
An Integrated Videoconferencing System
for Heterogeneous Multimedia Collaboration

Ahmet Uyar1,2, Wenjun Wu2, Hasan Bulut2, Geoffrey Fox2
1Department of Electrical Engineering and Computer Science, Syracuse University

2Community Grids Lab, Indiana University
auyar@syr.edu, wewu@indiana.edu, hbulut@indiana.edu, gcf@indiana.edu

Abstract

We have developed an integrated conferencing
system, Global Multimedia Collaboration System, which
enables heterogeneous multimedia clients to join the
same real-time sessions. Our system provides support
for a variety of protocols and applications, including
H.323 clients, SIP clients and Access Grid rooms. In
this paper, we would like to show the features and
design principles of our conferencing server which
facilitates audio and video communications among
participating clients in a real-time conference.

Keywords: videoconferencing, XGSP, Collaborative
Systems and Applications, Distributed Multimedia
Systems.

1. Introduction

Today Internet provides a very convenient and cost
effective medium for audio and video communications.
Highly sophisticated audio and video codecs have been
designed to transfer audio and video content efficiently
and standards have been developed to initiate and
manage real-time multimedia sessions. However, these
standards come from different communities and they
tend to solve the same problem in quite different ways,
partly because of some historical reasons and partly
because of differences on objectives. Currently there are
three major video conferencing systems, H.323[1],
SIP[2] and Access Grid[3]. Every community has its
own set of protocols and products. A user of one system
can not talk to a user of another system, although both
have the means to send/receive audio and video. They
are like three islands in Internet without a bridge among
them.

We have designed an architecture and implemented
the prototype system to integrate all these different
communities in the same real-time session in an easy-to-
use fashion. Since these systems are not identical in
functionality and their way of solving the same problem
is quite different, it is not easy to translate messages
from one protocol to another. Therefore, we have
developed a more general XML based session
management protocol (XGSP) which covers a wide

range of collaboration functions and interacts easily with
these systems.

Although there has been some work done to
interoperate these systems, they exclusively focused on
the interactions between two communities. [4,5]
presents a solution to interoperate SIP and H.323
systems. [6] is another videoconferencing system which
targets the interoperability between H.323 and Access
Grid communities. Our approach is more general and
provides a general session management protocol to
accommodate more protocols and applications with an
easy to use web interface. It is even not limited to
multimedia sessions, it can be extended to be used for
any kind of real time application from simple chat to
online gaming.

In this paper after giving a brief overview of our
Global-MMCS, we will provide a detailed description of
our audio and video conferencing solutions and their
design principals, and discuss the performance results.

2. Global-MMCS Overview

Global-MMCS[7,8,9] is an integrated video
conferencing solution which enables heterogeneous
clients to join the same real-time multimedia sessions. It
provides a flexible architecture to support even more
standards and applications. There are five main
components of this architecture (Figure 1);
NaradaBrokering(NB) servers, XGSP Session Server,
Gateways, Media Server, and Web server. NB is a
distributed publish/subscribe messaging system which
delivers all messages. XGSP Session Server manages
real-time sessions, namely starts/stops/modifies them. It
receives messages from gateways and the web server,
and performs appropriate actions on the media server.
Gateways receive protocol specific messages from
different clients, and pass them to the XGSP session
server after converting to XGSP messages. There should
be a dedicated gateway for each supported protocol.
Currently we have H.323 and SIP gateways. Media
Server facilitates the audio and video communications
among participants in a meeting. We will cover the
details of the media server in following sections.

The web server provides an easy-to-use web
interface for users to join multimedia sessions and for
administrators to perform administrative tasks. In
addition, users can start some audio and video clients

through these web pages such as VIC, RAT and Real
Player.

