

 Twister2:TSet High-Performance Iterative

Dataflow

Pulasthi Wickramasinghe

SICE

Indiana University

Bloomington, IN, USA

pswickra@iu.edu

Chathura Widanage

SICE

Indiana University

Bloomington, IN, USA
cdwidana@iu.edu

Selahattin Akkas

SICE

Indiana University

Bloomington, IN, USA
sakkas@iu.edu

Supun Kamburugamuve

SICE

Indiana University

Bloomington, IN, USA

skamburu@indiana.edu

Niranda Perera

SICE

Indiana University

Bloomington, IN, USA
dnperera@iu.edu

Geoffrey Fox

SICE

Indiana University

Bloomington, IN, USA

gcf@indiana.edu

Kannan Govindarajan

SICE

Indiana University

Bloomington, IN, USA

kgovind@iu.edu

Ahmet Uyar

DSC

Indiana University

Bloomington, IN, USA
auyar@iu.edu

Vibhatha Abeykoon

SICE

Indiana University

Bloomington, IN, USA

vlabeyko@iu.edu

Gurhan Gunduz

DSC

Indiana University

Bloomington, IN, USA
ggunduz@iu.edu

Abstract—The dataflow model is slowly becoming the de

facto standard for big data applications. While many popular

frameworks are built around the dataflow model, very little

research has been done on understanding the inner workings of

the dataflow model. This has led to many inefficiencies in

existing frameworks. It is important to note that understanding

the relation between dataflow and HPC building blocks allows

us to address and alleviate many of the fundamental

inefficiencies in dataflow by learning from the extensive

research literature in the HPC community. In this paper, we

present TSet’s, the dataflow abstraction of Twister2, which is a

big data framework designed for high-performance dataflow

and iterative computations. We discuss the dataflow model

adopted by TSet’s and the rationale behind implementing

iteration handling at the worker level. Finally, we evaluate

TSet’s to show the performance of the framework.

Keywords— dataflow, big data, mapreduce, batch, stream,

iterative, parallel programming

I. INTRODUCTION

In recent years, the big data domain has seen a massive

increase in popularity because of the ever-increasing volume

of data that needs to be processed and analyzed in order to

gain valuable information. The ever-increasing number of

use cases that emerge with the wide adoption of big data in

both commercial and scientific communities also contributed

to this popularity. This has led to the creation of a wide

variety of frameworks that cater to different user

requirements. Hadoop[21], Spark[1], Flink[2] focuses on

batch processing, Storm[3], Heron[4], Flink[2] targets on

stream processing, and TensorFlow[5], PyTorch[6], for

machine learning are just a few popular examples for such

frameworks.

Such frameworks provide various higher-level

abstractions and API’s for end users to program applications

hiding the complexities of parallel programs. Even though

each framework has its own abstraction and implementation,

it is observable that most frameworks share a common

dataflow programming model. Once an application is

developed using the dataflow model, the runtime [16] system

takes the responsibility of dynamically mapping the dataflow

graph into an execution graph. This execution graph is then

executed on a cluster as a distributed program. Another

important observation is the similarities that data analytics

frameworks have with HPC frameworks at the parallel

operator level. For example, most operations supported by

big data frameworks can be mapped to operations that are

well established in HPC frameworks, such as gather, reduce,

partition operations which will be discussed in more detail in

section II. However, these similarities and the common model

is not very well defined in the research literature. A good

understanding of the dataflow model and how each

framework has implemented it would help to build more

optimized systems. In [15] the authors discussed this topic in

more detail, and the findings motivated the development of

Twister2 [22] [9], which is a data analytics framework for

both batch and stream processing. The goal of Twister2 is to

provide users with performance comparable to HPC systems

while exposing a user-friendly dataflow abstraction for

application development. TSet’s is the dataflow abstraction

of Twister2, which will be discussed in more detail in section

III.

Iterations are one of the core building blocks of parallel

applications. Frameworks built around the dataflow model

handle iterations with different approaches. The way

iterations are incorporated into a framework has a significant

effect on the performance of the framework especially for

more complex algorithms with many iterative elements [15].

