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1 Introduction

The Generative Topographic Mapping (GTM), also known as a principled alternative to the Self-

Organizing Map (SOM), has been developed for modeling the probability density of data and its

visualization in a lower dimension. Contrast to the SOM which does not define a density model [1],

the GTM defines explicit probability density of data and aims to find an optimized model by using

the Expectation-Maximization (EM) algorithm.

Although the EM algorithm [3] has been widely used to solve optimization problems in many

machine learning algorithms, such as the K-Means for clustering, the EM has a severe limitation,

known as the initial value problem, in which solutions can vary depending on the initial parameter

setting. To overcome such a problem, we have applied the Deterministic Annealing (DA) algorithm

to GTM to find more robust answers against random initial values.

The core of DA algorithm is to find an optimal solution in a deterministic way, which contrast

to a stochastic way in the simulated annealing [8], by controlling the level of randomness. This

process, adapted from physical annealing process, is known as a cooling schedule in that an optimal

solution is gradually revealed by lowering randomness. At each level of randomness, the DA algo-

rithm chooses an optimal solution by using the principle of maximum entropy [6, 5, 7], a rational

approaches to choose the most unbiased and non-committal answers for given conditions.

The DA algorithm [10] has been successfully applied to solve many optimization problems in

various machine learning algorithms and applied in many problems, such as clustering [4, 10] and

visualization [9]. Ueda and Nakano has developed a general solution of using DA to solve the

EM algorithms [11]. However, not many researches have been conducted to research details of

processing the DA algorithm. In this paper, we will tackle down more practical aspects in using

DA with GTM.

The main contributions of our paper are as follow:

• Developing the DA-GTM algorithm which uses the DA algorithm to solve GTM problem.

Our DA-GTM can give more robust answers than the original GTM which uses the EM, not

suffering from the random initial value problem.

• Developing an adaptive cooling schedule scheme, in which the DA-GTM algorithm can gen-

erate more reliable solutions than other conventional fixed cooling schemes.
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Figure 1: Non-linear embedding by GTM

• Developing an equation to compute the first phase transition temperature, which can be used

to set the initial temperature of the DA-GTM algorithm. With this equation, users can choose

the starting temperature directly.

2 GTM

We start by reviewing the original GTM algorithm [1]. The GTM algorithm is to find a non-linear

manifold embedding of K latent variables zk ∈ R
L(k = 1, · · · ,K) in the latent space, which can

optimally represent the given N data points xn ∈ R
D(n = 1, · · · , N) in the data space (usually

L ≪ D) (Figure 1). This is achieved by two steps: First, mapping the latent variables to the

data space with respect to the non-linear mapping f : R
L 7→ R

D such as yk = f(zk;W ) for a

parameter matrix W with zk ∈ R
L and yk ∈ R

D (we will discuss details of this function later).

Secondly, estimating probability density of data points xn by using the Gaussian noise model in

which the probability density of data point xn is defined as an isotropic Gaussian centered on yk

having variance σ2. I.e., the probability density p(xn|yk) has the following normal distribution.

N (xn|yk, σ) =
1

(2πσ2)D/2
exp

(

−
1

2σ2
‖xn − yk‖

2

)

. (1)

The mapping f(zk;W ) can be any parametric, non-linear model. In the GTM [1], for example,

yk = f(zk;W ) has been defined as a generalized linear regression model, where yk is a linear

combination of a set of fixed M basis functions such as,

yk = f(zk;W ) = Wφ(zk), (2)
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where φ(zk) = (φ1(zk), . . . , φM (zk)) is a column vector with M basis functions φm(zk) ∈ R(m =

1, . . . ,M) and W is a D ×M matrix containing weight parameters.

With K latent points zk(k = 1, . . . ,K), the marginal probability of the data xn can be written

by:

p(xn|W , σ) =

K
∑

k=1

p(xn|zk,W , σ) p(zk) (3)

=
1

K

K
∑

k=1

1

(2πσ2)D/2
exp

(

−
1

2σ2
‖xn − yk‖

2

)

(4)

with the assumption of uniform marginal probability p(zk) = 1/K.