NaradaBrokering
All Messaging

XGSP
Session
Server

Media Servers
(Audio, Video, Image

Grabber Servers)

SIP
Gateway

H.323
Gateway

Web
Server

H.323
Client

SIP
Client

Figure 1. The architecture of Global Multimedia
Collaboration System

3. Media Server

Media server facilitates audio and video transfer
among participants in real-time multimedia sessions. It
receives RTP streams from source clients and
redistribute it to interested parties, sometimes by
replicating the received media, sometimes by mixing,
and sometimes by transcoding. In addition, it provides
an XML based message interface through which audio
and video sessions are managed by the session server. It
has three main components; audio server, video server
and image grabber server. Each of these three
components are independent of one another and they run
in different machines. This makes our system more
scalable and flexible.

Both Audio and Video Servers implement a meeting
management concept and an interface to manage these
meetings over the network. Session Server manages
these meetings by sending/receiving messages back and
forth over the network. They provide functions to
create/delete meetings, and to add/remove participants.
In addition, they also provide a method to give the list of
audio and video streams in meetings. These are all XML
messages and defined in an XML schema. Both Audio
and Video servers support many meetings at a time and
each meeting can have any number of participants.

We have implemented the media server in Java
using Java Media Framework[10]. It provides a flexible
and extendible architecture. Since Java is relatively
slower than C/C++ for multimedia processing, all CPU
intensive encoders and decoders are implemented in
native C/C++ code. This makes JMF a good candidate

for developing multimedia applications, since it
provides the performance of the native code and the
flexibility of Java platform. By default it supports the
most commonly used codecs such as H.261, H.263,
JPEG video codecs and G.711, G.723.1, GSM audio
codecs. All these codecs come with both encoders and
decoders except H.261. It only has the decoder. This
was an important missing part for us and we have
developed an encoder for H.261.

Today most of the conferencing servers are based on
H.323. There are hardware and software
implementations. Polycom and Radvision are two
companies which provide hardware based conferencing
servers. IBM Lotus Sametime, VCON Media Exchange
Manager, and OpenMCU H.323 conference server are
some of the software based H.323 conferencing servers.
There are also some projects[11] to implement SIP
based conferencing servers.

4. Audio Conferencing

Contrary to human eyes, human ears are very
sensitive to distortions in voice. In addition, human ears
are also sensitive to the delay of voice from a speaker to
the listener. Studies show that to give the feeling of one
is having a direct conversation with the other party, the
delay in the transmission of audio should not exceed
400ms. Therefore we need to pay close attention to
these factors when designing an audio conferencing
system. The delay is introduced by a combination of
factors, but the most important ones are the delays
caused by transmission, buffering and mixing. The
distortion in the voice can be caused either by the
package loss during the transmission or by the
accidental deletion of speech data when suppressing the
silence. Although the loss in the transmission is not in
the scope of this paper, silence suppression is a very
important part of any audio conferencing solution.

Audio conferencing over Internet can be
implemented in many ways[11]. Here we give four
different architectures.

A. Endpoint Mixing: All audio streams are
delivered from audio sources to recipients without
modifying or mixing them in server side. Audio
middleware redistributes audio packages to interested
parties by replicating them whenever necessary. A client
may get more than one audio stream at a time and it
should be able to mix and play them. IP multicast or
software-based multicast audio conferencing
solutions[12] use this mechanism. The advantage of this
solution is that the audio middleware introduces
minimal transmission delay since there is no mixing or
transcoding during transmission. In addition, this
solution scales very well, since the only computing
performed in server side is to replicate the data. On the

other hand, this solution requires more bandwidth for
each client since they may receive more than one audio
stream at a time. Moreover, for this solution to work
efficiently, each audio sender client should implement a
silence suppression mechanism so that when a
participant is not speaking, no audio data should be sent
from that client. Otherwise, the scalability of this system
will be severely affected and bandwidth sensitive clients
will end up loosing some valuable audio data.
Furthermore, each client should support all the codecs
used in a session by all participants, since there is no
transcoding during transmission.

