
Scalability Analysis of the Multi-Look Time Domain
Processor on XSEDE Compute Resources

Gregor von Laszewski, Fugang Wang, Geoffrey C. Fox
School of Computing and Informatics, Indiana University

Informatics West, 901 E. 10th Street
Bloomington, IN 47408

laszewski@gmail.com, kevinwangfg@gmail.com, gcfexchange@gmail.com

Jilu Li, John Paden
Department of Electrical Engineering &

Computer Science, University of Kansas
1520 West 15th Street, 2001 Eaton Hall,

Lawrence, KS 66045-7608
jiluli@ku.edu

ABSTRACT
Without doubt the analysis of data from Polar Regions is an
important aspect of identifying environmental impact by humans.
The calculation of automatic techniques for determining ice and
snow layer boundaries in radar echograms remains a hard problem
because of two reasons. First, the data volume and the associated
calculations to retrieve results are large requiring considerable
supercomputing time. Second, the data itself provides challenges
based on the high degree of noise, the often faint layer boundaries,
and confusing linear structures caused by signal reflections and
clutter. Thus it is necessary to optimize existing and future
algorithms while improving the performance, but also introduce
new techniques that combine together weak image cues, reasoning
explicitly about uncertainty in both the evidence and the resulting
layer boundary estimates.
In this paper we report on two important findings. First the
performance improvement of the Multi-look time processor
program, and second the introduction of a new analysis technique
improving our image analysis.

Categories and Subject Descriptors
C.4 [Performance of Systems]. G.1.0 [General] Numerical
Algorithm, Parallel Algorithm.

General Terms
Algorithms, Measurement, Performance, Design.

Keywords
Polar Data Analysis, Ice Sheets, Sensor Data Analysis, XSEDE,
Matlab.

1. Introduction
The Center for Remote Sensing of Ice Sheets (CReSIS) is a
Science and Technology Center established by the National
Science Foundation (NSF) in 2005, with the mission of
developing new technologies and computer models to measure
and predict the response of sea level change to the mass balance
of ice sheets in Greenland and Antarctica. As part of this effort,
the NSF’s Science and Technology Center (STC) program
combines the efforts of scientists and engineers to respond to
problems of global significance, supporting the intense, sustained,
collaborative work that is required to achieve progress in these
areas. CReSIS provides students and faculty with opportunities to
pursue exciting research in a variety of disciplines; to collaborate
with world-class scientists and engineers in the US and abroad;
and to make meaningful contributions to the ongoing, urgent work
of addressing the impact of climate change [2]. As part of this
effort we have recently focused on two activities:

• The performance optimization of the multi-look time
processor

• The algorithmic improvement of our work published in [3].

The paper is structured as follows. In Section 2 we report on the
performance optimization of the multi-look time processor. In
Section 3 we report on the algorithmic improvement of our image
analysis algorithm while applying them to ice-sheets and snow
layers. The paper ends with our conclusions.

2. Seasonal Data Collection
The Center for Remote Sensing of Ice Sheets (CReSIS) is
currently collecting up to 100 terabytes of raw data per field
season using its radar suite over Greenland and Antarctica; new
radar developments over the next few years will grow this number
by an order of magnitude. After collection, the raw data is
processed to produce data products such as flight line coverage
maps, synthetic aperture radar (SAR) images, snow and ice
layering information, and ice bed elevation maps. These data
products are distributed to international cryospheric communities
for use in a variety of climatic-related studies such as the
estimation and prediction of the contribution of ice sheets to
global sea level. CReSIS develops their own processing tools to
process raw radar data and generate and publish the final data
products for cryospheric communities. High-end computing
resources and scalable cyber infrastructure are needed in order to
process the large volume of data fast using complex algorithms.
SAR processors are a core component in CReSIS processing
toolbox. The synthetic aperture radar (SAR) processor focuses the
raw radar data to achieve fine along-track resolution. Two SAR
methods have been implemented. The first is f-k migration (FK)
method in frequency-wavenumber domain uses Fourier or fast-
convolution techniques to accelerate the processing. FK requires
that the raw data are uniformly sampled and that the platform
travels in a straight line parallel to the ice surface. Since a straight
line trajectory is never achieved in practice, motion compensation
techniques are applied which modify the data so that it
approximates a straight line trajectory. The ice surface must also
be flat and is approximated by taking the mean surface height.
The second known as multilook time domain processor (MLTDP)
integrates subaperture processing into time domain methods.
MLTDB split a longer aperture into many small apertures and the
time domain SAR processor generate an image for each
subaperture. The multiple looks of the same scene are finally
combined to get an image which is equivalent to being focused by
a longer aperture. The second method does not impose constraints
on the flight path and ice surface and thus is more accurate
leading to a better signal to noise ratio or improved focusing as

mailto:laszewski@gmail.com

shown in Figure 1. However computation of this method is
several orders higher.
The first SAR processor is currently more often used by CReSIS
because of it fast computation. The purpose of this proposal is to
implement and run the MLTDP processor on high-end computing
resources and scalable cyber infrastructure to deliver better data
products to cryospheric communities.