For given N data points, xn ∈ R
D for n = 1, . . . , N , the GTM is to find an optimal parameter

set {W , σ} which makes the following negative log-likelihood minimum:

l(W , σ) = arg min
W ,σ
− log

N
∏

n=1

p(xn|W , σ) (5)

= arg min
W ,σ
−

N
∑

x=1

log
1

K

K
∑

k=1

1

(2πσ2)D/2
exp

(

−
1

2σ2
‖xn − yk‖

2

)

(6)

Since the problem is intractable, the GTM uses the EM method as follows: starting with

randomly initialized W matrix and iterating the following two equations:

Φ
tGoldΦW t

new = Φ
tRoldX (7)

σ2

new =
1

ND

N
∑

x=1

K
∑

k=1

rkn‖xn − yk‖
2 (8)

where

• X ∈ R
N×D is the data matrix of (x1,x2, . . . ,xN )t where xn ∈ R

D for n = 1, . . . , N .

• R is a matrix of R
K×N and its element rkn (k = 1, . . . ,K and n = 1, . . . , N), known as

responsibility or posterior probability, defined by

rkn = p(zk|xn,W , σ) =
p(xn|zk,W , σ)

∑K
k′=1

p(xn|zk′ ,W , σ)
(9)

• G is a K ×K diagonal matrix with its elements gkk =
∑N

n=1
rkn

• Φ is a M ×K matrix, of which k-th column is φ(zk)

The solution we want to find will be converged through the iteration process. However, as
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observed in the K-means method, the EM in the GTM also suffers from the random initial values

in which the solutions can vary depending on the initial parameters.

3 Deterministic Annealing GTM (DA-GTM)

Instead of using the EM, we can use the DA to find an optimal solution to the GTM. With the

DA, we can have more robust solutions against the random initial value problem.

The core of the DA is to define an objective function, known as free energy, in terms of an

expected cost of configurations and its entropy and to trace the global solution which minimizes

the free energy function.

The problem remains for us is how to define the right free energy function to the GTM. We

can do this in two different ways but both give the same result: i) following the method used

by Rose [10] or ii) simply using the equations by Ueda and Nakano [11]. We will introduce both

methods in the following.

3.1 Rose’s method

Defining the free energy is crucial in the DA. This problem can be solved by the method used by

Rose in [10]. The sketch of this procedure is as follow: First, we need to define a function Dnk,

which represents a cost function for association between a data variable xn and the latent variable

yk, and define the free energy

F = 〈Dnk〉 − TH, (10)

where 〈Dnk〉 is the expected cost of Dnk for all n, k and H is the entropy for the given parameter

T , also known as temperature. Secondly, find an optimal posterior distribution which minimize the

free energy F .

Let define a cost for the association of two variables xn and yk as a function of joint probability

p(xn,yk). By using the GTM’s Gaussian model p(xn|yk) = N (xn|yk, σ), the cost function Dnk

can be defined by

Dnk = − log p(xn,yk) (11)

= − logN (xn|yk, σ)p(yk). (12)

The idea behind the cost function is that the association cost of two variables will be low when the

probability p(xn,yk) is high and so the configuration is easy to observe. Otherwise, the cost will

increase.

With this definition, we can compute the expected cost 〈Dnk〉 by using the posterior probability,
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also known as responsibility, such that

〈Dnk〉 =
N
∑

n

K
∑

k

p(xn,yk)d(xn,yk) (13)

=

N
∑

n

p(xn)

K
∑

k

p(yk|xn)d(xn,yk). (14)

Note that
∑K

k p(yk|xn) = 1.

We can also define the entropy as H(X,Y ) = H(X) + H(Y |X) where the conditional entropy

H(Y |X) can be defined by

H(X|Y ) = −
N
∑

n

K
∑

k

p(xn,yk) log p(yk|xn) (15)

= −
N
∑

n

p(xn)

K
∑

k

p(yk|xn) log p(yk|xn) (16)

Now, we can define the free energy as follows:

F = 〈Dnk〉 − TH (17)

=
N
∑

n

p(xn)
K
∑

k

p(yk|xn)d(xn,yk) +
N
∑

n

p(xn)
K
∑

k

p(yk|xn) log p(yk|xn) +
N
∑

n

K
∑

k

p(xn)(18)

However, we don’t know yet what kind of posterior probability p(yk|xn) will minimize the

free energy (Eq. 17). We can solve this optimization problem by using the following Lagrangian

equation with the constraint
∑K

k p(yk|xn) = 1:

F ∗ = 〈Dnk〉 − TH + λx

(

K
∑

k

p(yk|xn)− 1

)

(19)

for λx is a Lagrange multiplier.

