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Abstract

We examine the challenge of coupling applications to
real-time data sources in a Grid environment. Such
problems are important to the emerging field of Grid-based
emergency planning and crisis response, in which real-
time data sources must be coupled to modeling applications
to provide timely forecasting to emergency planners and
responders. In this paper we present a Grid-based
scripting workflow system that is capable of managing both
streaming data sources and service-based applications.
We apply this system to flood modeling codes coupled to
simulated NEXRAD Doppler Radar data.

Keywords: Grid Applications, Stream Data Processing,
Workflow, Web Services, Grid Programming Models,
Emergency Preparedness and Response, Geographic
Information Systems

1. Introduction

Applications that generate rapid, continuous and large
volumes of stream data include ATM and credit card
operations, financial tickers, web server log records,
readings from sensors used in a variety of applications,
such as High Energy Physics experiments, Weather sensors
and Network sensors. Most of this data is archived
in a database at an off-site warehouse making accesses
prohibitively expensive [1]. Ability to make decisions and
infer interesting patterns in real-time, is crucial for several
mission critical tasks.

1.1. Stream based vs. File based applications

Workflow systems such as BPEL [2] focus on flow of
control, and data flow is a side-effect of control flow. This
is true in case of business applications where the amount
of data involved is very less as compared to a scientific
environment. In execution of a workflow in a scientific
environment we need to transfer large amounts of data
between processes.

In traditional architecture, the entire data set is
transferred using protocols such as GridFTP [3] before
invoking the application for processing the data. During
processing, the application may generate more data that
must be stored until the computing is finished. This
mandates huge amounts of space for temporary data. Some
of the workflow systems illustrated in [4] focus on building
workflows for grid but use traditional file transfer methods
to transfer data between processes.

Processing data in a stream is advantageous since data
processing can begin on the fly thereby alleviating the need
for extra temporary storage for gathered data.

Stream data can be found in many applications. For
example audio / video data applications [5] are stream
based. Data provenance and consistent reproduction of
analyzed data through workflow from stored raw data
sources is another well known example [6] to which the
streaming approach applies.

1.2. HPSearch

We have been developing HPSearch [7] as an extension
to an existing scripting language that binds Uniform
Resource Identifiers [8] (URI) to the scripting language.
In future work we may also provide support for WS-
Addressing [9] to refer to resources. This would allow



us to access URI’s either as variables or through a search
interface (For e.g. to Google web service).

Every data source, filter or sink is identified by a URI
on the web. In our case we use a scripting environment
to create objects that can be used to access a variety of
data sources. This is known as”Binding URI to the
Scripting Language”. We have the following URI bindings
in HPSearch.

• Reading from (or writing to) files (usingfile://)

• Reading files via http or ftp protocols (http:// or
ftp://)

• Reading from (or writing to) a raw socket
(socket://ip:port)

• Reading from (or writing to) a topic in a brokering
system (topic://)

• Reading from a database and streaming the results of
SQL queries as XML (jdbc:). We have implemented
a simple scheme to map the result set to XML. (Refer,
http://www.hpsearch.org/notes/scripting)

The HPSearch shell uses NaradaBrokering (Section 1.3)
to route data streams. In effect, processing is done by
passing data through various programs that are accessible
as services, in a Pipe-Filter fashion.

This architecture is popular in UNIX systems. In this
architecture every component (also called as a filter) has a
set of input and output ports. The filter transforms or filters
the data it recieves on its input ports. The processed data
is sent out on the output port to the next filter. The pipe
connecting the two filters is a directional stream of data
usually represented by a data buffer to store all the data until
the next filter has time to process it.

HPSearch is thus designed as a scripting interface [10]
to the Internet (Grid). We currently use the Rhino [11]
implementation of Javascript, although any other scripting
language like Python or Perl can be used. Scripting poses
numerous advantages as observed by [12]. Rhino further
allows us to define custom Javascript objects called ashost-
objectsthat help to dynamically access the host system.