Furthermore, it affects usability, and even the way

frameworks handle fault tolerance. Complex machine

learning algorithms, written using frameworks such as

OpenMPI using bulk synchronous programming (BSP)

model have much better performance because of their

approach to iterations and local data [15]. The handling of

iterations in Twister2 is a major distinction between Twister2

and other popular frameworks such as Spark[1], and Flink[2].

This will be discussed in more detail in section III.

In this paper, we first discuss the generic dataflow model

and how different capabilities of the dataflow model can be

mapped to those in the HPC domain using MPI as an

example. This is done to better understand the similarities and

differences between the two domains. Next, we introduce the

dataflow model adopted by Twister2 for stream and batch

processing and discuss the rationale behind the model

decisions taken. Finally, we present experimental

performance results of Twister2. The main contributions of

the paper are summarized below:

 An overview of the dataflow model for batch and

stream processing in Twister2.

 A more efficient way of handling iterations for

dataflow framework with Twister2 TSet API.

 An evaluation of the presented framework to

showcase its expressiveness and performance

II. Comparison of DataFlow and MPI

MPI is a generic messaging standard that can support

different programming models. Most MPI programs are

written using the BSP model. MPI operations can be used to

build APIs for other programming paradigms such as

dataflow. However, most people will agree that in its pure

form, MPI specification is suited for BSP style programs as

the user needs to define higher level API’s to make it easily

programmable in areas such as graph processing and

streaming analysis. DataFlow programming model is widely

used frameworks designed for as streaming, data analysis,

and graph processing.

Collective operations are arguably the major use case of

MPI for parallel programs. MPI collectives are generalized

versions of popular communication patterns for parallel

programs. We have identified the same collectives with

slightly different semantics used for big data computing. MPI

collectives in its pure form are hard to use in data applications

as their requirements are slightly different. Twister:Net [7] is

an attempt to define collective semantics for data analytics

jobs and provides an implementation of various operations

both using OpenMPI and TCP sockets. DataFlow collectives

are driven by following requirements that make them slightly

different from MPI specification based collectives.

DataFlow collectives are driven by following

requirements that make them slightly different from MPI

specification based collectives.

1. The collectives are between a set of tasks in an

arbitrary task graph.

2. Collectives handle data that doesn’t fit in memory

3. Dynamic data sizes for operators.

4. Keys are part of the abstraction.

5. Collectives can involve imbalanced data and

requires termination detection.

The dataflow programming model is different from the

BSP model in many aspects. Dataflow mostly is an event-

driven model where user programs a set of event handlers

arranged in a graph. The user is hidden from important details

of the parallel program such as threads, parallel operators and

data handling. MPI specification based BSP programs

provide the bare minimum requirements for a parallel

program while user handles aspects such as thread and data

management. It is a challenge to preserve MPI performance

while providing a higher level abstraction that can be used for

data analytics and TSets is an attempt to balance both.

III. TWISTER2 DATAFLOW MODEL

Dataflow is the preferred choice for processing large-scale

data. It hides the underlying details of the distributed

processing, coordination, and data management. It also

simplifies the process of parallelizing tasks and provides the

ability to dynamically determine the dependency between

those tasks. In the dataflow programming model, the

application is designed as a dataflow graph which could be

created either statically or dynamically. The nodes in the

dataflow graph consist of task vertices and edges in which

task vertices represent the computational units of an

application and edges represent the communication edges

between those computational units. A dataflow graph

consists of multiple subtasks which are arranged based on the

parent-child relationship between the tasks. In other words, it

describes the details about how the data is consumed between

those units. Each node in the dataflow graph holds the

information about the input and its output. The task could be

a long-running or short-running which depends on the type of

application. In static dataflow graph, the structure of the

complete graph is known at compile time whereas, in

dynamic dataflow graph, the structure of the graph is not

known at compile time it is dynamically defined during the

run time of the application. This graph is converted into an

execution graph once the actual execution takes place.
The Twister2 framework has been developed around the

dataflow model such that it supports both streaming and batch

operations as first-class concepts.

