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1 Introduction 

Grid computing is an emergent computing paradigm focusing on solving the problems 
resource sharing in heterogeneous environments of science, engineer and commerce 
[1, 2, 3]. It has made significant progresses in large scale data management and 
access, resource naming and discovery, information services, as well as building 
innovative grid services to integrate existing applications. Security has been one of 
the most important areas in grids. Researchers on security have been isolating typical 
grids usage scenarios [4], identifying unique security requirements [5], and proposing 
efficient schemes of authentication and authorization [6, 7].  Whereas transport and 
network level protocols like SSL [8] and IPSec [9] provides working solutions to 
client-server model, they are not sufficient to meet more complicated requirements in 
grids. In its recent movement, grids have adopted Web services technology [1] to deal 
with environmental heterogeneity and to enhance service and application 
interoperability. As SOAP 1.2 [10] becomes widely accepted as the XML messaging 
standard, the limits of traditional solutions are further recognized.               

Group communication and its security have been thought essential to grids [5]. 
They have witnessed an increased interest as the popularity and diversity of 
collaborative applications continue to grow.  Scientific cooperation in grids [2], peer-
to-peer online sessions [11], audio-video conferences [12], all of them use, or can 
benefit from using, group communications. Although the threats to the group 
communication are similar to those to unicast applications, because of its broad scope, 
approaches to solving the security problems in the group communication differs [13].   

This paper reports on our work in implementing a multi-party capable WS-
SecureConversation (WSSC) [14]. WSSC is a specification for securing XML 
messaging and an extension of W3C standard WS-Security [15]. They both provide 
integrity and confidentiality protection of a SOAP message through mechanisms that 
are independent of specific security models and cryptographic algorithms. 

The multi-party WSSC is intended to be a security module that follows the XML 
and Web services standards. It can be used in the group communication middleware 
infrastructure. Although we focus on NaradaBrokering [16] as such a middleware 
infrastructure, nothing prevents it from fitting into others as long as they can work 
with XML messaging. 

The rest of the paper is organized as follows. In section two, we briefly compare 
SSL to XML messaging security and outline our future work towards a secure group 
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communication middleware infrastructure. We devote section three to introducing the 
multi-party implementation. Performance data of the implementation is presented in 
section four. We then conduct a vulnerability analysis of the implemented WSSC in 
section five. Related work is introduced in section six and we conclude with section 
seven.  

2  Design Goals and Future Direction 

In this section, we compare the role of SSL to that of WS-Security and WSSC in 
XML messaging security, lay out the design goals of our WSSC implementation and 
then describe future work related to it. In Fig. 1, there is zero or more intermediaries 
or relay nodes between initial SOAP sender and ultimate receiver for a specific 
message.  Depending on the “role” in the header attributes, SOAP allows the relay 
nodes to access and modify the message content. In the past when there is no message 
security available, the neighboring nodes are typically linked by individual SSL 
sockets; and it’s argued that aggregately they can realize protection in the overall 
system. XML message level mechanism represented by WS-Security and WSSC 
address the following shortcomings of SSL like solution in SOAP relay.   
 

 
Fig. 1 SOAP message relay 

1) Between the initial sender and the ultimate receiver a sequence of SSL 
connections must be established. 

2) Intermediaries must do individual link encryption/decryption. If a single link 
is compromised, all the messages passing the link are compromised. 

3) Security protection is done with the channel; it’s not possible to do partial or 
chosen message protection in a given channel.  

4) All SSL connections are desired to keep persistent over application sessions, 
a shut-down and recovery of the intermediaries don’t automatically recover 
the on-going communication between the initial sender and the ultimate 
receiver. 

Based on this analysis, we think transport solutions such as SSL and VPN do not 
stand to be competitive in an environment where messages are routed in open public 
networks and authorized processing and partial modification can happen during 
transmission.  WS-Security and WSSC protect a message instead of the transport link. 
A WSSC implementation can replace individual SSL links in Fig. 1 and supports 
secure conversation among multiple participants in a group setting. This brings up the 
fifth limitation of SSL being used in grids.  

