
 Data Intensive Applications on Clouds

Geoffrey Fox
School of Informatics and Computing

Indiana University
Bloomington IN 47408, USA

gcf@.indiana.edu

ABSTRACT
The cyberinfrastructure supporting science will include large-scale
simulation systems headed to exascale combined with cloud like
systems supporting data intensive and high throughput computing,
pleasingly parallel jobs and the long tail of science. Clouds offer
economies of scale, elasticity supporting real time and interactive use
and powerful new programming models such as MapReduce. We stress
that iterative extensions of MapReduce will be necessary to get good
performance on for several data mining (analytics) applications. We
give several illustrations mainly from bioinformatics. We suggest that
the data deluge implies a corresponding increase in the computational
resources needed to support analysis and this suggests new architectures
for large scale data repositories.

Categories and Subject Descriptors
D.1.3 [Software Programming Techniques]: Concurrent Programming

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
mapreduce, iterative mapreduce, data intensive science, data analytics,
exascale, cloud, performance, pleasingly parallel, high throughput
computing

1. INTRODUCTION
The importance of simulation in science is well established with large
programs, especially in Europe, USA, Japan and China supporting it.
The requirements and consequent architecture of large scale
supercomputers is well understood although there are important
challenges in meeting performance goals seen by international drives to
reach first petascale (starting 15 years ago) and now exascale
performance. Performance on closely coupled parallel simulations drives
both hardware (low latency high bandwidth networks, high flop CPU’s)
and software that can exploit it. Grids covered both the linkage of such
computers and broader computing facilities. This has spurred rise in high
throughput computing, workflow and service oriented architectures
(Software as a service); concepts of lasting value. Major data intensive
applications like LHC data analysis highlighted the many important
pleasingly parallel applications that these were a major driver of Grid and
many task systems. Now the strong commercial interest is driving clouds
and we can ask how they fit in? Clouds offer on-demand service
(elasticity), economies of scale from sharing, a plethora of new jobs
making clouds attractive for students & curricula and several challenges
including security. Clouds lie in between grids and HPC supercomputers
in their synchronization costs so all the high throughput jobs run on grids
should perform well on clouds. In this paper, we suggest that there is a
class of explicitly parallel jobs that do not need the highest performance

The Copyright is held by the author/owner(s).
DataCloud-SC’11, November 14, 2011, Seattle, Washington, USA.
ACM 978-1-4503-1144-1/11/11.

interconnect and will have good performance and good user
experience on clouds. We describe this in an application analysis in
section2. Of course, HPC supercomputers can do “all applications”
subject to reservations about limited I/O (disk) capabilities.
However, they are overkill for many problems and it seems better
to reserve such machines for the high-end applications that require
them and use commodity cloud environments when appropriate.
We stress that clouds offer not just a new humongous data center
architecture but striking new software models spurred by the
competitive Platform as a Service PaaS market. In section 2 we
focus on the possibilities suggested by MapReduce.

2. MAPPING APPLICATIONS TO CLOUDS
Previously I discussed mapping applications to different hardware
and software in terms of 5 “Application Architectures”[1] mainly
aimed at simulations and extended it to data intensive computing
[2, 3]. One category, synchronous, was popular 20 years ago but
is no longer significant. It describes applications that can be
parallelized with each decomposed unit running the identical
machine instruction at each time. Another category,
asynchronous is typically not important in practical computational
science and engineering. There was also a category of
metaproblems, which describe the domain supported by workflow
with coarse grain interlinked components. The other categories
were pleasingly parallel (essentially independent) and loosely
(bulk) synchronous which are critical application classes that
possibly combined in metaproblems describe the bulk of eScience.
As mentioned above, pleasingly parallel problems whether
parameter searches for simulations or analysis of independent
data chunks (as in LHC events) are very suitable for clouds.
Loosely synchronous problems include partial differential
equation solution and particle dynamics and after parallelization,
consist of a succession of compute-communication phases.
Looking at data intensive applications we can re-examine the
pleasingly parallel and loosely synchronous category as shown in
figure 1 above. This introduces map-only (identical to pleasing
parallel), and separates off MapReduce and Iterative MapReduce
classes from the large loosely synchronous class whose remaining
members are the last sub category d) on the right of figure 1. This
area requires HPC architectures with low latency high bandwidth
interconnect. The MapReduce class b) consists of a single map
(compute) phase followed by a reduction phase such as gathering
together the results of queries following an Internet search or
LHC data analysis (histogram) of different datasets. As
implemented in Hadoop, one would normally communicate
between Map and Reduce phases by writing and reading files.
This leads to excellent fault tolerance and dynamic scheduling
features. At SC11, there was some buzz in favor of data analytics
and Hadoop but that this is not clearly reasonable as many data
analysis (mining) applications involve kernels that do not fit Map
only or MapReduce categories. Many algorithms including those
with linear algebra (needing to be parallelized) fall into the