B. Distributed Mixing: Another way of
implementing audio conferencing over Internet is to
move audio mixing process from audio endpoints to the
server. This architecture will be very similar to the
previous one except it will handle audio mixing on the
server. There will be one audio mixer for each
participant in a meeting and each participant will receive
exactly one audio stream. This mechanism reduces the
bandwidth requirement for the end user significantly. In
addition, users can be given an option to choose the
audio format they want. Moreover, audio streams can be
silence suppressed before mixing. Therefore this
architecture can be more flexible to deploy than
previous one and a diverse set of audio clients can be
supported with different network bandwidth capabilities.
The scalability of this architecture will be similar to the
previous case, but nonetheless it is a challenging task to
develop such a distributed audio conferencing solution.
It is particularly difficult to distribute computing load
among different machines and to maintain such a
complicated system Another disadvantage of this
solution is that the mixer in the server will introduce
some delay to the transmission of packages. However,
our experiments show that if there is only one audio
mixer along the way from audio sources to the target,
the delay introduced by the mixer can be tolerable.

C. Hybrid Model: One can also imagine a hybrid
architecture in which some clients will have a mixer
dedicated for them on the server and some will receive
all audio streams from servers directly and handle by
themselves. This architecture will have the advantages
of both systems and provide services according to the
capabilities of the end user. Nonetheless this is also a
complicated system and not very easy to develop and
maintain.

D. Central Mixing: In this model there will be one
central audio mixer in the server and all participating
clients send their audio to that mixer. This mixer will
mix all audio streams and then send the mixed audio to
each participant. This solution is less computationally
intensive compared to the second approach, since there
is only one audio mixer rather than N audio mixers in a
meeting. It also has the same advantages as the second
approach, since it is providing each participant with one

mixed stream. The main disadvantage of this solution is
its scalability. Since there is only one mixer in the
system, it can not support thousands of clients in a
session. Nonetheless, our experiments show that such a
system can support up to 300 clients easily.

4.1 Audio Server Implementation

We have chosen the centralized audio mixing model
(Figure 2) from the listed alternative conferencing
architectures above. It is easy to implement and flexible
enough to support variety of clients with different
capabilities. Its scalability is also good enough as it can
be seen from performance figures.

One important point we need to consider while
designing an audio server is the silence suppression.
Although it is best to suppress the silence in audio
streams at the source clients before sending it over the
network, we assume that the incoming streams may not
be silence suppressed. Because we do not have any
control over audio clients. Therefore, it is essential for
us to suppress the silence in each incoming audio stream
in the server. Silence suppression is particularly
important because when audio streams are mixed,
silence packages add up and produce a lot of unwanted
noise. In addition, silence suppression saves CPU time
on the server machine when mixing audio packages,
since the silence packages will not get mixed. Moreover,
most of the time there is only one speaker in a meeting,
and we can avoid mixing the audio streams if we
suppress the silence properly.

Various silence detection algorithms proposed with
different computational complexity and accuracy; HAM
algorithm, Exponential Algorithm, Absolute Algorithm,
Differential Algorithm [13], zero crossing rate
algorithm[14], refined block oriented algorithm [15],
Silence Compression Scheme of G.723.1 [16]. We use
the refined block oriented algorithm for its simplicity
and reasonable accuracy. This algorithm compares the
average energy of each package to a threshold and
decides that package as silence if enough consecutive
packages are below the threshold. Since we do not
employ a comfort noise generator, we wait half a second
before deciding a package as silence to avoid deleting
the silence packages between the words of a speaker. In
addition, to avoid missing the beginning of a speech we
examine the sub blocks of each package and decide it as
speech if the average energy of a sub block is higher
than the threshold.

Figure 2 shows how the audio server works. First
audio streams are decoded to raw data, then repackatizer
adjusts the sizes of audio packages if necessary. Since
our system supports a variety of clients, not all of them
use the same package size. While Polycom client uses
60ms packages, Rat 4.2.2 uses 20ms packages.
Currently we use 60ms as our systems package size.

Silence detector passes the speech packages to the
package queue and packages wait in this queue to be
picked up by the audio mixer. Packages are buffered in
this queue for a while to avoid missing the late arriving
packages because of the jitter in the transmission time.
Audio mixer polls all queues regularly and passes a
copy of mixed audio data to subtracters. Mixer just adds
the values of all available data and store the result in a
short array instead of byte to avoid overflow or
underflow. Then subtracters subtract the data of
themselves from the received mixed data if there is any,
store the result in a byte array and pass it to the encoder.
If the mixed audio sample value is out of range for byte
type, the maximum or the minimum byte value is
assigned accordingly. We have not experienced any
distortion of audio because of this value conversion.

