
A Multi-party Implementation of WS-
SecureConversation

Hongbin Liu, Geoffrey Fox, Marlon Pierce, Shrideep Pallickara

Community Grids Lab, Indiana University, Bloomington, Indiana 47404

1 Introduction

Grid computing is an emergent computing paradigm focusing on solving the problems
resource sharing in heterogeneous environments of science, engineer and commerce
[1, 2, 3]. It has made significant progresses in large scale data management and
access, resource naming and discovery, information services, as well as building
innovative grid services to integrate existing applications. Security has been one of
the most important areas in grids. Researchers on security have been isolating typical
grids usage scenarios [4], identifying unique security requirements [5], and proposing
efficient schemes of authentication and authorization [6, 7]. Whereas transport and
network level protocols like SSL [8] and IPSec [9] provides working solutions to
client-server model, they are not sufficient to meet more complicated requirements in
grids. In its recent movement, grids have adopted Web services technology [1] to deal
with environmental heterogeneity and to enhance service and application
interoperability. As SOAP 1.2 [10] becomes widely accepted as the XML messaging
standard, the limits of traditional solutions are further recognized.

Group communication and its security have been thought essential to grids [5].
They have witnessed an increased interest as the popularity and diversity of
collaborative applications continue to grow. Scientific cooperation in grids [2], peer-
to-peer online sessions [11], audio-video conferences [12], all of them use, or can
benefit from using, group communications. Although the threats to the group
communication are similar to those to unicast applications, because of its broad scope,
approaches to solving the security problems in the group communication differs [13].

This paper reports on our work in implementing a multi-party capable WS-
SecureConversation (WSSC) [14]. WSSC is a specification for securing XML
messaging and an extension of W3C standard WS-Security [15]. They both provide
integrity and confidentiality protection of a SOAP message through mechanisms that
are independent of specific security models and cryptographic algorithms.

The multi-party WSSC is intended to be a security module that follows the XML
and Web services standards. It can be used in the group communication middleware
infrastructure. Although we focus on NaradaBrokering [16] as such a middleware
infrastructure, nothing prevents it from fitting into others as long as they can work
with XML messaging.

The rest of the paper is organized as follows. In section two, we briefly compare
SSL to XML messaging security and outline our future work towards a secure group

2 Community Grids Lab, Indiana University, Bloomington, Indiana 47404

communication middleware infrastructure. We devote section three to introducing the
multi-party implementation. Performance data of the implementation is presented in
section four. We then conduct a vulnerability analysis of the implemented WSSC in
section five. Related work is introduced in section six and we conclude with section
seven.

2 Design Goals and Future Direction

In this section, we compare the role of SSL to that of WS-Security and WSSC in
XML messaging security, lay out the design goals of our WSSC implementation and
then describe future work related to it. In Fig. 1, there is zero or more intermediaries
or relay nodes between initial SOAP sender and ultimate receiver for a specific
message. Depending on the “role” in the header attributes, SOAP allows the relay
nodes to access and modify the message content. In the past when there is no message
security available, the neighboring nodes are typically linked by individual SSL
sockets; and it’s argued that aggregately they can realize protection in the overall
system. XML message level mechanism represented by WS-Security and WSSC
address the following shortcomings of SSL like solution in SOAP relay.

Fig. 1 SOAP message relay

1) Between the initial sender and the ultimate receiver a sequence of SSL
connections must be established.

2) Intermediaries must do individual link encryption/decryption. If a single link
is compromised, all the messages passing the link are compromised.

3) Security protection is done with the channel; it’s not possible to do partial or
chosen message protection in a given channel.

4) All SSL connections are desired to keep persistent over application sessions,
a shut-down and recovery of the intermediaries don’t automatically recover
the on-going communication between the initial sender and the ultimate
receiver.

Based on this analysis, we think transport solutions such as SSL and VPN do not
stand to be competitive in an environment where messages are routed in open public
networks and authorized processing and partial modification can happen during
transmission. WS-Security and WSSC protect a message instead of the transport link.
A WSSC implementation can replace individual SSL links in Fig. 1 and supports
secure conversation among multiple participants in a group setting. This brings up the
fifth limitation of SSL being used in grids.

