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ABSTRACT 
Without doubt the analysis of data from Polar Regions is an 
important aspect of identifying environmental impact by humans. 
The calculation of automatic techniques for determining ice and 
snow layer boundaries in radar echograms remains a hard problem 
because of two reasons. First, the data volume and the associated 
calculations to retrieve results are large requiring considerable 
supercomputing time. Second, the data itself provides challenges 
based on the high degree of noise, the often faint layer boundaries, 
and confusing linear structures caused by signal reflections and 
clutter. Thus it is necessary to optimize existing and future 
algorithms while improving the performance, but also introduce 
new techniques that combine together weak image cues, reasoning 
explicitly about uncertainty in both the evidence and the resulting 
layer boundary estimates.  
In this paper we report on two important findings. First the 
performance improvement of the Multi-look time processor 
program, and second the introduction of a new analysis technique 
improving our image analysis. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]. G.1.0 [General] Numerical 
Algorithm, Parallel Algorithm. 

General Terms 
Algorithms, Measurement, Performance, Design. 

Keywords 
Polar Data Analysis, Ice Sheets, Sensor Data Analysis, XSEDE, 
Matlab. 

1. Introduction 
The Center for Remote Sensing of Ice Sheets (CReSIS) is a 
Science and Technology Center established by the National 
Science Foundation (NSF) in 2005, with the mission of 
developing new technologies and computer models to measure 
and predict the response of sea level change to the mass balance 
of ice sheets in Greenland and Antarctica.  As part of this effort, 
the NSF’s Science and Technology Center (STC) program 
combines the efforts of scientists and engineers to respond to 
problems of global significance, supporting the intense, sustained, 
collaborative work that is required to achieve progress in these 
areas.  CReSIS provides students and faculty with opportunities to 
pursue exciting research in a variety of disciplines; to collaborate 
with world-class scientists and engineers in the US and abroad; 
and to make meaningful contributions to the ongoing, urgent work 
of addressing the impact of climate change [2]. As part of this 
effort we have recently focused on two activities: 

• The performance optimization of the multi-look time 
processor 

• The algorithmic improvement of our work published in [3]. 
 
The paper is structured as follows. In Section 2 we report on the 
performance optimization of the multi-look time processor. In 
Section 3 we report on the algorithmic improvement of our image 
analysis algorithm while applying them to ice-sheets and snow 
layers. The paper ends with our conclusions. 

2. Seasonal Data Collection  
The Center for Remote Sensing of Ice Sheets (CReSIS) is 
currently collecting up to 100 terabytes of raw data per field 
season using its radar suite over Greenland and Antarctica; new 
radar developments over the next few years will grow this number 
by an order of magnitude. After collection, the raw data is 
processed to produce data products such as flight line coverage 
maps, synthetic aperture radar (SAR) images, snow and ice 
layering information, and ice bed elevation maps.  These data 
products are distributed to international cryospheric communities 
for use in a variety of climatic-related studies such as the 
estimation and prediction of the contribution of ice sheets to 
global sea level. CReSIS develops their own processing tools to 
process raw radar data and generate and publish the final data 
products for cryospheric communities. High-end computing 
resources and scalable cyber infrastructure are needed in order to 
process the large volume of data fast using complex algorithms.  
SAR processors are a core component in CReSIS processing 
toolbox. The synthetic aperture radar (SAR) processor focuses the 
raw radar data to achieve fine along-track resolution. Two SAR 
methods have been implemented. The first is f-k migration (FK) 
method in frequency-wavenumber domain uses Fourier or fast-
convolution techniques to accelerate the processing. FK requires 
that the raw data are uniformly sampled and that the platform 
travels in a straight line parallel to the ice surface. Since a straight 
line trajectory is never achieved in practice, motion compensation 
techniques are applied which modify the data so that it 
approximates a straight line trajectory. The ice surface must also 
be flat and is approximated by taking the mean surface height. 
The second known as multilook time domain processor (MLTDP) 
integrates subaperture processing into time domain methods. 
MLTDB split a longer aperture into many small apertures and the 
time domain SAR processor generate an image for each 
subaperture. The multiple looks of the same scene are finally 
combined to get an image which is equivalent to being focused by 
a longer aperture. The second method does not impose constraints 
on the flight path and ice surface and thus is more accurate 
leading to a better signal to noise ratio or improved focusing as 
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shown in Figure 1. However computation of this method is 
several orders higher. 
The first SAR processor is currently more often used by CReSIS 
because of it fast computation. The purpose of this proposal is to 
implement and run the MLTDP processor on high-end computing 
resources and scalable cyber infrastructure to deliver better data 
products to cryospheric communities.  