When ∂F/∂p(yk|xn) = 0, we get the optimal posterior distribution as

p(yk|xn) =
N (xn|yk, σ)

1

T

Zx
, (20)

where the normalizer Zx =
∑

yk
N (xn|yk, σ)

1

T p(yk)
1

T , which is called as the partition function.

Note that the optimal distribution we get (Eq. 20) is also known as the Gibbs distribution [10].
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3.2 Solution with Ueda and Nakano’s equations

We can derive the free energy and the optimal distribution directly, if we use the equations in [11]

by Ueda and Nakano.

With the same cost function defined in Eq. (11), we can compute a Gibbs distribution by

pGb(Dnk) =
exp

(

− 1

T Dnk

)

Zx
(21)

= exp

{

1

T
log

(

1

K
N (xn|yk, σ)

)}

/Zx (22)

=

(

1

K(2πσ2)D/2

)
1

T

exp

{

−
1

2σ2T
‖xn − yk‖

2

}

/Zx (23)

where

Zx =
K
∑

k′=1

exp

(

−
1

T
Dk′n

)

(24)

=
K
∑

k′=1

(

1

K(2πσ2)D/2

)
1

T

exp

{

−
1

2σ2T
‖xn − yk′‖2

}

(25)

which is known as partition function and T is known as temperature.

Now we can define the free energy as follows:

F (W , σ, T ) = −T
N
∑

n

log Zx (26)

= −T
N
∑

n

log
K
∑

k

(

1

K(2πσ2)D/2

)
1

T

exp

{

−
1

2σ2T
‖yk − xn‖

2

}

(27)

= −T

N
∑

n

log

K
∑

k

(

1

K

)
1

T

p(xn|zk,W , σ)
1

T (28)

which we want to minimize as T → 0.

Note that the GTM’s log-likelihood function (Eq 5), which is a target to minimize in GTM,

differs only the use of temperature T with our free energy function F (W , σ, T ). Especially, at

T = 1, l(W , σ) = F (W , σ, T ) and so GTM’s target function can be considered as a special case of

the DA-GTM’s.
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3.3 Deterministic Annealing optimization

Now we want to minimize F (W , σ, T ). Let pkn = p(xn|zk,W , σ) and then,

∂F

∂wi
= −T

(

1

K

)
1

T
N
∑

n

∑K
k

1

T (pkn)
1

T
1

σ2 (tni −wt
iyk)yk

∑K
k (pkn)

1

T

(29)

= −T

(

1

K

)
1

T
N
∑

n

K
∑

k

1

T
(rkn)

1

T
1

σ2
(tni −wt

iyk)yk (30)

and

∂F

∂σ
= T

(

1

K

)
1

T
N
∑

n

K
∑

k

1

T
(rkn)

1

T

(

Dσ2

2
−

1

2
‖yk − xn‖

2

)

(31)

where wi is the i-th column vector of W . Both derivatives should be zero at an optimal point.

Parameters W and σ can be computed by EM similarly with GTM but with using additional

temperature parameter T as follows:

Φ
tG′

oldΦW t
new = Φ

t(Rold)
1

T X (32)

σ2

new =
1

D

∑N
n

∑K
k rb

kn‖yk − xn‖
2

∑N
n

∑K
k (rkn)

1

T

(33)

where G′ is a K ×K diagonal matrix with elements g′kk =
∑N

n (rkn)
1

T

4 Phase Transitions of DA-GTM

As a characteristic behavior of the DA algorithm, explained by Rose in [10], the DA algorithm

undergoes phase transitions as lowering the temperatures. At some temperature in the DA, we can

not obtain all solutions but, instead, we can only obtain effective number of solutions. All solutions

will gradually pop out while the annealing process proceeds as with lowering the temperature.

In the DA-GTM, we can observe the same behavior. As an extreme example, at very high

temperature, the DA-GTM gives only one effective latent point in which all yk’s are converged into

the same point which is the center of data points, such that yk =
∑N

n=1
xn/N . As lowering the

temperature under a certain point, yk’s settled in the same point start to “explode”. We call this

temperature as the first critical temperature, denoted by Tc. As we further lowering temperature,

we can observe subsequent phase transitions and so existence of multiple critical temperatures.