5) Secure group communication is realized by multiple secure unicast
channels.

 initial
sender

 intermediary

ultimate
receiver intermediary intermediary

SSL linkSSL link

A Multi-party Imple

The design goals of the WSSC implementa
• Fully compatible with the WSSC specif

SOAP relay requirements including part
intermediary intervention.

• Provide message level privacy and integ
dynamic rekeying [17] support.

• Mitigate replay attack and attempt at decr
Our WSSC implementation is one step to

secure and highly efficient messaging middlew
goal, two requirements must be satisfied. Th
against various attacks that can be launched in
access controls are available to communic
subscribers. We propose the rest milestones wi

• Devise an efficient rekeying scheme and
messaging middleware NaradaBrokering.
existing broker network may not natur
structure used in innovative rekeying a
rekeying can be found in the later section

• Design an authorization scheme for publ
unify authentication and access contro
management [30] for brokers and for p
topic in a dynamic network condition. Pa

We will be able to report our progress with r

3 Multi-party Implementation

3.1 Overview of relationship of WS-Security

As a framework for messaging security, WS-S
is to be used to build a secure message untied
For example, TripleDES and AES, or RSA an
asked from calling applications. It is also
mechanisms can be just added to be supported

WSSC describes ways to build a security c
achieve key establishment and to employ the
one of WSSC’s design goals [14, section one
sequencing and time-stamping to cope with po
purposedly in WS-Security [15, section 7]. R
Applications that have multiple-message excha
WS-Security or come up with their own
Additionally, for some sessions where the num
certain threshold, WSSC can result in better e
key and security token exchange at the beginni

me

tio
ica
ial

rity

eas
wa
are
e i
ope
atio
th t
 ma
 Su
ally
lgo

.
ish
l,
ubl
rt o
esp

 an

ecu
wit
d H
ext
as X
on
key
] t
ssi
epl
ng
m
be
ffi

ng
ntation of WS-SecureConversation 3

n are as follows.
tion [14] and work seamlessly with
and chosen message protection and

 to group communication, short of

ing the likelihood of DoS attack.
rds our ultimate goal of providing
 to grids community. To achieve the
nfrastructure [16] must be secured
n network; and flexible and tunable
n ends including publishers and

he goal and requirements in mind.
p the rekeying data structure to the
ch a mapping is desired because the
 be in congruent with update-tree
rithms. Further information about

 subscribe paradigm. The work will
and result in programmable trust
ishers and subscribers of a certain
f the on-going work is in [18].
ect to the two tasks in near future.

d WSSC

rity provides XML vocabulary that
h specific cryptographic algorithms.
MAC are all equally possible to be
ensible in that new authorization
.509 digital certificate currently is.

text in a communication session, to
 in the context of the session. It is

o take techniques such as message
ble threats that are left unaddressed
ay attack [19] is such an example.
e should use WSSC instead of plain
odules to deal with the attacks.
r of application messages exceeds a
ciency despite the cost incurred for
of the session.

4 Community Grids Lab, Indiana University, Bloomington, Indiana 47404

Among those XML elements supplied by WS-Security, the following are important
and not missing in WSSC. A Signature element should be included in the SOAP
header if any part of the message has been performed with digital signing. The
element has children elements specifying the following information: a) what part of
message is signed? This can be specified via a URI attribute referencing an id of the
signed element; b) what is a signing algorithm? c) what kind of transformations,
including message digestion and canonicalization are performed before signing
actually takes place and what algorithms are used for the transformations? d) what is
the key used? This can be a private key or a shared secret, resolved usually via a
KeyInfo element, which can contain an EncryptedKey or a reference to binary token
(encoded in Base64) in the header or other kind of security token supposedly known
to recipient; e) finally, a signature value. If any part of the message is encrypted, it
should be replaced with an EncryptedData element, which provides the following
information: a) what part of message has been replaced (or encrypted)? b) what is the
encryption algorithm used? c) what is the key used? Again, information should be
provided leading to a key resolution; d) finally, a ciphertext.