D
Unicast
User 1 SDR

D
Unicast
User N SDR

S E

To
Unicast
User N

S E

D: Decoder
R: Repacketizer

SD: Silence Detector
PQ: Package Queue

S: Subtracter
E: Encoder

Audio
Mixer

Stream 1

To
Multicast

Group

D SDR
S EStream 2

D PQSDR

Multicast Group Streams

To
Unicast
User 1

PQ

PQ

PQ

Figure 2. Centralized Audio Mixing

Since our system is designed to bridge Access Grid

and other videoconferencing systems, we also support
multicast groups in our audio server. It is similar to
unicast support, but in this case usually multiple audio
streams are received. The handling of these streams are
the same up to the mixer, but after the mixer the
subtracter subtracts the values of all streams from that
multicast address. Therefore it sends the mixed audio of
all unicast clients to the multicast group in a session.

We expect our system to work with any H.323 or
SIP based multimedia client which supports any of the
audio codecs, G.711, G.723.1, GSM. We have tested our
audio server using an H.323 based Polycom client, SIP
based HearMe and Windows Messenger clients and
RAT from MBone tools. It works well with all these
clients.

4.2 Audio Server Performance Tests

The performance of the audio server depends on the
number of participants and active speakers in a session,
and the number of audio sessions at a time. First we test
the scalability of our audio server for one audio session.
Audio server runs in a 2.5GHz Pentium 4 CPU, 512MB

memory, Windows XP machine. All machines involved
in this test run in a 100Mbps subnet. We tested it with
one active speaker and two active speakers at a time.
Speakers sent a 64kbps ULAW audio stream. When
there is only one active speaker, no mixing is performed.
This is the most common case in video conferencing
environments since most of the time only one speaker
talks. As it can be seen from Table 1, in this case, it
provides a good quality audio for up to 300 participants.
After that it starts dropping packages since it can not
process it on time. Although we did not include the
results for two active speakers case, it provides good
quality audio for up to 275 participants and then it starts
dropping packages. In this case two active speakers
were always sending audio, so there have been
continuous mixing activity.

We have also tested the effects of having multiple
sessions at a time. We created audio sessions with 50
participants and two active speakers each. Our tests
show that audio server can support 5 concurrent sessions
(250 participants in total) without any package
droppings. Since there are more mixers and more
incoming audio streams, the supported users are a little
less than the previous one session cases.

Number
of users

CPU
Usage

Mem.
Usage
(MB)

Total
BW
(Mbps)

Quality

50 % 3 39 3.2 good
100 % 12 60 6.4 good
150 % 24 80 9.9 good
200 % 38 101 12.8 good
250 % 49 121 16.0 good
300 % 56 141 19.2 fair
350 % 56 161 22.4 poor

Table 1. Audio Server performance results for one
audio session with one active speaker

We should note the fact that even when the CPU
utilization is quite high such as %50, audio server can
still deliver a good quality audio because mixer runs
regularly and CPU is utilized linearly. As long as it
finishes processing a package during the given time
interval, it will not delay the processing of the next
package. But if it can not finish it on time, then it will
delay processing of the next package. Since next
package also will not be finished on time, it will delay
the processing of the one after that. This will cause
regular package drops from the package queue causing
audio quality degradation for the end user.

5. Video Conferencing

The requirements for video transmission are
significantly different than audio transmission. Video

streams entail much more network resources, and its
encoding/decoding requires much more computing
power. Moreover, there is no trivial way of mixing
video streams as mixing audio. Although one can merge
a number of streams into one, it is not easy to merge an
arbitrary number of video streams into one.