A. Layered Model

The Twister2 dataflow model can be thought of as a

layered structure, which consists of 3 layers of abstraction

namely communication layer [7], task layer and the TSet

layer (data layer), each layer has a higher level of abstraction

than the previous layer. The most powerful aspect of the

Twister2 design is that each layer is clearly defined through

a set of API’s which users can use to compose different

implementations for each layer. This layered structure has

two major benefits. First, the end users can choose to

implement their application in any layer and secondly; the

framework has the freedom to create optimized

implementations for each layer to improve performance. At

the communication layer, the dataflow model is presented as

a set of processes with data flowing between them through

communication channels. At this level, the framework only

provides the user with basic dataflow operations which model

communication patterns such as gather, reduce, partition, etc.

[7]. At the task layer, communications are abstracted out, and

the users interact with dataflow through a “Task,” so the

dataflow model is seen as a set of tasks that pass messages

between them. The users model the application as a graph

which consists of tasks and the connections between them.

The framework will handle the dataflow between tasks for

the defined structure by utilizing the underlying

communication layer. At the highest layer termed as the TSet

layer, the dataflow model is expressed as a set of

transformations and actions on data, TSet’s are similar to

RDD’s [17] in Spark or DataSets in Flink [2]. At the TSet

layer, the user provides a set of transformations that need to

be performed and actions that need to be executed to achieve

the end result. While the semantics of TSet’s are similar to

RDD’s and DataSets the difference in the underlying

implementation and dataflow model allows TSet’s to produce

better performance in most cases. Details about the

communication and task layer are beyond the scope of this

paper, in section IV we will look at the TSet layer in more

detail to understand how the TSet layer implements the

dataflow model.

B. Iterations

How iterations are handled in the Twister2 dataflow

model is an important point that distinguishes it from other

frameworks. The ability to handle iterations efficiently is

essential for a big data framework, in order to support

complex parallel applications. Initially, in Hadoop, the

iterative computations needed to be addressed by writing data

to disk and reading it back for the next iteration. This was

very inefficient and led to the development of iterative

MapReduce frameworks such as Spark[1] and Twister[18]

which allowed in-memory operations, removing the need to

write to disk for each iteration. This can be seen as moving

the iterations from the client to the driver or master. However,

performing iterations at the driver as done in Spark, still

creates the issue of having to gather results to the driver for

each iteration and broadcasting them back. For example, if

the algorithm needs to perform a reduce operation at the end

of each iteration, the results need to be collected at the driver,

reduced to generate the answer, and then broadcast back to be

used in the next iteration. This creates a bottleneck which

hinders the performance of more complex iterative

algorithms [15]. In Flink iterations are embedded into the

dataflow graph, the iterations are moved to the worker;

however since the iteration are embedded in the dataflow

graph, it does not support nested iterations.

Twister2 takes the handling of iterations a step further and

manages iterations at the worker level, similar to how

iterations are managed in the BSP model. Fig. 1 summarizes

how Spark, Flink, and Twister2 manage iterations. This move

eliminates the need to gather results at a centralized location

before each iteration. However, this does not remove the need

for synchronization after each iteration, but it allows the

framework and algorithms developed utilizing the

framework, to employ better communications patterns to

achieve this. For example at each iteration, the algorithm can

perform an AllReduce operation to achieve synchronization

rather than it being handled by a centralized entity such as a

driver. The K-Means example discussed in section VI will

attest to this.

TABLE I. TSET API OPERATIONS

The migration of iterations into the workers can be seen

as the logical next step, from managing iterations at the client

level as in Hadoop, to managing iterations at a centralized

entity as in Spark to managing iterations at the worker level.

Such handing of iterations have been tested and proven to be

efficient in the HPC community for decades, especially in

MPI implementations. This claim is further strengthened in

the results that are showcased in section VI as well as from

results showcased in Twister:Net[7].

IV. TSETS

TSet API is the highest level of abstraction provided by

the Twister2 framework. TSet’s are semantically similar to

RDD’s in Spark and DataSets in Flink. It provides the user

with an API that allows them to program applications through

a set of transformations and actions. It also supports both

batch and stream processing, the concepts discussed in the

section apply to both modes; if a specific topic does not apply

to both, it will be specifically noted.