3.2 Other XML constructs and objects in WSSC

We now introduce informational elements -- three XML constructs and two objects
that are functionally vital in WSSC.

SecurityContextToken contains UUID, which serves as an identification of a shared
secret. The secret and UUID should be kept in memory by session participants. The
token can have an id attribute which can be used for reference within the SOAP
message.

RequestedProofToken contains encrypted key material used as the shared secret.
RequestedProofToken and SecurityContextToken co-exist side by side and are sent to
whoever is supposed to expect a shared secret. The generation and dispatch of the
shared secret can be made by one of communication ends, a trusted security token
service, or some kind of negotiation process between the parties.

DerivedKeyToken contains several pieces of information that serves as input
parameters for key derivation algorithm. The algorithm computes a derived key. It
optionally contains a reference which points, within the message, to a
SecurityContextToken.

SequenceNumber and Timestamp The implementation provides an API to specify
TTL (Time-To-Live) in a Timestamp. Each conversation session is associated with a
monotonically increasing sequence number, which is initialized as a random integer.
Both SequenceNumber and Timestamp are protected from unauthorized tampering.

Security context. The principal object in a security context is the shared secret,
which will be used in cryptographic operations including key derivation. There are
three methods of establishing a security context in WSSC, but involved trust
relationship between context provider and user is not specified. Security context has
one-to-one mapping relationship with SecurityContextToken.

Conversation session. WSSC doesn’t define what the session is. We think multiple
security contexts are allowed to simultaneously exist in a session, for example, one
for signing and one for encryption. Another example is that applications like to use

A Multi-party Implementation of WS-SecureConversation 5

different keys in different modules which are desired to share a session. Nor does it
clarify the relationship between the session and the security context. A secure
conversation session has an id, which is shared among all session participants. The
session holds one or more security contexts; each of them is associated with a shared
secret. Initialization of a new session is done in tandem with the security context
establishment. Once the new session is ushered in, more security contexts can be
added. SecurityContextToken functions as an identification mechanism to the shared
secret, which must be stored and can be accessed during the entire session. To further
clarify what the session is, we would like to propose the following observations.

• A session contains one or more security contexts, but the establishment of
security context is independent of the session creation.

• When, how and under what circumstances to end the session is within the
implementation domain. Ending the session may or may not be tied with the
immediate removal of security context.

• Shared secret can be disassociated with session and/or destroyed completely
during or after the session.

Group communication security can be realized by employing a group key [19].
This key should be changed on every membership change, which poses a scalability
challenge for large dynamic groups. The rekeying in a dynamic group is complicated
and should be treated with care. So far, we have focused on how secure messaging
can be achieved once a group key is distributed. This group key will be utilized for
both privacy and integrity protection. We implement a simple key distribution
scheme in compliance with WS-Trust [20], using the assumption that a central group
controller has access to the digital certificate of each participant.

3.3 Feasibility of multi-party implementation

 KeyInfo

Fig. 2 Reference chain leading to key derivation

Establishment and distribution of a shared secret key among a group of participants in
a secure and efficient way is a formidable task. WSSC is not designed to be
machinery for secure group communication, so it doesn’t invent vocabulary or

SecuirtyContextTokenDerivedKeyToken

 shared secretnonce, offset, length

 Key Derivation Algorithm
reference or point to
contains
input to

XML element
value
functional module

6 Community Grids Lab, Indiana University, Bloomington, Indiana 47404

framework for group key establishment. Particularly, the group key rekeying problem
[17, 24] is not addressed. It indeed describes three guidelines on how a secret can be
distributed, suitably used in two-party conversation. We provide generalized
implementation of key distribution (key issuing in WS-Trust) and adopt them with
multiple participants. We will attempt at the rekeying problem set in the context of the
middleware infrastructure in our next milestone.