3. Scientific Workflow Framework
The original algorithms used in this work are part of the CReSIS
processing toolbox. This toolbox is written in matlab and provides
the advantage that it leverages a programming tool and framework
that is well established in the community, namely matlab. New
algorithms can be developed by the engineeres and researchers
and tested out as part of analyzing the data that is gathered during
the seasonal data collection conducted in Antarctica and
Greenland. However, utilizing matlab although convenient for the
scientists and community brings forward the challenge that it may
not perform as well as algorithms written in C or other
programming languages. Furthermore, the workflow of the
analysis is driven by a framework that interfaces with a queuing
system of a supercomputer while hiding this aspect from the user.
The input is controlled by a set of parameters that are manipulated
in an Excel spreadsheet.
While analyzing this sophisticated scientific workflow, motivated
by the scientific work to be conducted, we identified that through
isolation of the most performance intensive parts of the workflow
we can significantly speed up the analysis of the data while
optimizing this portion. Furthermore, we identified that the tight
integration of the queuing systems may prevent the utilization of a

supercomputing resources in a computational Grid. We are
addressing both issues and have made significant progress in this
regard.

3.1 Towards a Mesh of Supercomputers,
Grids, and Clouds with Cloudmesh
As we have extensive experience with Supercomputers, Grids and
Clouds, we designed a framework that can utilize all of them to
provide sufficient compute resources for our analysis. An
important part of this is Cloudmesh that was developed to bridge
between these environments and enables us to set up a virtual
compute testbed as a service by dynamically integrating such
resources. More details about cloudmesh are available in [4, 5].
However here we will focus on a feature of the cloudmesh design
that can support the workflow of the CReSIS project. Instead of
using the Karajan Workflow Engine of the Java Commodity Grid
Kit we identified that it is for this project far easier to use the
cloudmeh HPC interface. Our design allows us to manage
thousands of supercomputing jobs on a set of heterogeneous
supercomputers. The important differentiation here is that these
computers do not have to be in the same security context to form a
virtual organization managed by a Grid provider. Instead, the user
can define its own Grid while adding resources from a variety of
Grids. This is not a new concept and was introduced by the
precursor to the Java CoG Kit. However, new is that we are now
able to not only utilize resources form established computational
Grids such as XSEDE but also from cloud environments. The
cloudmesh framework allows for example to set up virtual
clusters on OpenStack, AWS, Azure, HP Helion, and many other
cloud providers enhancing the ability to run such compute
intensive jobs also in cloud environments. We envision that on
such virtual clusters we also can deploy on-demand job
management frameworks such as OpenPBS or Slurm to simplify
the distribution of the computational tasks. Through cloudmesh
these tasks are than registered in a NoSQL database and their
execution can be monitored. This will also allow for fault
tolerance, as we can for our project predict how long it will take
for a task to be completed on a particular machine. If a task is not
returning in time it will be scheduled for re-execution. Such
performance data can be identified during runtime and leverages
our work reported in [6, 7]. One of the new efforts we are
currently working on is to expand upon our design and work
towards the integration of a REST service model that will make
the integration of cloudmesh into matlab (or other frameworks
and services) much easier. As cloudmesh is written in python we
can therefore use our REST interfaces and enhance the CReSIS
matlab toolbox while providing access to heterogeneous resources
spawning Supercomputers, Grids, Network of Workstations, and
Clouds. We are currently focusing on resources provided at
XSEDE, Indiana University, University of Kansas, but want to
leverage resources in Azure if given the opportunity and once we
have demonstrated feasibility of the calculation engine in XSEDE
and FutureSystems. The later already provides a combination of
traditional supercomputing resources but also cloud resources. It
will be soon enhanced by a cloud with more than 128 modern
servers and 3456 cores. Each server has 128 GB of memory and
an overall 0.5 TB of SSDs. This machine has been carefully
designed to provide a smaller testbed that mimics the system
offered by SDSC’s comet machine. While leveraging this rich set
of resources through a self managed virtual organization via the
cloudmesh software we could offer the service also through the
cloudmesh GUI and specialized matlab interface as a gateway to
the project users. Thus it is clear that what we have created is not
a traditional computational Grid but a Mesh that integrated these

Figure 1: Point target focused by FK (left) and by MLTD
(right) Processing.

resources. Hence this motivated us to use the term cloudmesh for
our software tool.