Applications developed using TSet’s are modeled as a

graph where vertices represent computations and edges

represent communications. The TSet programming API

allows the users to simply define the structure of this graph

and then execute it. Underneath, the graph will be converted

into a more detailed graph in the task layer which takes into

account parallelism of each vertex and data dependencies,

before executing it. The TSet API consists of two main

entities which are namely “TSet” and “Link.” Table I lists

the TSet’s and Link’s that are currently supported by

Twister2.

A. TSet

A TSet represents a vertex in the dataflow graph. All

applications start with a SourceTSet which can represent any

datasource. The application graph can be then built by

connecting other TSet’s with some Link in between them.

However, there are few restrictions on the combinations that

can be made when creating the graph. For example, a

KeyedReduce cannot be directly applied on a map since the

former expects a key-value pair, therefore keyed operations

can only be done after a GroupBy. These restrictions are

embedded into the programming API so that the end user will

not have to worry about creating invalid graphs.

TSet Source: void => O
Map: I => O
FlatMap: I => O
GroupBy: V => K,V
Cache: I => I (cached) (batch only)
Sink: I => I (result)

Link Direct: I => I (1-to-1 mapping)
Partition: I => I (N-to-M mapping)
Reduce: I => I (N-to-1 mapping)
Gather: I => Iter[I] (N-to-1 mapping)
AllReduce: I => I (N-to-M mapping)
AllGather: I => Iter[I] (N-to-M mapping)
KeyedPartition: K, V => K, V (N-to-M mapping)
KeyedReduce: K, V => K, V (N-to-M mapping) (batch only)
KeyedGather: K, V => K, Iter[V] ((N-to-M mapping) (batch
only)

Fig. 1. Iteration model for Spark, Flink and Twister2

B. Link

A Link represents an edge in the dataflow graph, which is

essentially a form of communication. Twister2 supports

several types of Link’s to cover all the basic communication

patterns, as listed in Table I Each pattern is implemented in

the communication layer using optimized algorithms to gain

the best performance, for example, the reduce operation is

done using an inverted binary tree pattern to reduce the

number of network calls that are made.

C. Lazy Evaluation

Applications are evaluated in a lazy manner. That is the

graph will not be evaluated unless special transformation

operations are done. Currently, cache() and sink() are the two

action operations that would result in a graph execution.

D. Caching

The TSet API allows users to cache intermediate results

that need to be used more than once during the computation.

Calling the cache() method on a TSet result in the current

graph to be evaluated and the results to be cached in-memory

as a CachedTSet, which could be utilized in two ways. First,

users can treat it as a source and build a new graph with it as

a starting point. Secondly, it can be set as an input to a

separate TSet so the cached values can be accessed during

computation steps.

The concepts in TSets can be better understood by

analyzing a simple algorithm. Fig. 2 shows the pseudocode

for implementing the K-Means algorithm using the TSet API.

The first two lines load the points and centers and cache them

in memory. Line 4, calls a map transformation on the cached

points TSet, this map function contains the logic to calculate

the new center allocations for each data point. These new

centers values are all-reduced to collect results from the

parallel map operation (line 6), and finally, the last map

operation (line 7) averages the values to generate the new

centers, which are again added as an input for the next

iteration (line 5). The structure of the dataflow graph for the

K-Means algorithm is shown in Fig. 3.

V. RELATED WORK

While there is no formal agreed upon definition for

dataflow in the research literature, the term dataflow is used

to denote various versions of the same underlying model. In

[10] the authors present dataflow process networks, which

can be seen as a formal definition of the dataflow model to

some extent. [11] introduces a layered dataflow model

building on top of [10] to represent big data analytics

frameworks which follow the dataflow paradigm, they

introduce three layers of dataflow models which describe

different levels of abstractions that are present in modern data

analytics frameworks. They show how several popular

frameworks map into those three layers. Those three layers

can be loosely mapped to the communication, task and data

layer of Twister2. In [12] the authors describe how Google

cloud dataflow adopts the dataflow model in its design and

implementation.