Once the shared secret is established, the participants can then rely on the secret for
message protection. Using a symmetric encryption key many times, however, can
result in weakness before chosen plaintext attack. Key derivation is recommended in
WSSC as a defensive mechanism and we take it seriously. Input information (nonce,
length and offset) to the derivation is inserted into XML by encryption side and
passed to decryption side, who then independently derives the encryption key. In
Fig.2, KeyInfo element existing in Signature/SignedInfo or EncryptedData contains a
SecurityTokenReference element, which points to DerivedKeyToken in the message.
This token provides some necessary values as input to the key derivation algorithm. It
also contains SecurityTokenReference to SecurityContextToken, which identifies the
rest of necessary values – shared secret, to the key derivation. The token can also set
the algorithm used, though currently only Psha1 is supported in the implementation.
The steps are independent of how many participants are in the session. As long as
DerivedKeyToken is received and the shared secret is there, key derivation will be
done. Furthermore, the steps apply both to sender/assembly side and
receiver/disassembly side. In other words, after a key is derived, it can be used either
in encryption/signing, or decryption/signature verification.

Since cryptography in WSSC is based on the shared key, we employ the technique
of Message Authentication Code (MAC) [19] is symmetric key signing. Currently,
HMAC/SHA1 [21] is the only algorithm available in our implementation for calling
applications.

3.4 Implementation details

3.4.1 data structures
• ConversationSession has fields of sessionId, beginTime, startSequence,

SecurityOptions, a table of StoredSCTs and a table of StoredDKTs.
• SecurityOptions is a conglomeration of cryptography operation related

parameters which are input from WSSC calling parties, for example, where the
digital certificate is, what algorithm to use for data encryption, what nonce value
to use for next key derivation. Currently there are 28 such parameters.

• StoredSCT is in-memory structure counterpart of SecurityContextToken. It has
an id and a byte array for a shared secret.

• StoredDKT is in-memory structure counterpart of DerivedKeyToken. It has all
the fields that are defined for the token in WSSC.

• SessionTank is a table of ConversationSessions. This is written as a book-
keeping class, which keeps track of currently active conversation sessions.

A Multi-party Implementation of WS-SecureConversation 7

3.4.2 session management
The conversation session management is illustrated in the state-machine diagram of
Fig. 3. The dashed arrow represents a type of state transition where no information is
sent back to the last relay node when some processing error is thrown. The details of
the error will be reported to the logging facility of calling application. The second
type transition is transition response, used in a few cases where it is appropriate to
send error information back over the network. Choice between transition silent and
transition response is made depending on what kind of error has occurred and the
possibility of denial of service attack associated with the error. Block error in Fig. 2
represents normal transition of state.

The first question is when and how a new conversation is started. Unfortunately,
WSSC doesn’t clearly specify the mechanism to initiate a session. In a similar session
orientated protocol SSL, we see a handshake protocol is used to get a new session
initiated. At the end of the handshake, two important data structures among those that
must have been established and shared between client and server, one is a session id;
the other is cipher suite which includes shared secrets used for encryption. A
carefully designed handshake protocol is critical for preventing and detecting attacks,
besides obtaining necessary, functional data to conduct the rest of

Fig. 3 Session state transition diagram

the session. Considering the lack of sufficient specification on session initiation and
considering the status of WSSC, we decide not to implement a handshake protocol (at
least currently). Instead, we envision that application will do what is necessary for the
session initiation. To aid to application level session management, the implementation
provides the following calling interfaces.

• startSession() creates a new conversation session, initializes necessary data
structures and return a new session id.

• endSession(sessionId) does safe shut-down operations, especially removing
sensitive information such as shared secrets and DerivedKeyToken parameters.