 

3. Scientific Workflow Framework 
The original algorithms used in this work are part of the CReSIS 
processing toolbox. This toolbox is written in matlab and provides 
the advantage that it leverages a programming tool and framework 
that is well established in the community, namely matlab. New 
algorithms can be developed by the engineeres and researchers 
and tested out as part of analyzing the data that is gathered during 
the seasonal data collection conducted in Antarctica and 
Greenland. However, utilizing matlab although convenient for the 
scientists and community brings forward the challenge that it may 
not perform as well as algorithms written in C or other 
programming languages.  Furthermore, the workflow of the 
analysis is driven by a framework that interfaces with a queuing 
system of a supercomputer while hiding this aspect from the user. 
The input is controlled by a set of parameters that are manipulated 
in an Excel spreadsheet.  
While analyzing this sophisticated scientific workflow, motivated 
by the scientific work to be conducted, we identified that through 
isolation of the most performance intensive parts of the workflow 
we can significantly speed up the analysis of the data while 
optimizing this portion. Furthermore, we identified that the tight 
integration of the queuing systems may prevent the utilization of a 

supercomputing resources in a computational Grid. We are 
addressing both issues and have made significant progress in this 
regard. 

3.1 Towards a Mesh of Supercomputers, 
Grids, and Clouds with Cloudmesh 
As we have extensive experience with Supercomputers, Grids and 
Clouds, we designed a framework that can utilize all of them to 
provide sufficient compute resources for our analysis. An 
important part of this is Cloudmesh that was developed to bridge 
between these environments and enables us to set up a virtual 
compute testbed as a service by dynamically integrating such 
resources. More details about cloudmesh are available in [4, 5]. 
However here we will focus on a feature of the cloudmesh design 
that can support the workflow of the CReSIS project. Instead of 
using the Karajan Workflow Engine of the Java Commodity Grid 
Kit we identified that it is for this project far easier to use the 
cloudmeh HPC interface. Our design allows us to manage 
thousands of supercomputing jobs on a set of heterogeneous 
supercomputers. The important differentiation here is that these 
computers do not have to be in the same security context to form a 
virtual organization managed by a Grid provider. Instead, the user 
can define its own Grid while adding resources from a variety of 
Grids. This is not a new concept and was introduced by the 
precursor to the Java CoG Kit. However, new is that we are now 
able to not only utilize resources form established computational 
Grids such as XSEDE but also from cloud environments. The 
cloudmesh framework allows for example to set up virtual 
clusters on OpenStack, AWS, Azure, HP Helion, and many other 
cloud providers enhancing the ability to run such compute 
intensive jobs also in cloud environments. We envision that on 
such virtual clusters we also can deploy on-demand job 
management frameworks such as OpenPBS or Slurm to simplify 
the distribution of the computational tasks. Through cloudmesh 
these tasks are than registered in a NoSQL database and their 
execution can be monitored. This will also allow for fault 
tolerance, as we can for our project predict how long it will take 
for a task to be completed on a particular machine. If a task is not 
returning in time it will be scheduled for re-execution.  Such 
performance data can be identified during runtime and leverages 
our work reported in [6, 7]. One of the new efforts we are 
currently working on is to expand upon our design and work 
towards the integration of a REST service model that will make 
the integration of cloudmesh into matlab (or other frameworks 
and services) much easier. As cloudmesh is written in python we 
can therefore use our REST interfaces and enhance the CReSIS 
matlab toolbox while providing access to heterogeneous resources 
spawning Supercomputers, Grids, Network of Workstations, and 
Clouds. We are currently focusing on resources provided at 
XSEDE, Indiana University, University of Kansas, but want to 
leverage resources in Azure if given the opportunity and once we 
have demonstrated feasibility of the calculation engine in XSEDE 
and FutureSystems. The later already provides a combination of 
traditional supercomputing resources but also cloud resources. It 
will be soon enhanced by a cloud with more than 128 modern 
servers and 3456 cores. Each server has 128 GB of memory and 
an overall 0.5 TB of SSDs. This machine has been carefully 
designed to provide a smaller testbed that mimics the system  
offered by SDSC’s comet machine. While leveraging this rich set 
of resources through a self managed virtual organization via the 
cloudmesh software we could offer the service also through the 
cloudmesh GUI and specialized matlab interface as a gateway to 
the project users. Thus it is clear that what we have created is not 
a traditional computational Grid but a Mesh that integrated these 