Video conferencing can be implemented in many
different ways. Here we give three different
architectures and discuss the advantages and
disadvantages of them:

A. Multicast Style: In multicast style conferencing,
all participants send video streams to a group address
and network or middleware servers deliver these streams
to participants by replicating the data whenever
necessary. This approach can be implemented either
using IP multicast supporting routers or software based
multicast implementations such as a distributed
brokering system[12]. Access Grid uses ip-multicast for
video conferencing. The advantage of this solution is its
simplicity and ease of use for the end user. The main
disadvantage of it is that it requires much more network
bandwidth than many users can accommodate, since all
video streams are delivered to all participants. Even if
the network bandwidth is available, the computers
which receive these video streams may not have the
means of processing them.

B. Multicast Gateways: This approach is similar to
first one, but for those users who do not have multicast
support or who do not have enough bandwidth, or who
do not have the capability of processing multiple
streams, gateway(s)[17] can be placed in the edge of a
multicast network. These gateways receive video
streams from multicast network and forward the
requested video streams to proper destinations. In
addition, these gateways can also provide video merging
and transcoding services. Moreover, they can implement
a session management protocol to give users an option
to choose the video stream(s) they want. H.323, SIP or a
proprietary protocol can be used for this purpose. [18]
uses gateways to merge many video streams into one
and requires users less bandwidth and less computing
power.

C. All Unicast: Third approach would be to avoid
using multicast altogether and route the video streams
through software or hardware based servers. The main
advantage of this solution would be not requiring
multicast support and can run anywhere. Although some
sophisticated servers can handle very large scale
meetings, this solution can be used effectively for small
scale sessions.

5.1 Video and Image Grabber Server
Implementations

Our video server(Figure 3) is effectively a multicast
gateway with a general session management interface.
Its main functions are to redistribute the received video

streams, and to mix up to four video streams into one
and send out to registered destinations. Every session in
video server has a multicast group address, a video
mixer and one or more unicast users. Each unicast video
stream is forwarded to the multicast address and through
this multicast address image grabber server receives all
video streams in that session.

Access Grid
Multicast Session

Video
Server

Image
Grabber
Server

Unicast clients

Figure 3. Video and Image Grabber servers

Image grabber server is independent of the video
server and runs in another machine. Because it processes
the incoming video streams continuously, it requires a
lot of computing resources. It first decodes the received
video streams into YUV format and then encodes them
into JPEG format, and regularly saves the snapshots of
these streams in JPEG file format. Web server accesses
these pictures and provides them to users through a web
interface. These pictures gives the end user a pretty
good sense of what each stream is about, before
deciding to choose a video stream to receive.

Figure 4 shows the video mixing algorithm in video
server. Because of the space limitations, the details of
video streams 2 and 3 are not shown but they are
processed in the same way as the other two streams.
After receiving a to be mixed video stream, a replicator
filter duplicates video packages and passes one copy to
RTP Transmitter which sends out to proper destinations
and another copy to a video decoder which decodes the
received stream into YUV format. Video Mixer first

RTP
Receiver Replicator

Video
Mixer

RTP
Transmitter

Video
Encoder

RTP
Transmitter

Video
Decoder

RTP
Receiver Replicator RTP

Transmitter

Video
Decoder

Video Stream 2

Video Stream 3

Figure 4. Video Mixing in Video Server

reduces the size of these incoming four video streams to
one fourth of their original size. Then it combines these
streams into one full picture. It places every stream to
one corner of the merged video picture(Figure 5). In the
next step, this newly mixed video stream is encoded
either into H.261 or H.263 format and then it is
transmitted to proper destinations by the RTP
transmitter. Since Video mixing is a CPU intensive
application, instead of giving each user an option to
create his/her own mixed video stream, we create only
one video mixer for each session and the system
administrator has the right to choose the video streams
to be mixed. Our web server provides an interface to
add/remove video streams to/from the mixer.

Figure 5 shows the mixed video in VIC, Real Player
and Polycom windows. In background a snapshot of our
web page is also seen. Mixed video streams are
particularly important for users who can not receive
more than one video stream such as a Polycom client.
These users get the pictures of four participants in a
meeting through one video stream.