4. Performance Evaluation and Improvement
of the CReSIS Multi-look Time Domain
Processor
As discussed previously the CReSIS analysis system includes a
multi-look time domain processor (MTTDP) [8]. We identified
the portion of the algorithm that is used frequently but takes a
long time to complete. Hence our optimization efforts are focused
on the optimization of this part. The original algorithm was
written in matlab. The code was analyzed for several possible
code improvements and the improvements were implemented.
These improvements include:
1) Better alignment of data types in memory. We found that

several data types used in the algorithm did not correspond to
the actual data types intended to be used such as complex
numbers. Although this does not pose an issue within the
original matlab code It does provide a challenge during the
conversion of such programs to C. Thus we identified such
data types and replaced them with datatypes that allow a
seamless conversion to C. We also verified that the
numerical calculations while performing these changes were
not affecting the original or the modified program.

2) Avoiding repeated calculations through variable substitution.
We found a sizable number of small calculations that were
repeated in several parts of the algorithms. However as the
code is executed tens of thousands of times, overtime this
will result in an unnecessary time penalty. While replacing
such calculations with variables and placing the calculations
in appropriate loops we avoided a significant number of such
redundant calculations while using our variable store.

3) Replacement for key matlab functions with a C version of the
code. Once we have made these optimizations we took the
resulting program and translated it to C. This translation
undoubtfully leads to the biggest performance improvement,
as we will see later. The translation was only possible after
we carefully corrected the usage of the data types (see 1).

4) Easy integration of the newly developed code. To support the
existing extensive CReSIS toolbox, the new optimized
functions must easily be integratable in the code. This is
achieved while wrapping the C function into a matlab MEX
code that allows the calling of the C function without
changing the original matlab code (other than the name of the
function). Hence the CReSIS workflow is unchanged.

5) Update of the Matlab ecosystem. We also found that the
current system was executed while using a fairly old version
of matlab. We updated to a very recent version, which
provided features that were not available in earlier versions.
While using this version we were able to more easily
generate a C program. While purchasing a variety of matlab
coder licenses for a variety of systems we were also able to
more easily generate makefile that could be adapted for a
variety of systems.

The modified code was tested extensively for numerical accuracy
and an independent verification was conducted at University of
Kansas to double check the accuracy of the new code.
Furthermore, we developed a code performance testing
framework that used two data sets and tested accuracy with a
variety of parameters. This framework allowed us to run the code
in uniform fashion on various machines including supercomputers
at University of Kansa, IU, and XSEDE.

The result was that on a modern hardware architecture the code
was significantly faster than before and for a standard dataset with
a bin size of 1700 the speedup between the original un-optimized
original Matlab code running on Quarry (main production analysis
machine) and new code was over a factor of 60 while comparing
the performance of the original algorithm on quarry with the
performance of the fastest server running the C optimized version.
The compilation time was also decreased significantly by a factor
of over 100 on a modern computer.
While using this new optimized program we conducted a number
of significant performance studies on various architectures to
identify the single core performance characteristics of the code.
This is important as to identify how the code behaves and to
outline a path forward in the production workflow management.
The new code runs a factor of 9-20 faster on most machines while
comparing the C vs the original matlab performance. Quarry,
echo, and india only receive a performance improvement of about
5. The comparison of optimized code run times normalized to
fastest machine is shown in Figure 3. Quarry, Karst (IU) and
Drebber (KU) are used to analyze CReSIS data while Bigred,
Bravo, India, Delta and Echo are servers at IU. Gordon is an
XSEDE machine at SDSC and Optiplex and laptop are client
testbeds.

5. Development Environment
Originally, we tried to conduct our work on the optimization of
the algorithm on the supercomputers accessible to us. However
we found that on the main machine Quarry (at that time still
located at IU) the algorithm was unacceptable slow (motivating
this work). Although other machines were faster we still faced the
issue that for the optimization the execution time was still to long
in order to make progress quickly. We looked at the algorithm and
identified that much of the calculations are memory bound and
would behave similar to an ODE. Therefore we could try to
estimate on which machine we should conduct our optimization
while consulting the build in matlab benchmarks. Hence we
obtained a quick overview while executing the standard matlab
benchmark on the machines we had access to at that time. The
results of this benchmark are shown in Figure 2. The machines
used in this study are in more detail described in Table 2.
Interesting to note is that we immediately identified that the use of
Gordon in no flash mode will be unsuitable. However with the use
of flash it was very reasonable. However, this motivated us to also
explore the lead authors Laptop which is a MacBook Pro (Mid
2014, a relatively recent machine. It is configured with 16GB
flash main memory and has 8 cores. We purchased additional