 

Figure 1: Point target focused by FK (left) and by MLTD 
(right) Processing.  
 



resources. Hence this motivated us to use the term cloudmesh for 
our software tool.  

4. Performance Evaluation and Improvement 
of the CReSIS Multi-look Time Domain 
Processor 
As discussed previously the CReSIS analysis system includes a 
multi-look time domain processor (MTTDP) [8]. We identified 
the portion of the algorithm that is used frequently but takes a 
long time to complete. Hence our optimization efforts are focused 
on the optimization of this part.  The original algorithm was 
written in matlab. The code was analyzed for several possible 
code improvements and the improvements were implemented. 
These improvements include: 
1) Better alignment of data types in memory. We found that 

several data types used in the algorithm did not correspond to 
the actual data types intended to be used such as complex 
numbers. Although this does not pose an issue within the 
original matlab code It does provide a challenge during the 
conversion of such programs to C. Thus we identified such 
data types and replaced them with datatypes that allow a 
seamless conversion to C. We also verified that the 
numerical calculations while performing these changes were 
not affecting the original or the modified program.  

2) Avoiding repeated calculations through variable substitution. 
We found a sizable number of small calculations that were 
repeated in several parts of the algorithms. However as the 
code is executed tens of thousands of times, overtime this 
will result in an unnecessary time penalty. While replacing 
such calculations with variables and placing the calculations 
in appropriate loops we avoided a significant number of such 
redundant calculations while using our variable store.  

3) Replacement for key matlab functions with a C version of the 
code.  Once we have made these optimizations we took the 
resulting program and translated it to C. This translation 
undoubtfully leads to the biggest performance improvement, 
as we will see later. The translation was only possible after 
we carefully corrected the usage of the data types (see 1). 

4) Easy integration of the newly developed code. To support the 
existing extensive CReSIS toolbox, the new optimized 
functions must easily be integratable in the code. This is 
achieved while wrapping the C function into a matlab MEX 
code that allows the calling of the C function without 
changing the original matlab code (other than the name of the 
function). Hence the CReSIS workflow is unchanged. 

5) Update of the Matlab ecosystem. We also found that the 
current system was executed while using a fairly old version 
of matlab. We updated to a very recent version, which 
provided features that were not available in earlier versions. 
While using this version we were able to more easily 
generate a C program. While purchasing a variety of matlab 
coder licenses for a variety of systems we were also able to 
more easily generate makefile that could be adapted for a 
variety of systems. 
 

The modified code was tested extensively for numerical accuracy 
and an independent verification was conducted at University of 
Kansas to double check the accuracy of the new code. 
Furthermore, we developed a code performance testing 
framework that used two data sets and tested accuracy with a 
variety of parameters. This framework allowed us to run the code 
in uniform fashion on various machines including supercomputers 
at University of Kansa, IU, and XSEDE. 