Computing the first phase transition is an important task since we should begin our annealing

process with the starting temperature bigger than Tc.

In the DA, we can define such phase transitions as a moment of loosing stability of the objective
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function, the free energy F , and turning to be unstable. Mathematically, that moment corresponds

to the point in which the Hessian of the object function looses its positive definiteness.

In the DA-GTM, we can have the following Hessian matrix as a block matrix:

H =









H11 · · · H1K

...
...

HK1 · · · HKK









, (34)

where an element Hij is a sub matrix representing a second derivative of the free energy F as

in Eq. (26), defined by ∂2F
∂yi∂yj

for i, j = 1, . . . ,K. More specifically, we can derive Hij from the

definition of the free energy in Eq. (26) as follows:

Hii =
∂2F

∂y2

i

(35)

= −
N
∑

n

{

β2

T
rin(1− rin)(xn − yi)

t(xn − yi)− βrinID

}

(if i = j), or (36)

Hij =
∂2F

∂yi∂yj

(37)

=
N
∑

n

{

β2

T
rinrjn(xn − yi)

t(xn − yj)

}

(i 6= j), (38)

where i, j = 1, . . . ,K, β = 1/σ2, and ID is an identity matrix of size D. Note that Hij is a D ×D

matrix and thus, H ∈ R
KD×KD.

To compute the first phase transition, let us start with a very simple system in which we have

only two latent point y1 and y2. Assuming that the system hasn’t undergone the first phase

transition and the current temperature is high enough so that two point y1 and y2 are settled in

the center of the data point, denoted by y0, such as y0 = y1 = y2 =
∑N

n xn/N and thus all the

responsibilities are same, such as r1n = r2n = 1/2 for all n = 1, . . . , N .

In this simple system, the second derivatives of the free energy F can be defined by the following:

H11 = H22 = −
β2N

4T

(

Sx|y0
−

2T

β
ID

)

(39)

H12 = H21 =
β2N

4T

(

Sx|y0

)

(40)

where Sx|y0
represents a covariance matrix of centered data set such that,

Sx|y0
=

1

N

N
∑

n=1

(xn − y0)
t(xn − y0) (41)
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Then, the Hessian matrix in this system can be defined by

H =

[

H11 H12

H12 H11

]

, (42)

and its determinant can be computed as follows:

det(H) = det

(

−
β2N

4T

{[

Sx|y0
−Sx|y0

−Sx|y0
Sx|y0

]

−
2T

β
ID

})

(43)

=

(

−β2N

4T

)2D

det

([

Sx|y
0
−Sx|y

0

−Sx|y0
Sx|y0

]

−
2T

β
ID

)

(44)

The first phase transition occurs when the system is getting unstable so that the above Hessian

matrix is loosing its positive definiteness. I.e., the first phase transition is the moment when the

Hessian matrix becomes singular and so its determinant equals 0(zero), such that det(H) = 0 at

T = Tc, which holds the following:

eig

([

Sx|y0
−Sx|y0

−Sx|y0
Sx|y0

])

=
2Tc

β
(45)

where eig(A) is an eigenvalue of A.

We can further simplify the above equation by using the Kronecker product:

eig

([

Sx|y0
−Sx|y0

−Sx|y0
Sx|y0

])

= eig

([

1 −1

−1 1

]

⊗ Sx|y0

)

(46)

= eig

([

1 −1

−1 1

])

⊗ eig
(

Sx|y0

)

(47)

Since the first critical temperature is the most largest one, we can only use the maximum

eigenvalue. Thus, the first critical temperature can be obtained by the following:

Tc = βλmax (48)

where λmax is the largest value of eig(Sx|y0
) and β = 1/σ2 can be computed from Eq. (8), such as

β =
ND

∑N
n (xn − y0)

2
(49)
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Figure 2: Cooling Schedules

5 Adaptive cooling schedule

The DA has been applied in many applications and proved its success to find global optimal solutions

by avoiding local minimum. However, up to our knowledge, no literature has been found to research

on the cooling schedule. Commonly used cooling schedule is exponential, such as T = αT , or linear,

such as T = T − δ. Those scheduling schemes are fixed in that temperatures are pre-defined and

the constant δ or α will not be changed during the process, regardless of the complexity of a given

problem.