Figure 2: Matlab standard benchmark

licenses for this machine and other desktop machines. This
allowed us to more easily use the graphical user interface features
of matlab in the code development and debugging phase. Not
surprisingly, the laptop performed the best from all machines we
had access to. Hence, we used this machine to do all the
development work needed for the code optimization.
To further simplify the development we also identified a smaller
dataset and reduced the workflow to only execute a small number
of samples, as well as reducing the number of iterations. Thus
instead of waiting for hours while testing a single modification we
reduced the time to less than one minute for our test data. We
verified later that our original assumption about the capabilities of
the machines derived from the standard matlab benchmark were
giving us an accurate picture of on which it may perform well.
One of the other issues we had was that the licensing management
of matlab deployed within IU. This was based on the issue that we
were in the need of purchasing of matlab licenses that were not
part of the typical licenses sold to other IU staff and especially the
lack of access to the matlab documentation while using the IU
group licensing. Without this access we could not access relevant
documentation that required a login onto the Matlab portal. While
consulting with Mathworks and the responsible IU staff this issue
was eventually overcome. However, we believe this is a great
lesson to learn especially in cases where XSEDE looks for
alternative licensing models. One must be aware the
documentation is limited to those registering in the Mathworks
portal, but such a user must have a valid product license
associated with the appropriate toolbox. We also realize based on
our experience with the C compilation that version differences
between various matlab versions may be significant. Hence, it
may be necessary to support multiple matlab versions on hosted
systems. Although users may bring their own licenses, as recently
discussed with us in the resource provider XSEDE meetings, it
may not be a solution for those that run production jobs due to
cost. Naturally, compiled matlab code may be needed. Therefore,
it is in the best interest of such sites to provide the tools and
access to all documentation that makes it easier to optimize
matlab code and translate it to C for anyone running matlab jobs.
This not only includes the matlab compiler, but also must provide
to the relevant users matlab coder license. In the long run the
offering of these toolboxes will pay of as we can provide already
see from our own experience in the optimization of our code
discussed in this paper. However we also recognize that the
development of such code is not trivial, but may require the
interaction with computer scientists and experts familiar not only
with matlab but with general software architecture. This will
allow the scientists to focus on developing quality code in matlab
while the experts can optimize it for the target machines.
Furthermore it is not sufficient to just optimize the algorithm but
the computer scientist must be able to evaluate the workflow and
the interaction within it in order to identify possible future venues
of software and resource utilization such as the once we have
identified with cloudmesh. Thus the ideal support person must be
multifaceted and provides significant expertise in software
architecture to leverage possible other frameworks.

6. Performance Study
We have conducted a number of significant performance studies
on various compute resources to identify the single core
performance characteristics of the code. This is important as to
identify how the code behaves and to outline a path forward in the

production workflow management. It will enable us to answer the
following questions:

• Question A: How good is the currently used hardware and
software for the code?

• Question B: How much faster is the code on a single modern
core vs. the original code on for example quarry, the
machine we are currently using?

• Question C: How much faster is a C code version of the
code on available supercomputers?

•

6.1 Performance Testing Framework
To do a meaningful performance study we developed a
performance testing framework that includes an isolated version
of the most time intensive calculation of the workflow. We
verified that when running the entire worklflow the rest of the
algorithm did not contribute significantly to the overall execution
time. The framework allows us to utilize different test data and
also to adjust for the bin size a parameter that influences the
runtime significantly. This test framework was ported and
deployed to all machines we had access to.

6.2 Hardware and C Optimization Impact
First, we need to identify how the existing original code compares
to an optimized version. This will help assessing potential for
optimizations of the code as well as identify how to proceed. For
this test we ran on a single core the original code on the machine
quarry. Quarry used to be located at the IU datacenter and used as
one of the primary machines to run the analysis. Quarry is
currently being moved to University of Kansa Obviously it is an
older generation machine. We compared the performance of the
computational intensive in matlab on quarry and the C optimized
code on an OSX MacBook Pro (Mid 2014, 2.8 GHz Intel Core i7,
16 GB 1600 MHz DDR3, $3200). This laptop was the newest
hardware we had access to. This comparison is important as to
show how the current code performs vs the performance of a
modern architecture while also considering code improvements.
As there are many parameters and datasets to choose from we
have taken one dataset and set the bin size to 1700 that was
identified to be a scientific relevant parameter set for many
calculations.
The results were astonishing, as we achieved a speedup of ~63
between the unoptimized original matlab code running on
quarry and the Laptop on a single core. Hence we see that while
using more modern hardware plus our optimization a significant
performance improvement can be achieved that will drastically
reduce the analysis time.
Naturally this comparison needs to be further analyzed an in our
next comparison we identified that on the Laptop the performance
improvement factor between the original code and the C code is
~23. We than compared the C code vs. the original code on quarry
and only obtain an improvement of about ~5.1. When comparing
the performance of the C codes between the Laptop and quarry
we see that the Laptop runs 6.61 times faster.
We conclude from this data that the algorithm is dominated by
calculation speed and access to memory. Both are significantly
better with newer architectures. Furthermore, we ran the newest
matlab version on the Laptop.