This feature can be useful to create objects that help
manipulate data streams. In the prototype explained
later, we make use of a proxy based Web Service that
encapsulates the processing of stream-data. The overall
application, which is made up of numerous such data filters
is then controlled via HPSearch objects.

1.3. NaradaBrokering for Stream handling

NaradaBrokering [13, 14, 15] is an event brokering
system designed to run on a large network of cooperating

broker nodes. Communication within NaradaBrokering
is asynchronous and the system can be used to support
different interactions by encapsulating them in specialized
events. NaradaBrokering guarantees delivery of events in
the presence of failures and prolonged client disconnects,
and ensures fast dissemination of events within the system.
Events could be used to encapsulate information pertaining
to transactions, data interchange, system conditions and
finally the search, discovery and subsequent sharing of
resources.

We may summarize some of the important features of
NaradaBrokering as follows

• Implements high-performance protocols (message
transit time less than 1 ms per broker)

• Order-preservingoptimizedmessage transport

• Quality of Service (QoS) and security profiles for sent
and received messages

• Interface with reliable storage for persistent events,
reliable delivery via WS-Reliable Messaging [16]

• Fault tolerant data transport

• Support for different underlying transport
implementations such as TCP, UDP, Multicast, SSL,
RTP, HTTP.

• Discovery Service to find nearest brokers / resources.

2. Related Work

Systems that implement workflow support for combining
high-performance computing elements exist; however, they
have little support for managing data streams and data-flow
between the connected components. We highlight three of
these systems below.

Triana [17] is a graphical Problem Solving Environment
that provides a user portal to enable the composition of
scientific applications. Triana can be used as a Grid
Computing Environment and can dynamically discover
and choreograph distributed resources such as Web
Services. Triana, however, lacks explicit support for control
constructs and these constructs are handled by specific
components.

Taverna [18] is an open source set of language
and software tools to facilitate easy use of workflow
and distributed compute technology within the eScience
community. It features support for stateful grid services,
nested / recursive workflows and implicit iteration support.

Kepler [19] (based on Ptolemy II [20]) is a set of Java
packages supporting heterogenous, concurrent modelling,
design and execution. The system supports activity-oriented
programming and graphical user interface for composing
complex workflows.



3. Grid technologies

Grid Computing technologies [21, 22, 23, 24] enable
discovery of remote data sources and applications and
carry out the transactions in a secured environment. Grid
technologies are well established in high performance
scientific computing and have more recently addressed
problems in secure, large scale distributed data access,
collaboration and information management [25, 26].

Various technologies are being used to implement
traditional grids [27]. Grids are now definingWeb
Service interfaces[28, 29] that are independent of the
underlying implementation, allowing us to dynamically
discover services and connect them using various workflow
technologies [2].

We have identified an important convergence in Grid,
Web Service and Geographical Information Systems (GIS)
technologies that will enable Grid based crisis management
and emergency preparedness and response [30]. Crisis
Grid proposes to connect data-sources, high performance
modelling applications, computing resources, visualization
services and collaboration services. High quality, high
resolution data such as LIDAR (LIght Detection And
Ranging) and online satellite data are available at
unprecedented levels and the addition of small, networked
sensor devices continue to drive the trend. With more
and more data sources becoming accessible as Web
Services, these services may be coupled with various
core Grid Services to create a crisis response system for
emergency preparedness, response and disaster informatics
communities. The challenge lies in creating a unifying
framework that connects these services in standard ways.

In general, the intended interaction with the services can
be summarized as follows -

1. Discover and access remote data sources, filters and
sinks, both archival and real-time.

2. Process Incoming data. This involves several steps
including data filtering (to process the raw data and
format it correctly for further processing) as well as
computational modelling.

3. The final results may be delivered to visualization
applications or published to interested subscribers
including real-time collaboration and archival storage
for Semantic Grid [31] technologies.

