Benevenuto, and Krishna P. Gummadi.

2010. Measuring User Influence in Twitter: The Million Follower Fallacy.. In

ICWSM, Vol. 14.

[6] V. T. Chakaravarthy, M. Kapralov, P. Murali, F. Petrini, X. Que, Y. Sabharwal, and

B. Schieber. 2016. Subgraph Counting: Color Coding Beyond Trees. In IPDPS.
2–11.

[7] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A

Recursive Model for Graph Mining. In SIAM, Vol. 6.

[8] Langshi Chen, Bo Peng, Bingjing Zhang, Tony Liu, Yiming Zou, Lei Jiang, Robert

Henschel, Craig Stewart, Zhang Zhang, Emily Mccallum, Tom Zahniser, Omer

Jon, and Judy Qiu. 2017. Benchmarking Harp-DAAL: High Performance Hadoop

on KNL Clusters. In IEEE Cloud. Honolulu, Hawaii, US.
[9] X. Chen and J. C. S. Lui. 2016. Mining Graphlet Counts in Online Social Networks.

In ICDM. 71–80.

[10] Radu Curticapean and Dániel Marx. 2014. Complexity of counting subgraphs:

Only the boundedness of the vertex-cover number counts. In FOCS. IEEE, 130–
139.

[11] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix

Collection. ACM Trans. Math. Softw. 38, 1 (Dec. 2011), 1:1–1:25.
[12] Jörg Flum and Martin Grohe. 2004. The parameterized complexity of counting

problems. SIAM J. Comput. 33, 4 (2004), 892–922.
[13] Roger W. Hockney. [n. d.]. The communication challenge for MPP: Intel Paragon

and Meiko CS-2. 20, 3 ([n. d.]), 389–398.

[14] Indiana University. 2018. Harp-DAAL official website. https://dsc-spidal.github.

io/harp. (2018). Online; Accessed: 2018-01-21.

[15] Intel Corporation. 2018. The Intel Data Analytics Acceleration Library (Intel

DAAL). https://github.com/intel/daal. (2018). Online; accessed 2018-01-21.

[16] Arijit Khan, Nan Li, Xifeng Yan, Ziyu Guan, Supriyo Chakraborty, and Shu Tao.

2011. Neighborhood Based Fast Graph Search in Large Networks. In SIGMOD.
New York, NY, USA, 901–912.

[17] Miros Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. 2011. Counting and

Detecting Small Subgraphs via Equations and Matrix Multiplication. In SODA.
1468–1476.

[18] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data. (June 2014).

[19] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. 2002.

Network motifs: simple building blocks of complex networks. Science 298, 5594
(2002), 824.

[20] B. Peng, B. Zhang, L. Chen, M. Avram, R. Henschel, C. Stewart, S. Zhu, E. Mccal-

lum, L. Smith, T. Zahniser, J. Omer, and J. Qiu. 2017. HarpLDA+: Optimizing latent

dirichlet allocation for parallel efficiency. In 2017 IEEE International Conference
on Big Data (Big Data). 243–252.

[21] George M. Slota and Kamesh Madduri. 2013. Fast approximate subgraph counting

and enumeration. In ICPP. 210–219.
[22] George M. Slota and Kamesh Madduri. 2014. Complex network analysis using

parallel approximate motif counting. In IPDPS. 405–414.
[23] George M. Slota and Kamesh Madduri. 2015. Parallel Color-Coding. Parallel

Comput. 47 (2015), 51–69.
[24] V. Vassilevska and R.Williams. 2009. Finding, minimizing, and counting weighted

subgraphs. In STOC. 455–464.
[25] J. Yang and J. Leskovec. 2012. Defining and Evaluating Network Communities

Based on Ground-Truth. In ICDM. 745–754.

[26] Bingjing Zhang, Bo Peng, and Judy Qiu. 2016. High Performance LDA through

Collective Model Communication Optimization. Procedia Computer Science 80
(2016), 86–97.

[27] Bingjing Zhang, Yang Ruan, and Judy Qiu. 2015. Harp: Collective Communication

on Hadoop. In IC2E. 228–233.
[28] Zhao Zhao, Maleq Khan, VS Anil Kumar, and Madhav V. Marathe. 2010. Subgraph

enumeration in large social contact networks using parallel color coding and

streaming. In ICPP. 594–603.
[29] Zhao Zhao, Guanying Wang, Ali R. Butt, Maleq Khan, VS Anil Kumar, and

Madhav V. Marathe. 2012. Sahad: Subgraph analysis in massive networks using

hadoop. In IPDPS. 390–401.

https://dsc-spidal.github.io/harp
https://dsc-spidal.github.io/harp
https://github.com/intel/daal
http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Background of Color-Coding
	3 Scaling of Distributed Color-Coding
	3.1 Adaptive-Group Communication
	3.2 Fine-grained Load Balance

	4 Evaluation of Performance and Analysis of Results
	4.1 Experimentation Setup
	4.2 Scaling with Adaptive Communication
	4.3 Fine-grained Load Balance
	4.4 Peak Memory Utilization
	4.5 Overall Performance

	5 Related Work
	6 Conclusion
	References