Timely dataflow is another dataflow model which is

implemented in the Naiad[8] system for iterative and

incremental distributed computation processing. It works on

the principle of stateful dataflow model in which the dataflow

nodes contain the mutable state, and the edges carry the

unbounded streams of data. Dryad [19] is a high-performance

distributed execution engine for running coarse-grained data

parallel applications which are embedded with an acyclic

dataflow graph. In general, a Dryad application combines

computational vertices with communication links to form a

dataflow graph. In addition to that, the user has to program

the dataflow graph in the Dryad explicitly. Turbine [20] is a

distributed many-task dataflow engine which uses extreme-

scale computing to evaluate program overhead and

generation of tasks. The execution model of the system

breaks parallel loops and invocation of concurrent functions

into fragments for the execution of tasks in a distributed

manner. Using Twister2, the explicit dataflow programming

is hidden to the user which is different from Dryad and

similar to the Turbine model.

The relation between dataflow and MPI at an operator

level is not well defined within the research literature to our

knowledge. However, there is work done in this area which

discusses the role of dataflow for parallel programs such as

MPI programs. In [13] authors discuss the importance of

understanding dataflow within MPI programs and introduce

a dataflow analysis framework for an MPI implementation.

In [14] the authors introduce OpenStream which is a dataflow

extension to OpenMP and discuss the advantages of such a

model.

Fig. 2: K-means TSet API pseudocode

Fig. 3. K-Means TSet API dataflow graph

Fig. 4. K-Means job execution time on 16 nodes with varying centers, 2

million data points with 128-way parallelism for 100 iterations.

VI. EVALUATION

In order to test the performance of Twister2 and to

understand the overheads created by each layer of

abstraction, we developed and evaluated a couple of

applications. To this end, Twister2 is evaluated against

identical (algorithmically) implemented versions of the same

algorithms and applications in OpenMPI (v3.1.2) and Spark

(v2.4). This evaluation focuses more on understanding the

performance of Twister2 Task layer and TSet layer. A more

detailed evaluation of Twister2 which involves other

frameworks such as Flink, Storm, Heron, etc. can be found at

[7]. The applications implemented to evaluate the

performance are namely K-Means and Distributed SVM.

Two compute clusters were used to perform the

evaluation. The first cluster had 16 nodes of Intel Platinum

processors with 48 cores in each node and 56Gbps InfiniBand

and 10Gbps network connections. The second cluster had

Intel Haswell processors with 24 cores in each node with

128GB memory, 56Gbps InfiniBand, and 1Gpbs Ethernet

connections. 16 nodes of this cluster were used for the

experiments. K-Means and SVM are the algorithms

discussed in this paper considering iterative-based and

ensemble based designing, respectively.

A. Kmeans

The need to process large amounts of continuously

arriving information has led to the exploration and

application of big data analytics techniques. Likewise, the

painstaking process of clustering numerous datasets

containing large numbers of records with high dimensions

calls for innovative methods. Traditional sequential

clustering algorithms are unable to handle it. They are not

scalable in relation to larger sizes of data sets, and they are

most often computationally expensive in memory space and

time complexities. Yet, the parallelization of data clustering

algorithms is paramount when dealing with big data. K-

Means clustering is an iterative algorithm hence, it requires a

large number of iterative steps to find an optimal solution,

and this procedure increases the processing time of

clustering. Twister2 provides both dataflow task graph-based

and TSet-based approach to distribute the tasks in a parallel

manner and aggregate the results which reduce the processing

time of the K-Means clustering process. The pseudocode for

the K-Means algorithm is given in Fig. 2.

Fig. 4 shows the total running time for K-means on a 16

node cluster with a parallelism of 128 for OpenMPI, Spark,

Twister2 Task and Twister2 TSet layers. Each run was done

with 2 million data points with 2 features and a varying

number of centers. The results show that Twister2 out

performs Spark, it also shows that the TSet layer adds a small

but expected overhead over the Task layer in Twister2. BSP

style K-means outperforms both systems which are expected

because of the low level abstractions and minimal overheads

in OpenMPI. The efficient handling of iterations in Twister2

is the main reason Twister2 is able to outperform Spark for

iterative algorithms such as K-Means.