The result was that on a modern hardware architecture the code 
was significantly faster than before and for a standard dataset with 
a bin size of 1700 the speedup between the original un-optimized 
original Matlab code running on Quarry (main production analysis 
machine) and new code was over a factor of 60 while comparing 
the performance of the original algorithm on quarry with the 
performance of the fastest server running the C optimized version. 
The compilation time was also decreased significantly by a factor 
of over 100 on a modern computer.  
While using this new optimized program we conducted a number 
of significant performance studies on various architectures to 
identify the single core performance characteristics of the code. 
This is important as to identify how the code behaves and to 
outline a path forward in the production workflow management.  
The new code runs a factor of 9-20 faster on most machines while 
comparing the C vs the original matlab performance. Quarry, 
echo, and india only receive a performance improvement of about 
5. The comparison of optimized code run times normalized to 
fastest machine is shown in Figure 3. Quarry, Karst (IU) and 
Drebber (KU) are used to analyze CReSIS data while Bigred, 
Bravo, India, Delta and Echo are servers at IU. Gordon is an 
XSEDE machine at SDSC and Optiplex and laptop are client 
testbeds.  

5. Development Environment 
Originally, we tried to conduct our work on the optimization of 
the algorithm on the supercomputers accessible to us. However 
we found that on the main machine Quarry (at that time still 
located at IU) the algorithm was unacceptable slow (motivating 
this work). Although other machines were faster we still faced the 
issue that for the optimization the execution time was still to long 
in order to make progress quickly. We looked at the algorithm and 
identified that much of the calculations are memory bound and 
would behave similar to an ODE. Therefore we could try to 
estimate on which machine we should conduct our optimization 
while consulting the build in matlab benchmarks. Hence we 
obtained a quick overview while executing the standard matlab 
benchmark on the machines we had access to at that time. The 
results of this benchmark are shown in Figure 2. The machines 
used in this study are in more detail described in Table 2. 
Interesting to note is that we immediately identified that the use of 
Gordon in no flash mode will be unsuitable. However with the use 
of flash it was very reasonable. However, this motivated us to also 
explore the lead authors Laptop which is a MacBook Pro (Mid 
2014, a relatively recent machine. It is configured with 16GB 
flash main memory and has 8 cores. We purchased additional 

 
Figure 2: Matlab standard benchmark 
 



licenses for this machine and other desktop machines. This 
allowed us to more easily use the graphical user interface features 
of matlab in the code development and debugging phase. Not 
surprisingly, the laptop performed the best from all machines we 
had access to. Hence, we used this machine to do all the 
development work needed for the code optimization.   
To further simplify the development we also identified a smaller 
dataset and reduced the workflow to only execute a small number 
of samples, as well as reducing the number of iterations. Thus 
instead of waiting for hours while testing a single modification we 
reduced the time to less than one minute for our test data. We 
verified later that our original assumption about the capabilities of 
the machines derived from the standard matlab benchmark were 
giving us an accurate picture of on which it may perform well. 
One of the other issues we had was that the licensing management 
of matlab deployed within IU. This was based on the issue that we 
were in the need of purchasing of matlab licenses that were not 
part of the typical licenses sold to other IU staff and especially the 
lack of access to the matlab documentation while using the IU 
group licensing. Without this access we could not access relevant 
documentation that required a login onto the Matlab portal. While 
consulting with Mathworks and the responsible IU staff this issue 
was eventually overcome. However, we believe this is a great 
lesson to learn especially in cases where XSEDE looks for 
alternative licensing models. One must be aware the 
documentation is limited to those registering in the Mathworks 
portal, but such a user must have a valid product license 
associated with the appropriate toolbox. We also realize based on 
our experience with the C compilation that version differences 
between various matlab versions may be significant. Hence, it 
may be necessary to support multiple matlab versions on hosted 
systems. Although users may bring their own licenses, as recently 
discussed with us in the resource provider  XSEDE meetings, it 
may not be a solution for those that run production jobs due to 
cost. Naturally, compiled matlab code may be needed. Therefore, 
it is in the best interest of such sites to provide the tools and 
access to all documentation that makes it easier to optimize 
matlab code and translate it to C for anyone running matlab jobs. 
This not only includes the matlab compiler, but also must provide 
to the relevant users matlab coder license. In the long run the 
offering of these toolboxes will pay of as we can provide already 
see from our own experience in the optimization of our code 
discussed in this paper. However we also recognize that the 
development of such code is not trivial, but may require the 
interaction with computer scientists and experts familiar not only 
with matlab but with general software architecture. This will 
allow the scientists to focus on developing quality code in matlab 
while the experts can optimize it for the target machines. 
Furthermore it is not sufficient to just optimize the algorithm but 
the computer scientist must be able to evaluate the workflow and 
the interaction within it in order to identify possible future venues 
of software and resource utilization such as the once we have 
identified with cloudmesh. Thus the ideal support person must be 
multifaceted and provides significant expertise in software 
architecture to leverage possible other frameworks. 
 