Figure 5. Mixed video streams in various windows

Since our system supports H.261 and H.263 codecs
we expect it to work with any H.323 or SIP compatible
multimedia client which supports any one of these
codecs. We have tested it with a H.323 based Polycom
client and VIC MBone tool. It works well with both of
them.

5.2 Video Server Performance Tests

The testing of video server is more complicated
since there are some video streams which are only
forwarded and there are also some streams which are
mixed. We have tested the performance of forwarding
and mixing separately.

In forwarding case, one user sent a H.263 video
stream to the server machine -1.2GHz Intel Pentium III
dual CPU, 1GB MEM, RedHat Linux 7.3, and server
forwarded it to many clients. Instead of measuring the
CPU load of the server, we have calculated the delay,
jitter and loss rates for each package over a period of
time. This way we get a more precise way of assessing
the perceived performance of our system by users.
Although video server distributed the packages to
hundreds of destinations, we gathered the results from
12 clients for the ease of testing. The sender client and
12 receiver clients, from whom we gather results, were
running on a 2.4GHz Intel Pentium 4 CPU, 512GB
MEM, RedHat Linux 7.3 machine. The video stream
had an average bandwidth of more than 600 kbps. The
sender application sends 2000 packages in each test, 23
second part of a movie. We used the same video stream
for each test. All machines involved in this test reside on
a gigabit subnet. For every package we calculated the
transit delay, (receivedTime – sentTime), for all 12
clients and then we get the average of these 12 delay
values in milliseconds. We also calculate the average
jitter for each package based on the formula explained in
RTP RFC [19].

Number
of
clients

Avg.
Delay
(ms)

Avg.
Jitter

Loss
rate

Total
bandwidth
(Mbps)

50 3.08 1.10 0.0% 30

100 10.72 3.34 0.0% 60

200 27.69 7.56 0.4% 120

300 60.86 11.84 0.7% 180

400 229.2 15.55 6.0% 240

Table 2. Video forwarding performance results

Table 2 shows that our video server is capable of
supporting 300 clients if there is only one video sender.
When it sends to 400 clients, it starts dropping packages
and also latency becomes pretty high. We should also
note the fact that this video stream had an average
bandwidth of 600kbps which is quite high. In a normal
video conferencing setting, the average bandwidth of a
video stream is much lower.

In mixing test, we ran the video mixer in a 1.2GHz
Intel Pentium III dual CPU, 1GB MEM, RedHat Linux
7.3 machine. The video mixer mixed four identical
H.261 video streams. The bandwidth of this stream
changed from 100kbps to 200kbps. In this case, since it
is not easy to measure the latencies and jitters for each
video package, we measured the CPU load on the
server.

Table 3 shows that video mixing is a CPU intensive
process and this machine can only handle three video

mixers at a time. These results also suggest that video
mixing should be done in a separate machine than video
forwarding. Although currently these two processes are
running in the same machine, we plan to separate these
functions and distribute them among more servers.

.
Number of
Mixers

CPU load

1 15-25%
2 30-50%
3 50-70%

Table 3. Video mixing performance results

6. Conclusion and Future Work

In this paper we have presented our conferencing
system which provides services to a diverse set of
clients. We have also given a detailed description of the
architectures of our servers and performance results.
The performance results show that our current
implementation supports hundreds of participants in
audio and video sessions. It also shows that JMF can be
used to implement such conferencing systems.

In the next step, we are planning to develop a
distributed conferencing system which will be
implemented on top of a distributed brokering system.
We plan to support thousands of clients at the same
time.

7. References
[1] International Telecommunication Union, “Packet

based multimedia communication systems”,
Recommendation H.323, Geneva, Switzerland, Feb.
1998.

[2] J. Rosenberg et al., “SIP: Session Initiation
Protocol”, RFC 3261, Internet Engineering Task
Force, June 2002,
http://www.ietf.org/rfc/rfc3261.txt.

[3] The Access Grid Project,
http://www.accessgrid.org.

[4] K. Singh and H. Schulzrinne. Interworking between
SIP/SDP and H.323. In Proceedings of the 1st IP-
Telephony Workshop (IPtel 2000), Berlin,
Germany, Apr. 2000.