Figure 1 illustrates how a particular critical infrastructure
can be constructed from core Grid services combined with
special set of auxillary Grids (sensors, GIS, visualization,
computing and collaboration).
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Figure 1. Critical Infrastructure Grids built in
Composite fashion

3.1. Application to Flood Runoff computation

We consider the particular case of Grid-based flood
modelling. Flood Crisis Grid will enable better flood
prediction and assessment. The Crisis Grid approach can
be adopted to many other applications including severe
weather forecasting, earthquake modelling and wind-born
contaminant modelling, to name a few.

The flood runoff computation (Refer figure 2) involves
the following steps

• The MapService is an archival storage that sends
out the spatial information for the terrain under
consideration.

• The RainFallPublisher is a front-end to the
sensor network that sends out the readings from the
sensor to theComputeService.

• The ComputeService uses the rainfall data and
the spatial information to operate the runoff model for
flood analysis.

• The results are then sent
over to theVisualization service which displays
the computed predicted model results in the form of an
animation.

– The visualization tool may be
a standalone application or a servlet application,
that subscribes to the topic representing the



Archive Service

MapService

Visualization

Rainfall Publisher

Implemented

Optional (Not Implemented)

ComputeService
Runoff Computation

Figure 2. Grid based Flood Modelling

stream on which theComputeService sends
out the computed images.

• Alternatively, the computed data may also be sent over
to theArchive service for future analysis.

4. Data flow

Workflow technologies [2] help us to link various
Web Services together to create a much more powerful
distributed application. In the flood grid computation we
expect to link together disparate services (MapService,
RainfallPublisher, ComputeService
and VisualizationService) and orchestrate the
functioning of these services. Further the data-handling
requirement can be satisfied by using a Web Service based
proxy that can be invoked in an existing Web Service
fashion but can also handle data streams.

4.1. WSProxy Interface

The WSProxy is illustrated in Figure 3. The
WSSConnector is a Web Service that wraps an
InvocationContainer object. We use Apache
AXIS [33] to deploy the Web Service. Using Web Service
invocation, we can request theInvocationContainer
to invoke a particularProxyWebService. Additionally
we can also specify the input and output URI corresponding
to the required data sources and sinks respectively. The
InvocationContainer is responsible for making the
data sources / sinks available to the service as input / output
streams. Thus, we may suggest stream topic names as input

and output, effectively making the service process the data
in a stream.

WrapperProxyWebService

RunnableProxyWebService

ProxyWebService

Invocation Container

WSSConnector
WebService Stream Connector

AXIS

Data
Input

Data
Output

Web Service
Interface

Figure 3. WS Proxy Architecture

As shown in the Figure 3, we also provide two
interfaces namelyRunnableProxyWebService and
WrapperProxyWebService.

The functionality provided by them is as follows.

• RunnableProxyWebService:
This presents a thread-safe interface with additional
control operations, namelystart, suspend,
resume andstop. A service that wishes to operate
on chunks of data may implement theprocess
function. The thread associated with the process then
repeats the following sequence

1. Sleep for aspecifiedtimeout.

2. Execute theprocess function. This executes
the application defined process on a chunk of
data.

3. Check if the process was suspended or stopped.
If not, goto step 1, else wait until the user issues
aresume.

• WrapperProxyWebService:
Using this interface is useful when the application
contains the logic to start, stop, resume, suspend or
handle the equivalent operations.



An advantage of this scheme is that the flow controlling
engine need not handle the data streams, a desired feature
noted in [32]. Furthermore this kind of a proxy can
be invoked by any workflow engine and is thus workflow
engine / language independent.

The ProxyWebService also exports the steering
operations (start, suspend, resume, stop) via Web Service
in order to provide steering capability to the data-flow
application. Refer to Ref [34] for examples on the usage
of WSProxy in the flood modelling prototype.