category c) Iterative MapReduce in figure 1. Problems in this category
consist of multiple (iterated) Map phases followed by reduction or
collective operation communication phases. They do not have the many
local communication messages typically needed in parallel simulations
shown in fig 1d) but rather larger collective operations mixing compute

and communication. We do not expect traditional MapReduce to be
broadly useful but the Iterative extension is much more promising but
the breadth of its applicability needs much more study. Iterative
MapReduce is a programming model that can have the performance of
MPI and the fault tolerance and dynamic flexibility of the original
MapReduce. Open source Java Twister[4, 5] and Twister4Azure[6, 7]
have been released as an Iterative MapReduce framework. Figure 2
compares Twister4Azure with Amazon and a classic HPC configuration
on a map-only case while figure 3 shows Azure4Twister having a
smooth execution structure and modest communication overhead (the
uncolored gaps) on a parallel data analytics algorithm. We expect the
commonly used expectation maximization (EM) approach used for
example in Multidimensional Scaling MDS application of fig 3, to be
particularly attractive for iterative MapReduce as EM can have large

compute/communication ratios. Category c) extends the clear
value of clouds in the categories a) and b) of figure 1.

3. CLOUDS AND REPOSITORIES
It is traditional to set up data repositories for large observational

projects. Examples are EOSDIS (Earth Observation),
GenBank (Genomics), NSIDC (Polar science), and
IPAC (Infrared astronomy). The fourth paradigm
implies an increase in data mining (analytics) based
on such data and this implies repositories need
computing as well as data. We also expect that one
should bring the computing to the data and not vice
versa. Thus we do not expect researchers to
download large petabyte data samples to their local
cluster; rather we expect repositories to be associated
with cloud resources (as cheapest and elastic) that
allow data analytics on demand. Again further work
is needed here. Some questions include the data
storage architecture (database or NOSQL) and how
one supports mining of multidisciplinary science
involving data from different fields stored in
different clouds.

5. ACKNOWLEDGMENTS
Our work is partially supported by Microsoft and by the
National Science Foundation under the FutureGrid Grant No.
0910812.

6. REFERENCES
1) Fox, G.C., R.D. Williams, and P.C. Messina, Parallel

computing works! 1994: Morgan Kaufmann Publishers,
2) calculating all Jaliya Ekanayake, Thilina Gunarathne, Judy

Qiu, Geoffrey Fox, Scott Beason, Jong Youl Choi, Yang
Ruan, Seung-Hee Bae, and Hui Li, Applicability of
DryadLINQ to Scientific Applications. January 30, 2010,
Community Grids Laboratory, Indiana University.

3) Judy Qiu, Jaliya Ekanayake, Thilina Gunarathne, Jong Youl
Choi, Seung-Hee Bae, Yang Ruan, Saliya Ekanayake,
Stephen Wu, Scott Beason, Geoffrey Fox, Mina Rho, and H.
Tang, Data Intensive Computing for Bioinformatics.
December 29, 2009.

4) SALSA Group. Iterative MapReduce. 2010 [accessed
2010 November 7]; Twister Home Page Available from:
http://www.iterativemapreduce.org/.

5) J.Ekanayake, H.Li, B.Zhang, T.Gunarathne, S.Bae, J.Qiu, and
G.Fox, Twister: A Runtime for iterative MapReduce, in
Proceedings of the First International Workshop on
MapReduce and its Applications of ACM HPDC 2010
conference June 20-25, 2010. 2010, ACM. Chicago, Illinois.

6) Twister for Azure. [accessed 2011 May 21]; Available
from: http://salsahpc.indiana.edu/twister4azure/.

7) Thilina Gunarathne, Bingjing Zhang, Tak-Lon Wu, and Judy
Qiu, Portable Parallel Programming on Cloud and HPC:
Scientific Applications of Twister4Azure, in IEEE/ACM
International Conference on Utility and Cloud Computing
UCC 2011. December 5-7, 2011. Melbourne Australia.
http://www.cs.indiana.edu/~xqiu/scientific_applications_of_t
wister4azure_ucc_17_4.pd

Fig 1: Four applications classes and their mapping to run time/ programming models

a) Map Only b) Classic
MapReduce

c) Iterative
MapReduce

d) Loosely
Synchronous

CAP3 Analysis
Smith Waterman Distces
Parametric sweeps
PolarGrid Matlab data
analysis

High Energy Physics
(HEP) Histograms
Distributed search
Distributed sorting
Information retrieval

Expectation maximization
Clustering e.g. Kmeans
Linear Algebra
Multidimensional Scaling
Page Rank

Many MPI scientific
applications such as
solving differential
equations and particle
dynamics

Input

map

reduce

Input
map

reduce

iterations

Pij

Domain of MapReduce and Iterative Extensions MPI

Input

Output

map

Fig 2: A Map Only example pairs sequence distances

Fig 3: Parallel MDS on Azure4Twister showing communication
(white) and two compute map phases

http://www.iterativemapreduce.org/
http://salsahpc.indiana.edu/twister4azure/