6.3 Resource Comparison
To compare other resources we have run the same performance
study on Quarry, Bravo, Echo, Delta, India, Echo, Bigred-2,

Karst, Gordon, Drebber, and the Mac OSX Pro. The details of
these machines are provided in Table 2.
We ran the following versions of the code, where resource
indicates the name of the resource:

• <resource>-p: is the unmodified matlab production code
executed on the resource

• <resource-o>: is the optimized matlab production code
executed on the resource as explained in Section 4 2)

• <resource-c>: is the c code derived from the optimized
matlab code executed on the resource.

Figure 3 shows the performance results on the various resources
in seconds. The abscissa varies the bin size that is used as one of
the main parameters of interest to the scientists. A useful value is
dependent on the actual data and may need to be varied. We have
currently identified a maximum of 1700 for this value and data
set. This is a realistic value that will be used as part of our main
analysis. In addition we provide in Figure 4 the speedup
comparison of the fastest resource against all other resources and
algorithms compared. Hence the MacPro is the baseline with one.
All other machines perform slower than this resource by a factor

specified by the ordinate. In the Figures we also provide
performance data while varying the the bin size. We can make the
following observations from the two figures:
1. While varying the bin size the algorithm behaves linearly.
2. In cases where divergence is found from the linear scalability

of the calculation we find, that resource limitations on the
server took place.

3. We can clearly identify the three groups of algorithms based
on if they were (p) original (o) optimized (c) translated from
the optimized matab code to C.

To further analyze the data we present in the subsequent Figures
selected details from Figure 3 and Figure 4.

6.4 Fastest Single Core Performance Analysis
The fastest single core performance is obtained on the MacBook
Pro. This is not surprising as this machine is the newest machine,
and has a relative powerful processor. Furthermore it has 16 GB
of main memory and 1TB flash SSD. The details for the
performance and speedup are depicted in Figure 5 and Figure 6.
We identified that on this machine we can achieve an overall
performance improvement is of a factor of over 20 while

Figure 3: Runtime of the test data and performance
measurement framework for the computational intensive
part in the multi-look time domain processor.

Figure 4: Speedup of the test data and performance
measurement framework for the computational intensive
part in the multi-look time domain processor.

comparing the original optimized version of the algorithm with
the optimized and to C translated version. The fast processor and
access to fast memory are here of great importance.

6.5 Comparison of the Optimized Algorithm
Translated to C
Figures 7 and 8 show the comparison of the optimized matlab
algorithms translated to C. We see that for a bin size of 1700 that
we are interested in the fastest single core performance next to the
MacBook Pro is achieved by Drebber and by Gordon. We
identified that the laptop is 2.27 times faster than Drebber and
2.65 faster than Gordon. All other machines are at least four times
slower making a considerable performance impact. The worst
machine of them is not surprisingly Quarry, the oldest of the
resources, which is 6.61 times slower. However due to the
availability of this machine it will be continued to be used to
obtain production results. While observing the results in more
details we find several noteworthy issues with some of the
resources. First, on an optiplex 960 (an old desktop) we ran into
an actual slowdown of the algorithm due to a lack of memory on
the machine. Second, we see a significant slowdown of the
algorithm with increased bin size on Delta. Also here the memory
became problematic. Thus such machines are performing best
with smaller bin sizes. Such bin sizes actually do exists in the
workflow and therefore if we can identify them such machines
could be restricted in the bin sizes that ought to be calculated on
them. Third, we have to recognize that very small bin sizes may
not be of interest and may not be relevant for the calculation. Thus
we discard bin sizes smaller than 500. This will than transform the

Figure 5: Performance Improvement of the original Multi-
Look Time Domain Processor on the fastest single core
resource

Figure 6: Speedup of the original Multi-Look Time
Domain Processor while comparing the original algorithm
with the C based optimized algorithm on the fastest single
core resource.