4.2. Scripting for controlling data flow

In our case we make use of the HPSearch engine to
control setting up of the data flow. HPSearch can also be
used to set up custom actions in the event of an error in
processing. Using a scripting engine like HPSearch allows
for rapid prototypingof the application. The HPSearch-
Javascript is shown in Figure 4.

Setting up the service involves

• Discovering the service (NBDiscover)

• Creating aWebServiceHandler object to interact
with theWSSConnector in setting up the service and
starting it.

• (Optionally) Setting the various parameters of the
service in question.

• Creating aFlow object to handle the distribution of
various flow components to various workflow engines1

in the system. Each of the workflow engines should be
chosen such that it is nearest to the resources it has to
accesse2.

• Finally start the flow.

The various objects used, are as follows

• NBDiscover: Interfaces a customDiscovery
service which serves as a registry of available services.
This may be extended to discover brokers via the
NaradaBrokering discovery service.

• WebServiceHandler: Serves as the client side
to invoke and monitor the proxy webservice.

• Resource: Binding to handle URI’s which point
to file (file://), web resource (http:// or
ftp://), NaradaBrokering stream topic name
(topic://) or a database (jdbc:).

1Refer: http://www.hpsearch.org/notes
2This is an optimization issue and has currently not been addressed

• Flow: Handles the flow of data. We specify
the components of the flow and the start activities
(components that are responsible for inputting the data
in the data flow pipeline). The components of the flow
are initialized first followed by the start activities so
that the components of the pipeline are ready to recieve
and process the data.

4.3. Error Handling

Since the components of applications (such as sensor
networks) are very dynamic, we may have services and
sensors going up and down. The nature of errors that may
occur and the possible actions that might be taken vary
between various data flow applications. We list below, some
of the possible errors and the corresponding actions that
might be taken

• The sensors participating to provide the rainfall data,
fault or are washed away. The location of the new
service is different. The user may check this by re-
discovering the service, invoking it and resuming the
computation.

• The ComputeService computation results in an
incorrect result (infinity or NaN). The user may choose
to ignore the readings for the current computation
and carry on or take some other action. These kinds
of errors are (ComputeService) implementation
dependent and must be handled in application specific
ways.

• The MapService’s archival storage throws a read
error. Choices are

– Ignore the error and try to read again.

– If sufficient tries have been done, we may
conclude that theMapService database is
no longer available and either try to re-
discover some otherMapService or stop the
computation altogether.

Thus from the above observations it is pretty clear that
most of the errors are application specific and dynamic
in nature and not much information is available until run-
time. HPSearch shell provides a way to define action scripts
corresponding to specific errors and notifications thrown by
the WSProxy. Network Sensor Prototype [35] shows how
these handler scripts may be defined.

5. Future work

The prototype works with static
images fromMapService. TheRainfallPublisher



mapService = "org.hpsearch.demo.CrisisGridServices.MapService";

mapServiceLoc = "http://156.56.105.176:9090/axis/services/WSSConnector?wsdl";

mapSource = new WebServiceHandler(mapService);

mapSource.setEndPointURI(mapServiceLoc);

rainFallPublisher = "org.hpsearch.demo.CrisisGridServices.RainFallPublisher";

rainFallPublisherLoc = "http://156.56.104.176:6060/axis/services/WSSConnector?wsdl";

rainFall = new WebServiceHandler(rainFallPublisher);

rainFall.setEndPointURI(rainFallPublisherLoc);

computeService  = "org.hpsearch.demo.CrisisGridServices.ComputeService";

computeServiceLoc = "http:/156.56.104.176:7070/axis/services/WSSConnector?wsdl";

compute = new WebServiceHandler(computeService);

compute.setEndPointURI(computeServiceLoc);

archive = new Resource();

archive.port[0].subscribeFrom("topic://Visualization");

archive.port[0].publishTo("file://u/hgadgil/Visualization.dat");

crisisGridFlow = new Flow();

crisisGridFlow.addComponents(compute, archive);

crisisGridFlow.addStartActivities(mapSource, rainFall);

crisisGridFlow.start();

Alternate means of
processing results.
For illustration only.