5) Secure group communication is realized by  multiple secure unicast 
channels.  
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Among those XML elements supplied by WS-Security, the following are important 
and not missing in WSSC. A Signature element should be included in the SOAP 
header if any part of the message has been performed with digital signing. The 
element has children elements specifying the following information: a) what part of 
message is signed? This can be specified via a URI attribute referencing an id of the 
signed element; b) what is a signing algorithm? c) what kind of transformations, 
including message digestion and canonicalization are performed before signing 
actually takes place and what algorithms are used for the transformations? d) what is 
the key used? This can be a private key or a shared secret, resolved usually via a 
KeyInfo element, which can contain an EncryptedKey or a reference to binary token 
(encoded in Base64) in the header or other kind of security token supposedly known 
to recipient; e) finally, a signature value. If any part of the message is encrypted, it 
should be replaced with an EncryptedData element, which provides the following 
information: a) what part of message has been replaced (or encrypted)? b) what is the 
encryption algorithm used? c) what is the key used? Again, information should be 
provided leading to a key resolution; d) finally, a ciphertext. 

3.2 Other XML constructs and objects in WSSC 

We now introduce informational elements -- three XML constructs and two objects 
that are functionally vital in WSSC. 

SecurityContextToken contains UUID, which serves as an identification of a shared 
secret. The secret and UUID should be kept in memory by session participants. The 
token can have an id attribute which can be used for reference within the SOAP 
message.   

RequestedProofToken contains encrypted key material used as the shared secret. 
RequestedProofToken and SecurityContextToken co-exist side by side and are sent to 
whoever is supposed to expect a shared secret. The generation and dispatch of the 
shared secret can be made by one of communication ends, a trusted security token 
service, or some kind of negotiation process between the parties.   

DerivedKeyToken contains several pieces of information that serves as input 
parameters for key derivation algorithm. The algorithm computes a derived key. It 
optionally contains a reference which points, within the message, to a 
SecurityContextToken. 

SequenceNumber and Timestamp The implementation provides an API to specify 
TTL (Time-To-Live) in a Timestamp. Each conversation session is associated with a 
monotonically increasing sequence number, which is initialized as a random integer. 
Both SequenceNumber and Timestamp are protected from unauthorized tampering.     

Security context. The principal object in a security context is the shared secret, 
which will be used in cryptographic operations including key derivation. There are 
three methods of establishing a security context in WSSC, but involved trust 
relationship between context provider and user is not specified. Security context has 
one-to-one mapping relationship with SecurityContextToken.  

Conversation session. WSSC doesn’t define what the session is. We think multiple 
security contexts are allowed to simultaneously exist in a session, for example, one 
for signing and one for encryption. Another example is that applications like to use 
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different keys in different modules which are desired to share a session.  Nor does it 
clarify the relationship between the session and the security context. A secure 
conversation session has an id, which is shared among all session participants. The 
session holds one or more security contexts; each of them is associated with a shared 
secret. Initialization of a new session is done in tandem with the security context 
establishment. Once the new session is ushered in, more security contexts can be 
added. SecurityContextToken functions as an identification mechanism to the shared 
secret, which must be stored and can be accessed during the entire session. To further 
clarify what the session is, we would like to propose the following observations. 

• A session contains one or more security contexts, but the establishment of 
security context is independent of the session creation. 

• When, how and under what circumstances to end the session is within the 
implementation domain. Ending the session may or may not be tied with the 
immediate removal of security context. 

• Shared secret can be disassociated with session and/or destroyed completely 
during or after the session. 

Group communication security can be realized by employing a group key [19]. 
This key should be changed on every membership change, which poses a scalability 
challenge for large dynamic groups. The rekeying in a dynamic group is complicated 
and should be treated with care. So far, we have focused on how secure messaging 
can be achieved once a group key is distributed. This group key will be utilized for 
both privacy and integrity protection.  We implement a simple key distribution 
scheme in compliance with WS-Trust [20], using the assumption that a central group 
controller has access to the digital certificate of each participant. 

3.3 Feasibility of multi-party implementation 

        KeyInfo 

 
Fig. 2 Reference chain leading to key derivation 

Establishment and distribution of a shared secret key among a group of participants in 
a secure and efficient way is a formidable task. WSSC is not designed to be 
machinery for secure group communication, so it doesn’t invent vocabulary or 
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framework for group key establishment. Particularly, the group key rekeying problem 
[17, 24] is not addressed. It indeed describes three guidelines on how a secret can be 
distributed, suitably used in two-party conversation. We provide generalized 
implementation of key distribution (key issuing in WS-Trust) and adopt them with 
multiple participants. We will attempt at the rekeying problem set in the context of the 
middleware infrastructure in our next milestone.  