B. SVM

In the supervised learning algorithm domain, Support

Vector Machines (SVM) is one of the prominent algorithms

used by most of the researches related to vivid domain

sciences. In the SVM algorithm, there are three major types

of implementations. Matrix decomposition methods,

sequential minimal optimization based methods, and

stochastic gradient descent based methods. The latter is

proven to be computation and communication wise efficient.

Implementation can be done as an iterative or ensemble

model. Ensemble method is a very popular type of

implementation among domain scientists. Twister2 SVM

implementation uses SGD-based ensemble model, and the

designed model is training wise highly efficient. Twister2

SVM was evaluated on 16 node cluster with variable

parallelisms with all node usage enabled. From Fig. 5 we can

observe that both Twister2 implementations outperform

Spark and manage to perform at the same level as OpenMPI.

C. Dataflow Node

There are many tests that can be performed to understand

the overheads in dataflow systems. One important test would

be to evaluate the overhead added when a single dataflow

node is added to the dataflow graph. To test this, we created

two dataflow graphs, with one map vertice that performs no

operation. The first graph is “source-map-allreduce” and the

second is “source-map-map-allreduce.” The operations were

done for 200K data points and 100 iterations in both

frameworks. Fig. 6 shows the results of running these two

configurations with parallelisms of 128 and 256 for both

Twister2 (Task layer) and Spark. From the results, we can

observe a slight overhead in Twister2 framework. This

overhead is not present in Spark because Spark stages

consecutive map operations and runs them as a single

pipelined unit, removing the overhead. However, even with

Fig. 5. SVM job execution time for 320K data points with 2000 features

and 500 iterations, on 16 nodes with varying parallelism

the overhead, it can be observed that Twister2 framework

outperforms Spark by a large factor, this is because of the

optimized communication patterns that are employed by

Twister2 and its efficient model for iterations. Task execution

optimizations such as pipelining will be introduced into

Twister2 in the future updates to address these overheads.

VII. CONCLUSION AND FUTURE WORK

This paper presented a hybrid approach for dataflow

based iterative programs. The implementation achieved

reasonable performance compared to OpenMPI and much

better performance compared to Spark for K-Means and

SVM applications. We believe there are many aspects of the

framework that can be improved further to reduce the

overheads and make it closer to OpenMPI performance.

Twister2 provides a dataflow model that is similar to

Spark where a central scheduler is used for allocating parallel

tasks. Such a central scheduler is more suitable for workflow

style applications and not suitable for parallel applications as

the overhead of the central scheduler (distributing tasks to

workers at each iteration as a “sequential bottleneck”) is high.

We are actively working on incorporating checkpointing

based fault tolerance to the system for both streaming and

batch applications.

ACKNOWLEDGMENT

This work was partially supported by NSF CIF21 DIBBS

1443054 and the Indiana University Precision Health

initiative. We thank Intel for their support of the Juliet and

Victor systems and extend our gratitude to the FutureSystems

team for their support with the infrastructure.

REFERENCES

[1] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,

M. J. Franklin et al., “Apache spark: a unified engine for big data
processing, ”Communications of the ACM, vol. 59, no. 11, pp. 56–65,

2016.

[2] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and

K. Tzoumas, “Apache Flink: Stream and batch processing in a single

engine, ”Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, vol. 36, no. 4, 2015.

[3] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S.

Kulka-rni, J. Jackson, K. Gade, M. Fu, J. Donhamet al., “Storm@
twitter,”inProceedings of the 2014 ACM SIGMOD international

conference onManagement of data. ACM, 2014, pp. 147–156.

[4] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,

J. M.Patel, et al., “Twitter heron: Stream processing at scale,”

inProceedings of the 2015 ACM SIGMOD International Conference

on Management of Data. ACM, 2015, pp. 239–250.

[5] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean et al.,

“Tensorflow: A system for large-scale machine learning,”
in12th{USENIX}Symposium on Operating Systems Design and

Implementation ({OSDI}16), 2016, pp. 265–283.

[6] N. Ketkar, “Introduction to pytorch,” inDeep learning with
python.Springer, 2017, pp. 195–208.