 Pre-session

 Init-session

 Fault Response

 Fault Silence

 In-session

sessionId
(open)

dkt,sct

dkt, sct

sessionId
(close)

shared secret

normal transition
state transition silence
input transition response

8 Community Grids Lab, Indiana University, Bloomington, Indiana 47404

• getSCT(sessionId,,securityContextId), addSCT(sessionId,SecurityContext),
removeSCT(sessionId,securityContextId) gets, adds, or removes
SecurityContextToken from the specified session, respectively.

• checkSeqNumber(sequenceNumber) checks if the input sequence number is “safe”
or not.

• setBeginTime(beginTime), getBeginTime() set or return the session start time.
• setSecurityOptions(sessionId, securityOptions) and getSecurityOptions(sessionId) set

or get security parameters for the session.
Before a session begins, the session id is transmitted from either a trusted group

controller or a group peer. If the id is accepted, the new session gets started and its
beginTime is set. Typically, one or more shared secrets identified by
SecurityContextToken and embedded in RequestedProofToken will be sent along
with the new session id. There are two known scenarios, however, where the id can
be transmitted alone. If some security contexts have been previously established and
is intended to be used in this new session, then the shared secret itself doesn’t have to
be transmitted again. In this case a receiver expects a SecurityContextToken in order
to copy the secret into the session. In another case, the secret can be transmitted later.
It’s not likely but possible that the receiver will never see the incoming secret
associated with the id. To prevent empty session (without any shared secret and never
be used) from accumulating, a background thread periodically wakes up and checks to
remove those empty ids. But this preventive feature is not currently implemented.

4 Performance Results

Soap size enc dec sign verify e/s p-e/s s/e p-s/e
1k 4 16 8 8 10 23 11 25
2k 7 14 5 9 13 23 13 27
10k 23 30 13 10 30 41 29 42
100k 402 307 48 27 420 327 433 329
1000k 2000 1697 340 165 2157 1869 2260 1929

Fig. 4 WSSC performance results (in millisecond) with varying SOAP sizes

We collect timing data over local operations, that is, no network transmission has
happened to input documents. By neutralizing network condition, we are able to focus
on relatively more important performance issues [29]. It also has an advantage of
simplifying the multi-party measurement – cost of secure conversation is modeled as
summation of transmission time plus local operation time. We view that the latter is
dependent upon several factors: size and complexity of SOAP on which cryptographic
and XML processing are performed, choice of cryptographic algorithms, and of
course, efficiency in implementation. We present a segment of our results (due to
space limit) in Fig. 4, which is measured over five SOAPs, ranging from 1 kilobyte to
1 megabyte. In the figure enc is short for encryption and dec for decryption. e/s means
encrypt and signing are performed, s/e also covers them both but in reverse order. p-

A Multi-party Implementation of WS-SecureConversation 9

e/s column contains times of processing documents that are both encrypted and
signed.

The experiments are conducted on Pentium 4 box with Linux kernel version
2.4.10, Hotspot Client JVM with JRE version J2sdk1.4.2 and JCE provider
BouncyCastle. The result set is verified at another Pentium 4 Windows XP to avoid
possible gross errors. Each data entry is obtained as 64 bit integer averaged over 100
runs.

5 Security Analysis

A message can come under a reply attack [19] even if the payload is signed and
encrypted. The common defensive mechanisms against replay attack include using
sequence number, timestamp, or some correlation techniques. In our implementation,
a sequence number is initially randomly generated and will monotonically increase. If
an incoming sequence number is less than the current one at receiver, the silent fault
will be immediately thrown, logged and reported to the upper level layer.

 The proof of possession of the private key is necessary when a digital signature is
used for identity checking. A specific example of the lack of sound identity checking
is as follows. In WS-Security, in the very first contact, sender embeds her digital
certificate as a BinarySecurityToken inside the message. She can generate a
symmetric key and encrypt the key with her private key and send the encrypted key
over. Receiver will retrieve sender’s public key from the token and do the key
decryption. From then on, the two can communicate securely based on the shared key.
Since issuer serial or subject or alias is public data in X.509 digital certificate, a
malicious attacker can grab any one of them and just use it. Although she won’t be
able to decrypt data sent from the receiver in their communication, talking to the devil
even it’s a deaf devil should be avoided. In the above case, the receiver can use a
challenge (a large encrypted number) to address the problem.