Figure 7: Runtime of the test data and performance
measurement framework for the computational intensive
part in the multi-look time domain processor while only
comparing the optimized algorithm that was translated to
C.

Figure 8: Speedup comparison of the optimized C versions
on various machines.

data for Gordon from a dip to a slowdown with larger bin sizes.
Hence we can make the same statement that we have done: for
Gordon as we are running in to some resource limitation with
larger bin sizes. However as this machine is significantly faster
than all the others, this is one of our primary target machines. At
this time we have not yet undertaken an analysis on XSEDE’s
Stempede and other new resources that are not yet available to us
such as comet.

6.6 Predictability of the runtime for
Production Runs
Based on the data we hove obtained we can use it to fairly
accurately predict the overall runtime of the workflow that is
needed as part of the data analysis part. We have used the almost
linear scaling even within obtaining the scalability data itself
while we were predicting by running 3 small samples up front to
identify when the larger example is completed. We used for this a
regression analysis and thus given a resource and a bin size we
can predict the runtime of this job. This data can now be used to
predict the overall runtime..

7. Prediction of the Overall Data Analysis
The previous analysis focused on the optimization of the most
computational intensive portion of the workflow to be conducted.
It provides us with a very good basis to identify a very accurate
prediction for the computation time on resources.
The field data collected by the team is measured by field seasons.
A year has four field seasons. During a field season data is
collected by plane. There are 20 flights in a field season. During
one flight data is collected between 30-60 frames. A frame is
defined over 50km with 2 waveforms and 15 channels.
Furthermore a job is defined by 500m (this translates into a bin
size between 400-1700, in our algorithm this is defined by the
parameter 1700), one waveform and one channel. One frame will
result in 3000 jobs of that are based on our optimized algorithm.
Hence we calculate that in one field season we obtain between
600 to 1200 frames and between 1.8M to 3.6M jobs. While using
our data from the previous section we determined the lower and
upper bound of the core hours on a given compute resource. We
see that on Gordon we will need approximately 1.2 Million core
hours to calculate the field season.
In addition we will need 300K hours to calculate regions that we
determine of special interest. It will also allow us to further
optimize the algorithm while taking into account core, memory
and other resource specific parameters. The additional core hours
will also be used for other algorithm improvements that are
discussed in the next section. Thus the allocation will not only
serve as a production, but also as a development allocation. We
also plan to conduct a performance analysis on Stempede and
would like to work together with TACC staff to further explore
the Matlab-Bring-Your-Own-License model. For that we
currently anticipate 50K core hours for the multi look method and
an additional 50K for the method discussed in the next section.

In addition to Gordon’s compute time we will also leverage
Quarry. However, resource limitations especially in regards to
memory may hinder progress. As the machine is currently not
operational we were unable to make further recommendations.
One thought would be to upgrade the memory or to consolidate
the existing the memory into a smaller number of servers.

8. Feature Detection of Ice-Sheet Boundaries
Furthermore, we are investigating automatic techniques for
determining ice and snow layer boundaries in radar echograms.
While several recent papers have studied this problem including
our own in [1], it remains a hard problem because of the high
degree of noise, the often faint layer boundaries, and confusing
linear structures caused by signal reflections and clutter. We thus
need new techniques which combine together weak image cues,
reasoning explicitly about uncertainty in both the evidence and the
resulting layer boundary estimates.
We proposed a new technique for layer finding that removes
many of the assumptions and restrictions of [1], while preserving
the ability to integrate weak information and explicitly model
uncertainty. This new approach was published in the IEEE
Conference on Image Processing (ICIP 2014)[3]. In particular, the
paper introduces several important contributions to improve both
the accuracy and utility of layer-finding. Our technical innovation
uses Gibbs sampling for performing inference instead of the
dynamic programming (Hidden Markov Model)-based solver of
[1]. This allows us to remove some of the assumptions of the
probabilistic mode and solve for layer boundaries simultaneously,
yielding automatic layer detection results that are significantly
better than the approach in that paper. Unlike [3], which was
really only practical for solving the two-layer problem (i.e.
finding just the ice surface and bedrock layers), this new approach
can handle an arbitrary number of layers, which will be important
for finding internal (annual) layers in ice and snow (and we
continue to investigate that problem). Moreover, the Gibbs
sampler produces explicit confidence intervals, thus giving bands
of uncertainty in the layer boundary locations. Since noise and
ambiguity in radar echograms are inevitable, we believe that
estimating confidence could be crucial in applications of layer
identification (e.g. when used as input to glaciological models),
and to our knowledge this is the first paper that has demonstrated
this capability.
We tested our layer-finding approach using a 826 echograms from
the 2009 NASA Operation Ice Bridge program, which was the
same dataset used by [1] so we can directly compare our
accuracy. Figure 1 shows results on three sample echograms,
presenting the output of our technique (including the confidence
interval) as well as the ground truth and baseline technique of [1].
Quantitatively, compared to human-labeled ground truth, our
technique outperforms [1] significantly, by decreasing the error
rate (measured in terms of mean or median squared deviation
from ground truth) by about 44.3% for surface boundaries and
48.3% for bedrock. Our technique is slower than [1] (about 17
seconds per image compared to a few tenths of a second), but
since layer finding is trivially parallelizable across images, we
believe accuracy is much more important than compute time in
practice. We also quantified how informative the confidence
intervals are by computing the percentage of ground truth layer
points that are contained within the estimated intervals. We found
that 94.7% of the surface boundaries and 78.1% of the bedrock
boundaries are within the intervals, for an overall percentage of
86.4%.