However, as we discussed previously, the DA algorithm undergoes the phase transitions in which

the solution space can change dramatically. One may try to use very small δ near 0 or alpha near

1 to avoid such drastic changes but the procedure can go too long to be used in practice.

To overcome such problem, we propose an adaptive cooling schedule in which next cooling

temperatures are determined dynamically in the annealing process. More specifically, at every

iteration of DA algorithm, we predict the next phase transition temperature and move to the point

as quickly as possible. Figure 2 shows an example, comparing fixed cooling schedules ((a) and (b))

versus an adaptive cooling schedule.

Computing the next critical temperature T is very similar with the way to compute the first

critical temperature in the previous section, except that now we need to consider K points, usually

K > 2.

With K(K > 2) points, the size of Hessian matrix is KD-by-KD, which is too big to be used in

practice. Instead, we can consider much smaller Hessian matrix for each k-th point yk. The sketch

of the algorithm to find the next critical temperature as follows: i) For each point yk(k = 1, . . . ,K),

we add an imaginary point yk′ which is an exact replica of yk such that yk′ = yk and thus it shares

too the responsibility rkn = rk′n = 1/2rkn. ii) Then, find the possible critical temperature Tc which

is lower than the current temperature T and also makes the following Hessian matrix to be singular,
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such that

det

([

Hkk Hkk′

Hkk′ Hkk

])

= 0 (50)

where

Hkk = −
N
∑

n

{

β2

T
rkn(1− rkn)(xn − yk)

t(xn − yk)− βrknID

}

(51)

Hkk′ =

N
∑

n

{

β2

T
rknrk′n(xn − yk)

t(xn − yk′)

}

, (52)

where again ID is an identity matrix of size D. iii) Finally, among all Tc for k = 1, . . . ,K, choose

the largest Tc, which should satisfy Tc < T .

To simplify the above equations, define the following:

Ux|yk
=

N
∑

n=1

rkn(xn − yk)
t(xn − yk) (53)

V x|yk
=

N
∑

n=1

(rkn)2(xn − yk)
t(xn − yk) (54)

gk =

N
∑

n=1

rkn (55)

Then, we can redefine the second derivatives

Hkk =
−β2

T

(

Ux|yk

2
−

V x|yk

4

)

+
βgk

2
ID (56)

=
−β2

4T

(

2Ux|yk
− V x|yk

−
2Tgk

β
ID

)

(57)

Hkk′ =
β2

4T
V x|yk

(58)

The determinant of the Hessian as in Eq. (50) can be computed by

(

−β2

4T

)2D

det

([

2Ux|yk
− V x|yk

−V x|yk

−V x|yk
2Ux|yk

− V x|yk

]

−
2Tgk

β
I2D

)

, (59)

where I2D is an identity matrix of size 2D.

As before, when T = Tc, the above equation will equal 0(zero) and so the following equation
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Next-Critical-Temperature

1 for k ← 1 to K
2 do

3 � Define a duplicated point yk′

4 yk′ ← yk

5 Compute Tc by using Eq (61)
6 T ← max(Tc)

Figure 3: Pseudo code for find the next critical temperature

holds:

eig

([

2Ux|yk
− V x|yk

−V x|yk

−V x|yk
2Ux|yk

− V x|yk

])

=
2Tcgk

β
(60)

Thus, the next critical temperature Tc at yk is

Tc =
β

2gk
λnext (61)

where λnext is the largest eigenvalue among the eigenvalues of the matrix

[

2Ux|yk
− V x|yk

−V x|yk

−V x|yk
2Ux|yk

− V x|yk

]

(62)

and smaller than 2gkT/β so that Tc < T .

The overall pseudo algorithm is shown in Figure 3.

6 Experiment Results

To compare performances of DA-GTM with the original GTM, EM-GTM, we performed a set of

experiments by using the same data set used in original GTM paper [2]. The data set is known

as oil flow data which were synthetically generated by drawing with equal probability from the 3

configurations and consists of 1,000 points in 12-dimensional.

6.1 Robustness

DA-GTM is robust against random initialization from which original GTM suffers. To show DA-

GTM’s robustness, we run randomly initialized 100 executions of DA-GTM and EM-GTM with

the same data set and measured means and standard deviations of both. As the result shows in
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Figure 4, DA-GTM produced more optimized answers (lower mean log likelihood) with smaller

deviation.
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