[7] S. Kamburugamuve, P. Wickramasinghe, K. Govindarajan, A. Uyar,
G. Gunduz, V. Abeykoon, and G. Fox, “Twister:Net-communication

library for big data processing in hpc and cloud environments,” in 2018

IEEE 11th International Conference on Cloud Computing
(CLOUD).IEEE, 2018, pp. 383–391.

[8] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M.

Abadi, “Naiad: a timely dataflow system,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles.

ACM, 2013, pp.439–455.

[9] S. Kamburugamuve, K. Govindarajan, P. Wickramasinghe, V.

Abeykoon, and G. Fox, "Twister2: Design of a Big Data Toolkit" in

Concurrency and Computation, Practice and Experience Special issue
for EXAMPI 2017 workshop November 12 2017 at SC17 conference,

Denver CO 2017. Published as

https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.5189.

[10] E. A. Lee and T. M. Parks, “Dataflow process networks, ”Proceedings

of the IEEE, vol. 83, no. 5, pp. 773–801, 1995.

[11] C. Misale, M. Drocco, M. Aldinucci, and G. Tremblay, “A comparison

of big data frameworks on a layered dataflow model, ”Parallel

Processing Letters, vol. 27, no. 01, p. 1740003, 2017.

[12] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fern ́andez-

Moctezuma, R. Lax et al., “The dataflow model: a practical approach
to balancing correctness, latency, and cost in massive-scale,

unbounded, out-of-order data processing, ”Proceedings of the VLDB

Endowment, vol. 8, no. 12, pp. 1792–1803, 2015.

[13] M. M. Strout, B. Kreaseck, and P. D. Hovland, “Data-flow analysis for

mpi programs,” in Parallel Processing, 2006. ICPP 2006. International

Conference on. IEEE, 2006, pp. 175–184.

[14] A. Pop and A. Cohen, “Openstream: Expressiveness and data-flow

compilation of OpenMP streaming programs, ”ACM Transactions on
Architecture and Code Optimization (TACO), vol. 9, no. 4, p. 53, 2013.

[15] S. Kamburugamuve, P. Wickramasinghe, S. Ekanayake, and G. C. Fox,

“Anatomy of machine learning algorithm implementations in MPI,
Spark, and Flink, ”The International Journal of High-Performance

Computing Applications, vol. 32, no. 1, pp. 61–73, 2018.

[16] Jinquan Dai, Jie Huang, Shengsheng Huang, Bo Huang, and Yan Liu.

2011. HiTune: dataflow-based performance analysis for big data cloud.

In Proceedings of the 2011 USENIX conference on USENIX annual
technical conference (USENIXATC'11). USENIX Association,

Berkeley, CA, USA, 7-7.

[17] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley et
al., “Resilient Distributed Datasets:A Fault-tolerant Abstraction for In-

memory Cluster Computing,”in Proceedings of the 9th USENIX

Conference on Networked Systems Design and Implementation, ser.
NSDI’12. Berkeley, CA,USA: USENIX Association, 2012, pp. 2–2.

[18] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, andG.
Fox, “Twister: a runtime for iterative mapreduce,” in Proceedings of

the 19th ACM international symposium on high performance

distributed computing. ACM, 2010, pp. 810–818.

[19] M. Isard, M. Budui, Y. Yu, A. Birrell, and D Fetterly,

“Dryad:distributed data-parallel programs form sequential building
blocks,” in ACM SIGOPS operating systems review, vil. 41, no. 3.

ACM, 2007,pp. 59-72.

[20] Wozniak, J.M., Armstrong, T.G., Maheshwari, K., Lusk, E.L., Katz,
D.S., Wilde, M., & Foster, I.T. (2013). Turbine: A Distributed-memory

Dataflow Engine for High Performance Many-task Applications.

Fundam. Inform., 128, 337-366.

[21] Tom White. 2009. Hadoop: The Definitive Guide (1st ed.). O'Reilly

Media, Inc..

[22] Twister2 Big Data Hosting Environment: A composable framework for

high-performance data analytics. [Online]. Available:

https://github.com/DSC-SPIDAL/twister2

Fig. 6. Execution time for Source-Map-AllReduce (SMA) and Source-

Map-Map-AllReduce(SMMA) graph configurations. With 200K data
points and 100 iterations