Once the shared secret is established, the participants can then rely on the secret for 
message protection. Using a symmetric encryption key many times, however, can 
result in weakness before chosen plaintext attack. Key derivation is recommended in 
WSSC as a defensive mechanism and we take it seriously. Input information (nonce, 
length and offset) to the derivation is inserted into XML by encryption side and 
passed to decryption side, who then independently derives the encryption key. In 
Fig.2, KeyInfo element existing in Signature/SignedInfo or EncryptedData contains a 
SecurityTokenReference element, which points to DerivedKeyToken in the message. 
This token provides some necessary values as input to the key derivation algorithm. It 
also contains SecurityTokenReference to SecurityContextToken, which identifies the 
rest of necessary values – shared secret, to the key derivation. The token can also set 
the algorithm used, though currently only Psha1 is supported in the implementation. 
The steps are independent of how many participants are in the session. As long as 
DerivedKeyToken is received and the shared secret is there, key derivation will be 
done. Furthermore, the steps apply both to sender/assembly side and 
receiver/disassembly side. In other words, after a key is derived, it can be used either 
in encryption/signing, or decryption/signature verification.   

Since cryptography in WSSC is based on the shared key, we employ the technique 
of Message Authentication Code (MAC) [19] is symmetric key signing. Currently, 
HMAC/SHA1 [21] is the only algorithm available in our implementation for calling 
applications.  

3.4 Implementation details 

3.4.1 data structures 
• ConversationSession has fields of sessionId, beginTime, startSequence, 

SecurityOptions, a table of StoredSCTs and a table of StoredDKTs. 
• SecurityOptions is a conglomeration of cryptography operation related 

parameters which are input from WSSC calling parties, for example, where the 
digital certificate is, what algorithm to use for data encryption, what nonce value 
to use for next key derivation. Currently there are 28 such parameters. 

• StoredSCT is in-memory structure counterpart of SecurityContextToken. It has 
an id and a byte array for a shared secret. 

• StoredDKT is in-memory structure counterpart of DerivedKeyToken. It has all 
the fields that are defined for the token in WSSC. 

• SessionTank is a table of ConversationSessions. This is written as a book-
keeping class, which keeps track of currently active conversation sessions.  
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3.4.2 session management 
The conversation session management is illustrated in the state-machine diagram of 
Fig. 3.  The dashed arrow represents a type of state transition where no information is 
sent back to the last relay node when some processing error is thrown. The details of 
the error will be reported to the logging facility of calling application.  The second 
type transition is transition response, used in a few cases where it is appropriate to 
send error information back over the network. Choice between transition silent and 
transition response is made depending on what kind of error has occurred and the 
possibility of denial of service attack associated with the error. Block error in Fig. 2 
represents normal transition of state.  

The first question is when and how a new conversation is started. Unfortunately, 
WSSC doesn’t clearly specify the mechanism to initiate a session. In a similar session 
orientated protocol SSL, we see a handshake protocol is used to get a new session 
initiated. At the end of the handshake, two important data structures among those that 
must have been established and shared between client and server, one is a session id; 
the other is cipher suite which includes shared secrets used for encryption.  A 
carefully designed handshake protocol is critical for preventing and detecting attacks, 
besides obtaining necessary, functional data to conduct the rest of 

 
Fig. 3 Session state transition diagram 

the session.  Considering the lack of sufficient specification on session initiation and 
considering the status of WSSC, we decide not to implement a handshake protocol (at 
least currently). Instead, we envision that application will do what is necessary for the 
session initiation. To aid to application level session management, the implementation 
provides the following calling interfaces.  

• startSession() creates a new conversation session, initializes necessary data 
structures and return a new session id. 

• endSession(sessionId) does safe shut-down operations, especially removing 
sensitive information such as shared secrets and DerivedKeyToken parameters. 
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• getSCT(sessionId,,securityContextId), addSCT(sessionId,SecurityContext), 
removeSCT(sessionId,securityContextId) gets, adds, or removes 
SecurityContextToken from the specified session, respectively. 

• checkSeqNumber(sequenceNumber) checks if the input sequence number is “safe” 
or not. 