[5] Jiann-Min Ho, Jia-Cheng Hu, Peter Steenkiste, A
conference gateway supporting interoperability
between SIP and H.323, Proceedings of the ninth
ACM international conference on Multimedia, 2001
, Ottawa, Canada

[6] Virtual Rooms Video Conferencing System,
www.vrvs.org

[7] Geoffrey Fox, Wenjun Wu, Ahmet Uyar, and Hasan
Bulut, A Web Services Framework for
Collaboration and Audio/Videoconferencing, The

2002 International Multiconference in Computer
Science and Computer Engineering, Internet
Computing(IC’02), June 2002, Las Vegas

[8] Wenjun Wu, Ahmet Uyar, Hasan Bulut, Geoffrey
Fox, Integration of SIP VoIP and Messaging
Systems with AccessGrid and H.323, (to appear)
the proceedings of The 2003 International
Conference on Web Services (ICWS'03), June
2003, Las Vegas, ND, USA.

[9] Geoffrey Fox, Wenjun Wu, Ahmet Uyar, Hasan
Bulut, Shrideep Pallickara, Global Multimedia
Collaboration System, 1st International Workshop
on Middleware for Grid Computing, June 2003, Rio
de Janeiro, Brazil.

[10] Sun Microsystems, Java Media Framework 2.1,
http://java.sun.com/products/java-
media/jmf/2.1.1/index.html, 2001

[11] K. Singh, G. Nair, and H. Schulzrinne. “Centralized
conferencing using SIP.” In Internet Telephony
Workshop 2001, New York, Apr. 2001.

[12] Ahme Uyar, Shrideep Pallickara, Geoffrey Fox,
“Towards an Architecture for Audio/Video
Conferencing in Distributed Brokering Systems”,
To appear in the proceedings of The 2003
International Conference on Communications in
Computing, June 23 - 26, Las Vegas, Nevada,
USA.

[13] Claypool M., Riedl J., “Silence Is Golden? - The
Effects of Silence Deletion on the CPU Load of an
Audio Conference”, IEEE Proceedings of the
International Conference on Multimedia Computing
and Systems, May 1994, Boston.

[14] J. Junqua, B. Mak and B. Reaves, "A Robust
Algorithm for Word Boundary Detection in the
Presence of Noise." IEEE Transactions on Speech
and Audio Processing, vol.2, No.3, July 1994

[15] Gerischer F., “Design and Implementation of Audio
Components for a Corba-based Multimedia
Platform”, Diploma Thesis, 1997, France.

[16] International Telecommunication Union,
“Recommendation G.723.1 Silence Compression
Scheme”, Annex A, 1996.

[17] Elan Amir, Steven McCanne, Hui Zhang, An
Application Level Video Gateway, In Proceedings
of ACM Multimedia ’95 (Nov. 1995), ACM.

[18] A. Mankin, L. Gharai, R. Riley, M. Perez Maher,
and J. Flidr, "The design of a digital amphitheater,"
In Proceedings of The 10th International Workshop
on Network and Operating System Support for
Digital Audio and Video (NOSSDAV 2000),
Chapel Hill, NC, June 2000.

[19] RTP: A Transport Protocol for Real-Time
Applications (IETF RFC 1889)
http://www.ietf.org/rfc/rfc1889.txt.

http://www.ietf.org/rfc/rfc3261.txt
http://www.accessgrid.org/
http://www.vrvs.org/
http://java.sun.com/products/java-media/jmf/2.1.1/index.html
http://java.sun.com/products/java-media/jmf/2.1.1/index.html

	An Integrated Videoconferencing System
	for Heterogeneous Multimedia Collaboration
	Abstract

	1. Introduction
	2. Global-MMCS Overview
	3. Media Server
	4. Audio Conferencing
	4.1 Audio Server Implementation
	4.2 Audio Server Performance Tests
	5. Video Conferencing
	5.1 Video and Image Grabber Server Implementations
	5.2 Video Server Performance Tests
	6. Conclusion and Future Work
	7. References