Table 1: Predicted core hours for one field season
 Karst Drebber Quarry Gordon Bigred2

1 job (hrs) 0.53 0.29 0.84 0.34 0.71

core hours
 - lower estimate

955,000 516,500 1,504,500 603,500 1,271,500

 - upper estimate 1,910,000 1,033,000 3,009,000 1,207,000 2,543,000

Our ongoing work is applying this new technique to the much
more challenging problem of locating internal (annual) layer
boundaries in ice and snow. Our approach in [3] removes the
restrictive assumption of [1] that there are a small number of
layers, but still requires knowing the number of layers ahead of
time. This is a restrictive assumption because it involves solving
the challenging problem of model selection: a model with more
parameters (layers) will always fit the data better, but will also
overfit, yielding a result that is statistically meaningful but not
useful in practice. We are currently investigating extending our
model to use Reversible Jump MCMC [9] as a means of
addressing this problem.

9. Snow Radar Imagery
Our efforts to accurately identify multiple snow features in polar
radar imagery, includes a statistical graphical model using both
local (iterated conditional modes) and global (simulated annealing [10]) techniques shown in figures 3 and 4 for snow layer

Figure 2: Results on three sample echograms. Each pane
includes the hand-labeled ground truth image (top-left), the
output of ref. [1] (top-right), and then our output (bottom).

Figure 3: Iterated Conditional Modes

Figure 4: Gibbs-based simulated annealing

determination. In iterated conditional modes [9], an initial
estimate of the labels uses a deterministic “greedy” strategy to
determining which labels gives the largest decrease in energy
function; this process is repeated until convergence. In simulated
annealing [11] a temperature parameter is reduced while
maintaining current and neighboring variables. In each iteration,
the energy is calculated for the current and neighboring variables;
if assigning a value to the variable is an improvement, the
algorithm accepts the assignment and updates a new current
assignment. Otherwise, it accepts the assignment with some
probability.

10. Conlusion
In this paper we have first, shown that the performance
improvement of the multi-look domain processor and the use of
modern hardware resulted in an overall performance improve this
performance is done on a single core. When applying the same
improvements to Quarry a supercomputer on which the analysis is
to be run we only obtain a factor of 5. In our future work we will
be investigating the increase use of parallelism in the workflow
pipeline and the utilization of multicore features. Use of multicore
may be hindered by too little memory on some of the machines.
Second, we have provided a new algorithm, that accurately
identifies multiple snow features in polar radar imagery, includes
a statistical graphical model using both local and global methods.
The algorithm is tested on analysis of ice-sheet boundaries and
snow radar imagery.
We have identified that we can predict to use 1.5M core hours on
Gordon. We like to additionally apply for 100K core hours split
between our efforts to improve the feature detection and the
MLTPD algorithms.

11. ACKNOWLEDGMENTS
We like to thank XSEDE for their generous use of the startup
allocation to obtain the performance on XSEDE resources. We

like to thank Indiana University for the use of Big Red 2, Karst,
and Quarry (the later is now transitioned to University of Kansas).
We like to thank University of Kansas for the use of Drebber.
Other resources used are part of FutureSystems part of the School
of Informatics and Computing. We like to thank Hyungro Lee and
Badi Abdhul-Wadi for their help on cloudmesh.

12. Resource Details

13. REFERENCES
[1] D. J. Crandall, G. C. Fox, and J. D. Paden. (2012, Layer-finding in

Radar Echograms using Probabilistic Graphical Models. Available:
http://vision.soic.indiana.edu/wp/wp-content/uploads/icpr12-
ice1.pdf

[2] . Cresis Web Page. Available: https://www.cresis.ku.edu
[3] S. Lee, J. Mitchell, D. J. Crandall, and G. C. Fox, "Estimating bedrock

and surface layer boundaries and confidence intervals in ice sheet
radar imagery using MCMC," pp. 111-115, 2014.