• setBeginTime(beginTime), getBeginTime() set or return the session start time.  
• setSecurityOptions(sessionId, securityOptions) and getSecurityOptions(sessionId) set 

or get security parameters for the session.  
Before a session begins, the session id is transmitted from either a trusted group 

controller or a group peer. If the id is accepted, the new session gets started and its 
beginTime is set. Typically, one or more shared secrets identified by 
SecurityContextToken and embedded in RequestedProofToken will be sent along 
with the new session id.  There are two known scenarios, however, where the id can 
be transmitted alone. If some security contexts have been previously established and 
is intended to be used in this new session, then the shared secret itself doesn’t have to 
be transmitted again. In this case a receiver expects a SecurityContextToken in order 
to copy the secret into the session.  In another case, the secret can be transmitted later. 
It’s not likely but possible that the receiver will never see the incoming secret 
associated with the id. To prevent empty session (without any shared secret and never 
be used) from accumulating, a background thread periodically wakes up and checks to 
remove those empty ids.  But this preventive feature is not currently implemented. 

4 Performance Results 

Soap size enc dec sign verify e/s p-e/s s/e p-s/e 
1k 4 16 8 8 10 23 11 25 
2k 7 14 5 9 13 23 13 27 
10k 23 30 13 10 30 41 29 42 
100k 402 307 48 27 420 327 433 329 
1000k 2000 1697 340 165 2157 1869 2260 1929 

Fig. 4 WSSC performance results (in millisecond) with varying SOAP sizes 

We collect timing data over local operations, that is, no network transmission has 
happened to input documents. By neutralizing network condition, we are able to focus 
on relatively more important performance issues [29]. It also has an advantage of 
simplifying the multi-party measurement – cost of secure conversation is modeled as 
summation of transmission time plus local operation time. We view that the latter is 
dependent upon several factors: size and complexity of SOAP on which cryptographic 
and XML processing are performed, choice of cryptographic algorithms, and of 
course, efficiency in implementation. We present a segment of our results (due to 
space limit) in Fig. 4, which is measured over five SOAPs, ranging from 1 kilobyte to 
1 megabyte. In the figure enc is short for encryption and dec for decryption. e/s means 
encrypt and signing are performed, s/e also covers them both but in reverse order.  p-
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e/s column contains times of processing documents that are both encrypted and 
signed.   

The experiments are conducted on Pentium 4 box with Linux kernel version 
2.4.10, Hotspot Client JVM with JRE version J2sdk1.4.2 and JCE provider 
BouncyCastle. The result set is verified at another Pentium 4 Windows XP to avoid 
possible gross errors. Each data entry is obtained as 64 bit integer averaged over 100 
runs.  

5 Security Analysis 

A message can come under a reply attack [19] even if the payload is signed and 
encrypted. The common defensive mechanisms against replay attack include using 
sequence number, timestamp, or some correlation techniques. In our implementation, 
a sequence number is initially randomly generated and will monotonically increase. If 
an incoming sequence number is less than the current one at receiver, the silent fault 
will be immediately thrown, logged and reported to the upper level layer. 

 The proof of possession of the private key is necessary when a digital signature is 
used for identity checking.  A specific example of the lack of sound identity checking 
is as follows. In WS-Security, in the very first contact, sender embeds her digital 
certificate as a BinarySecurityToken inside the message. She can generate a 
symmetric key and encrypt the key with her private key and send the encrypted key 
over. Receiver will retrieve sender’s public key from the token and do the key 
decryption. From then on, the two can communicate securely based on the shared key.  
Since issuer serial or subject or alias is public data in X.509 digital certificate, a 
malicious attacker can grab any one of them and just use it. Although she won’t be 
able to decrypt data sent from the receiver in their communication, talking to the devil 
even it’s a deaf devil should be avoided. In the above case, the receiver can use a 
challenge (a large encrypted number) to address the problem.  

 Possible DoS attacks [19] for authentication service in WSSC are also addressed. 
In this case, the attacker uses the collected digital certificates and sends a target a 
large amount of messages. Public key resolving and certificate chain process in 
challenge-response consume a considerable amount of resources. An alleviating 
technique is for the receiver to keep the records of failed authentication and identity 
checking in the recent past. Then a policy can be made stop processing the message 
once it is found coming from such a failed source. But the attack can put “source” 
such as SOAP actor or role in Signature so that to get “source”, it’s necessary to 
conduct cryptographic operations.  Currently we don’t have a solution to completely 
avoid the problem. 