 Possible DoS attacks [19] for authentication service in WSSC are also addressed.
In this case, the attacker uses the collected digital certificates and sends a target a
large amount of messages. Public key resolving and certificate chain process in
challenge-response consume a considerable amount of resources. An alleviating
technique is for the receiver to keep the records of failed authentication and identity
checking in the recent past. Then a policy can be made stop processing the message
once it is found coming from such a failed source. But the attack can put “source”
such as SOAP actor or role in Signature so that to get “source”, it’s necessary to
conduct cryptographic operations. Currently we don’t have a solution to completely
avoid the problem.

Several units in the security header, including sequence number, timestamp,
DerivedKeyToken, and SecurityContextToken, should be signed for integrity
protection and so to mitigate replay attack. Signing them unfortunately increases the
complexity of header processing at receiver, which can lead to DoS attack. Currently
we are considering mechanisms to decrease the complexity without causing
compromise to integrity protection.

10 Community Grids Lab, Indiana University, Bloomington, Indiana 47404

Due to its relaying nature, SOAP can contain elements authored by different
entities. This raises the level of security processing difficulty; because once an error is
encountered, it must be decided either to quit processing entirely or to continue
somehow. If quit entirely, then it’s possible some good elements remain un-
processed; but if continue, it can be helpful for DoS attack. In the implementation,
once the error is found, the processing engine will mark all elements associated with
the actor regarding which the error is raised and avoid processing these elements. But
this measure will only be effective if attackers don’t spoof SOAP actor attribute.

6 Related Work

Group communication is faced with two basic security requirements [22, 27]: a) inter-
group communication confidentiality, b) source authentication. Communication
confidentiality is realized with data encryption using a group key. This key should be
changed on every membership change, which can pose a formidable challenge for
large dynamic groups. The group key can also be used for source authentication. In
this case, messages signed using the group key can be verified as “coming from a
group member” instead of others. If authentication with particular source is desired,
individual secret keys, either private public key pair, or other keying mechanisms
must be employed. Most practical solutions to the secure group communication
devise a central group controller and focus on the communication efficiency
improvement of group key update. The idea is to associate each member with some
auxiliary keys to facilitate re-keying, so to decrease the number of update messages
the controller sends to members upon membership change. One-way function tree
scheme (OFT) [24] is conceived with intention to lessen the severity of controller
centralization in Wong-lam scheme [19] to some extent. Each node in the OFT binary
hierarchy holds two keys, a node key and a blinded key. The difference between
Wong-lam and OFT is that in OFT, besides a node key for every node from leaf up to
the root, a member holds a blinded key for every sibling of the node on the path. A
one-way function is used to derive blinded key from the node key at the same node. A
mixing function is used to derive a node’s key from the blinded keys of the two
children nodes. Upon membership change, three things happen in OFT: a) the directly
affected member, i.e. the newly joining or the sibling of the leaving, is sent by the
controller in unicast a new node key; b) it may also be notified the blind keys of its
ancestral siblings and then can compute the node keys of its ancestors; c) the
controller also does the necessary computation of the blind keys and then multicast
them, each encrypted with correspondent node key, to a subtree. Ku and Chen [28]
analyze a possible collusion attack on the early OFT scheme and propose a fix.

In source authentication, the efficiency problem occurs particularly with packet
stream signing, where signing rate must beat the packet generation rate if it is real-
time application. With packet chaining approach [23], only the very first packet is
signed, and each packet is appended with the digest of the immediate latter one.
Verification side stores the signature in the first packet and then eventually verifies
them all at the end of stream. Another interesting method uses asymmetric message
authentication code (MAC) [27] to provide tradeoff between efficiency and security.