[4] G. von Laszewski, A. Younge, X. He, K. Mahinthakumar, and L.
Wang, "Experiment and Workflow Management Using Cyberaide
Shell," pp. 568-573, 2009.

[5] G. von Laszewski, F. Wang, H. Lee, H. Chen, and G. C. Fox,
"Accessing multiple clouds with cloudmesh," pp. 21-28, 2014.

[6] G. von Laszewski, A parallel data assimilation system and its
implications on a metacomputing environment, 1996.

[7] G. von Laszewski, "An Interactive Parallel Programming
Environment Applied in Atmospheric Science," in Making Its Mark,
Proceedings of the 6th Workshop on the Use of Parallel Processors in
Meteorology, ed Reading, UK, 1996, pp. 311-325.

[8] L. M. H. Ulander, H. Hellsten, and G. Stenstrom, "Synthetic-aperture
radar processing using fast factorized back-projection," IEEE
Transactions on Aerospace and Electronic Systems, vol. 39, pp. 760-
776, 2003.

Table 2: Overview of Compute resources in XSEDE, IU, and KU.
Name Site Peak Tflops CPU Type CPU

speed
Cores # Nodes Cores

per
Node

Memory

Stampede TACC 9600 Intel Xeon E5-2680 2.7G 102400 6400 16 200TB

Comet SDSC 2000 Intel Xeon E5-2680v3 2.5G 47616 1984 24 247TB

SuperMIC LSU 925 Intel 64 2.8G 7200 360 20 22TB

*Gordon SDSC 341 8-core Sandy Bridge 2.6G 16384 1024 16 64TB

Darter NICS 248.9 Intel 2.6G 23168 724 32 45TB

Trestles SDSC 100 8-core AMD Magny-Cours 2.4G 10368 324 32 20TB

Blacklight PSC 36 Intel Xeon X7560 2.27G 4096 256 16 256TB

*Karst IU 85.1 Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz 2.6G 4,096 256 16 8GB

*Bigred2 IU 1006 AMD Opteron(tm) Processor 6380 2.5G 21,824 1020 32 43648 GB

*Drebber KU AMD Opteron 2.4G 2.4G 128 32 4 256GB

*India IU 11 Intel(R) Xeon(R) CPU X5570 @ 2.93GHz 2.93G 1024 128 8 3TB

*Delta IU Intel(R) Xeon(R) CPU X5660 @ 2.80GHz 2.8G 192 16 12 1.3TB

*Bravo IU 1.7 Intel(R) Xeon(R) CPU E5620 @ 2.40GHz 2.4G 128 16 8 3TB

*Echo IU 2 Intel(R) Xeon(R) CPU E5-2640 0 @ 2.50GHz 2.5G 192 16 12 6TB

http://vision.soic.indiana.edu/wp/wp-content/uploads/icpr12-ice1.pdf
http://vision.soic.indiana.edu/wp/wp-content/uploads/icpr12-ice1.pdf
https://www.cresis.ku.edu/

[9] P. J. Green, "Reversible jump Markov chain Monte Carlo
computation and Bayesian model determination," vol. 82, pp. 711-
732, 1995.

[10] S. Kirkpatrick, J. C.D. Gellatt, and M. P. Vecchi, SCIENCE, vol. 220,
Number 4598, 13 May 1983 1982.

[11] J. Besag, "￼On the Statistical Analysis of Dirty Pictures," Journal of
the Royal Statistical Society. Series B (Methodological), vol. 48 No. 3,
pp. 259-302, 1986.

.

	1. Introduction
	2. Seasonal Data Collection
	3. Scientific Workflow Framework
	3.1 Towards a Mesh of Supercomputers, Grids, and Clouds with Cloudmesh

	4. Performance Evaluation and Improvement of the CReSIS Multi-look Time Domain Processor
	5. Development Environment
	6. Performance Study
	6.1 Performance Testing Framework
	6.2 Hardware and C Optimization Impact
	6.3 Resource Comparison
	6.4 Fastest Single Core Performance Analysis
	6.5 Comparison of the Optimized Algorithm Translated to C
	6.6 Predictability of the runtime for Production Runs

	7. Prediction of the Overall Data Analysis
	8. Feature Detection of Ice-Sheet Boundaries
	9. Snow Radar Imagery
	10. Conlusion
	11. ACKNOWLEDGMENTS
	12. Resource Details
	13. REFERENCES