6. Performance Study 
We have conducted a number of significant performance studies 
on various compute resources to identify the single core 
performance characteristics of the code. This is important as to 
identify how the code behaves and to outline a path forward in the 

production workflow management.  It will enable us to answer the 
following questions:  

• Question A: How good is the currently used hardware and 
software for the code? 

• Question B: How much faster is the code on a single modern 
core vs. the original code on for example quarry, the 
machine we are currently using? 

• Question C: How much faster is a C code version of the 
code on available supercomputers? 

•  

6.1 Performance Testing Framework 
To do a meaningful performance study we developed a 
performance testing framework that includes an isolated version 
of the most time intensive calculation of the workflow. We 
verified that when running the entire worklflow the rest of the 
algorithm did not contribute significantly to the overall execution 
time. The framework allows us to utilize different test data and 
also to adjust for the bin size a parameter that influences the 
runtime significantly. This test framework was ported and 
deployed to all machines we had access to.  

6.2 Hardware and C Optimization Impact 
First, we need to identify how the existing original code compares 
to an optimized version. This will help assessing potential for 
optimizations of the code as well as identify how to proceed. For 
this test we ran on a single core the original code on the machine 
quarry. Quarry used to be located at the IU datacenter and used as 
one of the primary machines to run the analysis. Quarry is 
currently being moved to University of Kansa Obviously it is an 
older generation machine. We compared the performance of the 
computational intensive in matlab on quarry and the C optimized 
code on an OSX MacBook Pro (Mid 2014, 2.8 GHz Intel Core i7, 
16 GB 1600 MHz DDR3, $3200). This laptop was the newest 
hardware we had access to. This comparison is important as to 
show how the current code performs vs the performance of a 
modern architecture while also considering code improvements. 
As there are many parameters and datasets to choose from we 
have taken one dataset and set the bin size to 1700 that was 
identified to be a scientific relevant parameter set for many 
calculations. 
The results were astonishing, as we achieved a speedup of ~63 
between the unoptimized original matlab code running on 
quarry and the Laptop on a single core.  Hence we see that while 
using more modern hardware plus our optimization a significant 
performance improvement can be achieved that will drastically 
reduce the analysis time. 
Naturally this comparison needs to be further analyzed an in our 
next comparison we identified that on the Laptop the performance 
improvement factor between the original code and the C code is 
~23. We than compared the C code vs. the original code on quarry 
and only obtain an improvement of about ~5.1. When comparing 
the performance of the C codes between the Laptop and quarry 
we see that the Laptop runs 6.61 times faster. 
We conclude from this data that the algorithm is dominated by 
calculation speed and access to memory. Both are significantly 
better with newer architectures. Furthermore, we ran the newest 
matlab version on the Laptop.  
 

6.3 Resource Comparison 
To compare other resources we have run the same performance 
study on Quarry, Bravo, Echo, Delta, India, Echo, Bigred-2, 



Karst, Gordon, Drebber, and the Mac OSX Pro. The details of 
these machines are provided in Table 2.  
We ran the following versions of the code, where resource 
indicates the name of the resource: 

• <resource>-p: is the unmodified matlab production code 
executed on the resource 

• <resource-o>: is the optimized matlab production code 
executed on the resource  as explained in Section 4 2) 

• <resource-c>: is the c code derived from the optimized 
matlab code executed on the resource. 