A Multi-party Implementation of WS-SecureConversation 11

A sender has a set of keys and it appends a message with MACs, each generated with
a key in the set. Each receiver knows a unique subset of the sender keys. Verification
succeeds only if every key in the subset finds and matches its correspondent MAC in
the message. It may suffer the receivers’ collusion problem, in which no single
receiver knows the entire sender set but several of them can union in collusion to get
the sender key set.

Secure Socket Layer (SSL) is a protocol sitting between application and transport
layer in OSI model and provides protection over client-server communication. In
SSL handshake, communication ends do either one-way or mutual authentication,
negotiate a common acceptable cipher suite and then come up with some shared
secret, which will used for data encryption after handshake is done. SSL and WSSC
both are session-based, dependent on the shared secret, and flexible with employed
cryptographic algorithms. However, SSL doesn’t provide end-to-end security; it must
encrypt the entire application payload whereas with XML security partial encryption
is one of fundamental advantages; finally, SSL is only two-party protocol whereas in
this paper we demonstrate WSSC has the multi-party capability.

7 Conclusion

In this paper, we present WS-SecureConversation implementation as multi-party
capable solution for secure group communication. We believe the work is the first
open work on multi-party WS-SecureConversation and the first to explicitly address
secure group communication in XML message environment. It can work seamlessly
in and together with wide-range environments where communication security is
expected.

8 References

[1] Foster, I., and Kesselman, C., The Grid 2: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann; 2nd edition, Nov. 2003.

[2] Berman, F., Anthony, H., and Fox, G., Grid Computing: Making the Global
Infrastructure a Reality, Wiley, ISBN 0470853190.

[3] Foster, I., Kesselman, C., and Tuecke, S., the Anatomy of the Grid: Enabling Scalable
Virtual Organizations, International Journal of Supercomputer Applications, 15(3),
2001.

[4] Humphrey, M., and Thompson, M., Security Implications of Typical Grid Computing
Usage Scenarios, Security Working Group GRIP forum draft, Oct. 2000.

[5] Foster, I., Kesselman, C., and Tuecke, S., A Security Architecture for Computational
Grids, in Proceedings of 5th ACM Conference on Computer and Communications
Security Conference, pp. 83-92, 1998.

[6] Butt, A.R., Adabala, S., Kapadia, N.H., Figueiredo, R., and Fortes, J.A.B., Fine-grain
Access Control for Securing Shared Resources in Computational Grids, Parallel and
Distributed Processing Symposium., Proceedings International, IPDPS 2002,
Abstracts and CD-ROM , 2002, Page(s): 206 -213.

12 Community Grids Lab, Indiana University, Bloomington, Indiana 47404

[7] Butler, R., Welch, V., Engert, D., Foster, I., Tuecke, S., Volmer, J., and Kesselman,
C., A National-scale Authentication Infrastructure, Computer, Volume: 33 Issue: 12 ,
Dec. 2000, Page(s): 60 -66.

[8] Freier, A., Karlton, P., and Kocher, P., Secure Socket Layer 3.0,
http://wp.netscape.com/eng/ssl3/

[9] Kent, S., and Atkinson, R., Security Architecture for Internet Protocol, RFC 2401,
Nov. 1998.

[10] Gudgin, M., et al., SOAP Version 1.2 Part 1: Messaging Framework, W3C
Recommendation, June 2003, http://www.w3.org/TR/soap12-part1.

[11] Kubiatowicz, J., Bindel, D., Chen, Y., Eaton, P., Geels, D., Gummadi, R., Rhea, S.,
Weatherspoon, H., Weimer, W., Wells, G., and Zhao, B., OceanStore: An
Architecture for Global-scale Persistent Storage, in Proceedings of ACM ASPLOS,
Nov. 2000.

[12] Wu, W., Fox, G., Bulut, H., Uyar, A., and Altay, H., Design and Implementation of
Collaboration Web-Service System, Neural, Parallel and Scientific Computations,
vol. 12, pp. 391-406, 2004.

[13] Tanenbaum, A., and van Steen, M., Distributed Systems: Principles and Paradigms,
Prentice Hall, 1st edition, Jan. 2002.