Several units in the security header, including sequence number, timestamp, 
DerivedKeyToken, and SecurityContextToken, should be signed for integrity 
protection and so to mitigate replay attack. Signing them unfortunately increases the 
complexity of header processing at receiver, which can lead to DoS attack. Currently 
we are considering mechanisms to decrease the complexity without causing 
compromise to integrity protection. 
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Due to its relaying nature, SOAP can contain elements authored by different 
entities. This raises the level of security processing difficulty; because once an error is 
encountered, it must be decided either to quit processing entirely or to continue 
somehow. If quit entirely, then it’s possible some good elements remain un-
processed; but if continue, it can be helpful for DoS attack. In the implementation, 
once the error is found, the processing engine will mark all elements associated with 
the actor regarding which the error is raised and avoid processing these elements.  But 
this measure will only be effective if attackers don’t spoof SOAP actor attribute.  

6 Related Work 

Group communication is faced with two basic security requirements [22, 27]: a) inter-
group communication confidentiality, b) source authentication. Communication 
confidentiality is realized with data encryption using a group key. This key should be 
changed on every membership change, which can pose a formidable challenge for 
large dynamic groups.  The group key can also be used for source authentication. In 
this case, messages signed using the group key can be verified as “coming from a 
group member” instead of others. If authentication with particular source is desired, 
individual secret keys, either private public key pair, or other keying mechanisms 
must be employed. Most practical solutions to the secure group communication 
devise a central group controller and focus on the communication efficiency 
improvement of group key update. The idea is to associate each member with some 
auxiliary keys to facilitate re-keying, so to decrease the number of update messages 
the controller sends to members upon membership change. One-way function tree 
scheme (OFT) [24] is conceived with intention to lessen the severity of controller 
centralization in Wong-lam scheme [19] to some extent. Each node in the OFT binary 
hierarchy holds two keys, a node key and a blinded key. The difference between 
Wong-lam and OFT is that in OFT, besides a node key for every node from leaf up to 
the root, a member holds a blinded key for every sibling of the node on the path. A 
one-way function is used to derive blinded key from the node key at the same node. A 
mixing function is used to derive a node’s key from the blinded keys of the two 
children nodes. Upon membership change, three things happen in OFT: a) the directly 
affected member, i.e. the newly joining or the sibling of the leaving, is sent by the 
controller in unicast a new node key; b) it may also be notified the blind keys of its 
ancestral siblings and then can compute the node keys of its ancestors; c) the 
controller also does the necessary computation of the blind keys and then multicast 
them, each encrypted with correspondent node key, to a subtree. Ku and Chen [28] 
analyze a possible collusion attack on the early OFT scheme and propose a fix. 

In source authentication, the efficiency problem occurs particularly with packet 
stream signing, where signing rate must beat the packet generation rate if it is real-
time application. With packet chaining approach [23], only the very first packet is 
signed, and each packet is appended with the digest of the immediate latter one. 
Verification side stores the signature in the first packet and then eventually verifies 
them all at the end of stream. Another interesting method uses asymmetric message 
authentication code (MAC) [27] to provide tradeoff between efficiency and security. 
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A sender has a set of keys and it appends a message with MACs, each generated with 
a key in the set. Each receiver knows a unique subset of the sender keys. Verification 
succeeds only if every key in the subset finds and matches its correspondent MAC in 
the message. It may suffer the receivers’ collusion problem, in which no single 
receiver knows the entire sender set but several of them can union in collusion to get 
the sender key set.   

Secure Socket Layer (SSL) is a protocol sitting between application and transport 
layer in OSI model and provides protection over client-server communication.  In 
SSL handshake, communication ends do either one-way or mutual authentication, 
negotiate a common acceptable cipher suite and then come up with some shared 
secret, which will used for data encryption after handshake is done.  SSL and WSSC 
both are session-based, dependent on the shared secret, and flexible with employed 
cryptographic algorithms. However, SSL doesn’t provide end-to-end security; it must 
encrypt the entire application payload whereas with XML security partial encryption 
is one of fundamental advantages; finally, SSL is only two-party protocol whereas in 
this paper we demonstrate WSSC has the multi-party capability.  

7  Conclusion 

In this paper, we present WS-SecureConversation implementation as multi-party 
capable solution for secure group communication.  We believe the work is the first 
open work on multi-party WS-SecureConversation and the first to explicitly address 
secure group communication in XML message environment. It can work seamlessly 
in and together with wide-range environments where communication security is 
expected.     
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