 
Figure 3 shows the performance results on the various resources 
in seconds. The abscissa varies the bin size that is used as one of 
the main parameters of interest to the scientists. A useful value is 
dependent on the actual data and may need to be varied.  We have 
currently identified a maximum of 1700 for this value and data 
set. This is a realistic value that will be used as part of our main 
analysis. In addition we provide in Figure 4 the speedup 
comparison of the fastest resource against all other resources and 
algorithms compared. Hence the MacPro is the baseline with one. 
All other machines perform slower than this resource by a factor 

specified by the ordinate. In the Figures we also provide 
performance data while varying the the bin size. We can make the 
following observations from the two figures: 
1. While varying the bin size the algorithm behaves linearly.  
2. In cases where divergence is found from the linear scalability 

of the calculation we find, that resource limitations on the 
server took place. 

3. We can clearly identify the three groups of algorithms based 
on if they were (p) original (o) optimized (c) translated from 
the optimized matab code to C.  

 
To further analyze the data we present in the subsequent Figures 
selected details from Figure 3 and Figure 4.  

 
 

6.4 Fastest Single Core Performance Analysis 
The fastest single core performance is obtained on the MacBook 
Pro. This is not surprising as this machine is the newest machine, 
and has a relative powerful processor. Furthermore it has 16 GB 
of main memory and 1TB flash SSD.  The details for the 
performance and speedup are depicted in Figure 5 and Figure 6. 
We identified that on this machine we can achieve an overall 
performance improvement is of a factor of over 20 while 

 
Figure 3: Runtime of the test data and performance 
measurement framework for the computational intensive 
part in the multi-look time domain processor. 
 

 
Figure 4: Speedup of the test data and performance 
measurement framework for the computational intensive 
part in the multi-look time domain processor. 
 



comparing the original optimized version of the algorithm with 
the optimized and to C translated version. The fast processor and 
access to fast memory are here of great importance.  

 

6.5 Comparison of the Optimized Algorithm 
Translated to C 
Figures 7 and 8 show the comparison of the optimized matlab 
algorithms translated to C. We see that for a bin size of 1700 that 
we are interested in the fastest single core performance next to the 
MacBook Pro is achieved by Drebber and by Gordon. We 
identified that the laptop is 2.27 times faster than Drebber and 
2.65 faster than Gordon. All other machines are at least four times 
slower making a considerable performance impact. The worst 
machine of them is not surprisingly Quarry, the oldest of the 
resources, which is 6.61 times slower. However due to the 
availability of this machine it will be continued to be used to 
obtain production results. While observing the results in more 
details we find several noteworthy issues with some of the 
resources. First, on an optiplex 960 (an old desktop) we ran into 
an actual slowdown of the algorithm due to a lack of memory on 
the machine. Second, we see a significant slowdown of the 
algorithm with increased bin size on Delta. Also here the memory 
became problematic. Thus such machines are performing best 
with smaller bin sizes. Such bin sizes actually do exists in the 
workflow and therefore if we can identify them such machines 
could be restricted in the bin sizes that ought to be calculated on 
them. Third, we have to recognize that very small bin sizes may 
not be of interest and may not be relevant for the calculation. Thus 
we discard bin sizes smaller than 500. This will than transform the 

 
Figure 5: Performance Improvement of the original Multi-
Look Time Domain Processor on the fastest single core 
resource 
 

 
Figure 6: Speedup of the original Multi-Look Time 
Domain Processor while comparing the original algorithm 
with the C based optimized algorithm on the fastest single 
core resource. 

 
Figure 7: Runtime of the test data and performance 
measurement framework for the computational intensive 
part in the multi-look time domain processor while only 
comparing the optimized algorithm that was translated to 
C. 

 
Figure 8: Speedup comparison of the optimized C versions 
on various machines. 
 



data for Gordon from a dip to a slowdown with larger bin sizes. 
Hence we can make the same statement that we have done: for 
Gordon as we are running in to some resource limitation with 
larger bin sizes. However as this machine is significantly faster 
than all the others, this is one of our primary target machines. At 
this time we have not yet undertaken an analysis on XSEDE’s 
Stempede and other new resources that are not yet available to us 
such as comet. 