[14] Anderson, S., et al., Web Services Secure Conversation Language (WS-
SecureConversation), May 2004, http://msdn.miccrosoft.com/library.

[15] Nadalin, A., et al., Web Services Security: SOAP Message Security 1.0 (WS-Security
2004), OASIS Standard 200401, http://www.oasis-open.org.

[16] NaradaBrokering project, Community Grids Lab, Indiana University, Bloomington,
IN, http://www.naradabrokering.org.

[17] Wong, C. K., Gouda, M., and Lam, S. S., Secure Group Communication Using Key
Graphs, ACM SIGCOMM, 1998.

[18] Yan, Y., Huang, Y., Fox, G., Kaplan, A., Pallickara, S., Pierce, M., and Topcu, A.,
Implementing a Prototype of the Security Framework for Distributed Brokering
Systems, in Proceedings of 2003 International Conferences on Security and
Management, June 2003, Las Vegas, NV.

[19] Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in
C, Wiley 2nd edition, Oct. 1995.

[20] Anderson, S., et al, Web Services Trust Language (WS-Trust), May, 2004.
[21] Krawczyk, H., Bellare, and M., Carnetti, R., HMAC: Keyed Hashing for Message

Authentication, RFC 2104, http://www.faqs.org/rfcs/rfc2104.html.
[22] Moyer, M., Rao, J., and Rohatgi, P., A Survey of Security Issues in Multicast

Communications, IEEE Network, vol. 13:12-33, Nov.-Dec., 1999.
[23] Gennaro, R. and Rohatgi, P., How to Sign Digital Streams, Lecture Notes in

Computer Science (LNCS), vol. 1294, Springer-Verlag, 1997.
[24] Sherman, A.T. and McGrew, D. A., Key Establishment in Large Dynamic Groups

Using One-way Function Trees, IEEE Transactions on Software Engineering, vol. 29,
NO. 5, May 2003, pp. 444-458.

[25] Wong, C and Lam, S., Digital Signatures for Flows and Multicasts, IEEE/ACM
Transaction on Networking, vol. 7, 1999.

[26] Golle, P. and Modadugu, N., Authenticating Streamed Data in the Presence of
Random Packet Loss, Network and Distributed System Security Symposium, 2001.

[27] Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., and Pinkas, B., Multicast
Security: A Taxonomy and Efficient Constructions, IEEE INFOCOM, vol. 2, Mar.,
1999.

[28] Wei-Chi Ku and Shuai-Min Chen, An Improved Key Management Scheme for Large
Dynamic Groups Using One-way Function Trees, in Proceedings of International
Conference on Parallel Processing Workshops, Oct. 2003, pp. 391 - 396.

http://wp.netscape.com/eng/ssl3/
http://www.w3.org/TR/soap12-part1
http://msdn.miccrosoft.com/library
http://www.oasis-open.org/
http://www.naradabrokering.org/
http://www.faqs.org/rfcs/rfc2104.html

A Multi-party Implementation of WS-SecureConversation 13

[29] Liu, H., Pallickara, S., and Fox, G., Performance of Web Services Security, in
Proceedings of 13th Annual Mardi Gras Conference, Feb. 2005.

[30] Blaze, M., Feigenbaum, J., and Lacy, J., Decentralized Trust Management, in
Proceedings of the 1996 IEEE Symposium on Security and Privacy, 1996.

[31] Box, D., et al., Simple Object Access Protocol (SOAP) 1.1, W3C Note 8 May 2002,
http://www.w3.org/TR/2000/NOTE-SOAP-20000508.

[32] BouncyCastle, http://www.bouncycastle.org.
[33] Apache WSS4J project, http://ws.apache.org/ws-fx/wss4j/.
[34] Fox, G., Pallickara, S., and Parastatidis, S., Towards Flexible SOAP

Messaging for SOAP Based Service, in Proceedings of the IEEE/ACM
Supercomputing Conference 2004, Pittsburgh, PA.

http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://ws.apache.org/ws-fx/wss4j/