Figure 4. HPSearch Javascript to create the flow

publishes random numbers as rainfall readings when the
ComputeService specifically requests the next reading.

In an actual scenario we would be using the Purdue
NEXRAD Doppler Radar [36]. Other rain guages [37]
could be a part of an automated observing system like
the Automated Surface Observing System (ASOS)3 and
the Automated Weather Observation System (AWOS)4.
They generate atmospheric state variables of temperature,
pressure, relative humidity and wind (speed and direction).
The frequency of observation (and hence the data
generation) ranges from 5 minutes for ASOS to 20-minutes
for AWOS.

Other examples of rain guage / atmospheric state data
include Purdue Automated Agricultural Weather Station
Network (PAAWS), a network of 9 stations at each of Purdue
University’s Agricultural Research Centers andNOAA/NWS
Cooperative Observer Programwhich provides for 240
daily observations of precipitation in the state of Indiana
as well as 15 minute observations at 77 sites in the state of
Indiana.

Sensor and associated service failure, incorrect readings
and other such (runtime) errors are entirely conceivable and
must be handled without crashing the entire application. We
discuss below some of these issues.

3Operated by National Weather Service (NWS), Federal Aviation
Administration (FAA) and Department of Defense

4Operated by FAA and various state agencies

5.1. Assigning Attributes to Discovery and Service
Invocations

It should be possible to invoke services with a different
sets of parameters in order to run various simulations and
check different use-case scenarios. All parameter settings
could be stored in metadata management services by the
researcher in order to keep track of simulations and results.
For e.g.

• Suppose the flood modelling above relies on sensors
that measure the rainfall and water levels in
neighboring rivers and lakes. Suppose a researcher is
only interested in the measured values for the state of
Indiana, he may be able to set a parameter to get values
for the state of Indiana.

• Another scenario is the NaradaBrokering discovery
service. Suppose thediscover operation returns
more than one result for a particular service, the
user should be able to query each service’s metadata
(service data) to find which service best suits his
needs. Further theNBDiscover object should be
augmented by the ability to do a template based search
for services. The template could specify various
capabilities of the service.

5.2. Service information

Services allow querying them to get specific service data
or resource properties (WS-Resource Properties [29]). The



WSProxy implements a simple query scheme on getting the
current status of the service (running, suspended, stopped).
Other service specific service data querying would be
included in future.

5.3. Error handling and Notifications

As shown in Section 4.3, HPSearch allows us to define
custom actions using scripts. We also plan to implement
a more sophisticated notification system to handle errors as
well as notifications [38] and operations for rediscovery and
subsequent handling of resources.

5.4. Security

Security [39] is paramount to the functioning of any
system. Although the shell and WSProxy do not currently
implement any security schemes, we plan to use the security
features provided by NaradaBrokering [40]. We consider
security in two parts.

• By implementing NaradaBrokering security features
we can secure topics and the data sent on them.
The WSProxy may be sent special security tokens /
certificates which should be used when the WSProxy
subscribes or publishes data on a particular topic.

• The invocation of WSProxy takes place as a normal
Web Service. We use SOAP messaging for this
purpose. This communication can be secured by using
policies defined using WS-Security [41].

6. Conclusion

In this paper we describe how a complete Grid
application can be built by linking data sources and
filters. The paper also illustrates how a data-flow
can be setup between disparate components by using
NaradaBrokering and how data can be processed in a
pipelined fashion. Although existing flow specifications
help us link components, the WSProxy architecture helps
us to control streaming data sources and manage the data-
flow among the various components. By using HPSearch
as the scripting engine we can now easily incorporate more
data sources, services and end-user applications to createa
more usable Grid based application.
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