6.6 Predictability of the runtime for 
Production Runs 
Based on the data we hove obtained we can use it to fairly 
accurately predict the overall runtime of the workflow that is 
needed as part of the data analysis part. We have used the almost 
linear scaling even within obtaining the scalability data itself 
while we were predicting by running 3 small samples up front to 
identify when the larger example is completed. We used for this a 
regression analysis and thus given a resource and a bin size we 
can predict the runtime of this job.  This data can now be used to 
predict the overall runtime.. 

7. Prediction of the Overall Data Analysis 
The previous analysis focused on the optimization of the most 
computational intensive portion of the workflow to be conducted. 
It provides us with a very good basis to identify a very accurate 
prediction for the computation time on resources. 
The field data collected by the team is measured by field seasons. 
A year has four field seasons. During a field season data is 
collected by plane. There are 20 flights in a field season. During 
one flight data is collected between 30-60 frames. A frame is 
defined over 50km with 2 waveforms and 15 channels. 
Furthermore a job is defined by 500m (this translates into a bin 
size between 400-1700, in our algorithm this is defined by the 
parameter 1700), one waveform and one channel. One frame will 
result in 3000 jobs of that are based on our optimized algorithm. 
Hence we calculate that in one field season we obtain between 
600 to 1200 frames and between 1.8M to 3.6M jobs. While using 
our data from the previous section we determined the lower and 
upper bound of the core hours on a given compute resource. We 
see that on Gordon we will need approximately 1.2 Million core 
hours to calculate the field season.  
In addition we will need 300K hours to calculate regions that we 
determine of special interest. It will also allow us to further 
optimize the algorithm while taking into account core, memory 
and other resource specific parameters. The additional core hours 
will also be used for other algorithm improvements that are 
discussed in the next section. Thus the allocation will not only 
serve as a production, but also as a development allocation. We 
also plan to conduct a performance analysis on Stempede and 
would like to work together with TACC staff to further explore 
the Matlab-Bring-Your-Own-License model. For that we 
currently anticipate 50K core hours for the multi look method and 
an additional 50K for the method discussed in the next section. 

In addition to Gordon’s compute time we will also leverage 
Quarry. However, resource limitations especially in regards to 
memory may hinder progress. As the machine is currently not 
operational we were unable to make further recommendations. 
One thought would be to upgrade the memory or to consolidate 
the existing the memory into a smaller number of servers. 
 

8. Feature Detection of Ice-Sheet Boundaries 
Furthermore, we are investigating automatic techniques for 
determining ice and snow layer boundaries in radar echograms. 
While several recent papers have studied this problem including 
our own in [1], it remains a hard problem because of the high 
degree of noise, the often faint layer boundaries, and confusing 
linear structures caused by signal reflections and clutter. We thus 
need new techniques which combine together weak image cues, 
reasoning explicitly about uncertainty in both the evidence and the 
resulting layer boundary estimates.  
We proposed a new technique for layer finding that removes 
many of the assumptions and restrictions of [1], while preserving 
the ability to integrate weak information and explicitly model 
uncertainty. This new approach was published in the IEEE 
Conference on Image Processing (ICIP 2014)[3]. In particular, the 
paper introduces several important contributions to improve both 
the accuracy and utility of layer-finding. Our technical innovation 
uses Gibbs sampling for performing inference instead of the 
dynamic programming (Hidden Markov Model)-based solver of 
[1]. This allows us to remove some of the assumptions of the 
probabilistic mode and solve for layer boundaries simultaneously, 
yielding automatic layer detection results that are significantly 
better than the approach in that paper.  Unlike [3], which was 
really only practical for solving the two-layer problem (i.e. 
finding just the ice surface and bedrock layers), this new approach 
can handle an arbitrary number of layers, which will be important 
for finding internal (annual) layers in ice and snow (and we 
continue to investigate that problem). Moreover, the Gibbs 
sampler produces explicit confidence intervals, thus giving bands 
of uncertainty in the layer boundary locations. Since noise and 
ambiguity in radar echograms are inevitable, we believe that 
estimating confidence could be crucial in applications of layer 
identification (e.g. when used as input to glaciological models), 
and to our knowledge this is the first paper that has demonstrated 
this capability.  
We tested our layer-finding approach using a 826 echograms from 
the 2009 NASA Operation Ice Bridge program, which was the 
same dataset used by [1]  so we can directly compare our 
accuracy. Figure 1 shows results on three sample echograms, 
presenting the output of our technique (including the confidence 
interval) as well as the ground truth and baseline technique of [1]. 
Quantitatively, compared to human-labeled ground truth, our 
technique outperforms [1]   significantly, by decreasing the error 
rate (measured in terms of mean or median squared deviation 
from ground truth) by about 44.3% for surface boundaries and 
48.3% for bedrock. Our technique is slower than [1]  (about 17 
seconds per image compared to a few tenths of a second), but 
since layer finding is trivially parallelizable across images, we 
believe accuracy is much more important than compute time in 
practice. We also quantified how informative the confidence 
intervals are by computing the percentage of ground truth layer 
points that are contained within the estimated intervals. We found 
that 94.7% of the surface boundaries and 78.1% of the bedrock 
boundaries are within the intervals, for an overall percentage of 
86.4%. 

Table 1: Predicted core hours for one field season 
 Karst Drebber Quarry Gordon Bigred2 

1 job (hrs) 0.53 0.29 0.84 0.34 0.71 

core hours  
 - lower estimate 

955,000 516,500 1,504,500 603,500 1,271,500 

 - upper estimate 1,910,000 1,033,000 3,009,000 1,207,000 2,543,000 

 
 



  
Our ongoing work is applying this new technique to the much 
more challenging problem of locating internal (annual) layer 
boundaries in ice and snow. Our approach in [3] removes the 
restrictive assumption of [1]  that there are a small number of 
layers, but still requires knowing the number of layers ahead of 
time. This is a restrictive assumption because it involves solving 
the challenging problem of model selection: a model with more 
parameters (layers) will always fit the data better, but will also 
overfit, yielding a result that is statistically meaningful but not 
useful in practice. We are currently investigating extending our 
model to use Reversible Jump MCMC [9] as a means of 
addressing this problem.  

9. Snow Radar Imagery 
Our efforts to accurately identify multiple snow features in polar 
radar imagery, includes a statistical graphical model using both 
local (iterated conditional modes) and global (simulated annealing [10]) techniques shown in figures 3 and 4 for snow layer 

 
Figure 2: Results on three sample echograms. Each pane 
includes the hand-labeled ground truth image (top-left), the 
output of ref. [1] (top-right), and then our output (bottom).  

 

 
Figure 3: Iterated Conditional Modes 

 

 
Figure 4: Gibbs-based simulated annealing 

 



determination. In iterated conditional modes [9], an initial 
estimate of the labels uses a deterministic “greedy” strategy to 
determining which labels gives the largest decrease in energy 
function; this process is repeated until convergence. In simulated 
annealing [11] a temperature parameter is reduced while 
maintaining current and neighboring variables. In each iteration, 
the energy is calculated for the current and neighboring variables; 
if assigning a value to the variable is an improvement, the 
algorithm accepts the assignment and updates a new current 
assignment. Otherwise, it accepts the assignment with some 
probability.  

10. Conlusion 
In this paper we have first, shown that the performance 
improvement of the multi-look domain processor and the use of 
modern hardware resulted in an overall performance improve this 
performance is done on a single core. When applying the same 
improvements to Quarry a supercomputer on which the analysis is 
to be run we only obtain a factor of 5. In our future work we will 
be investigating the increase use of parallelism in the workflow 
pipeline and the utilization of multicore features. Use of multicore 
may be hindered by too little memory on some of the machines. 
Second, we have provided a new algorithm, that accurately 
identifies multiple snow features in polar radar imagery, includes 
a statistical graphical model using both local and global methods. 
The algorithm is tested on analysis of ice-sheet boundaries and 
snow radar imagery. 
We have identified that we can predict to use 1.5M core hours on 
Gordon. We like to additionally apply for 100K core hours split 
between our efforts to improve the feature detection and the 
MLTPD algorithms. 
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