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Abstract—The dataflow model is slowly becoming the de 

facto standard for big data applications. While many popular 

frameworks are built around the dataflow model, very little 

research has been done on understanding the inner workings of 

the dataflow model. This has led to many inefficiencies in 

existing frameworks. It is important to note that understanding 

the relation between dataflow and HPC building blocks allows 

us to address and alleviate many of the fundamental 

inefficiencies in dataflow by learning from the extensive 

research literature in the HPC community.  In this paper, we 

present TSet’s, the dataflow abstraction of Twister2, which is a 

big data framework designed for high-performance dataflow 

and iterative computations. We discuss the dataflow model 

adopted by TSet’s and the rationale behind implementing 

iteration handling at the worker level. Finally, we evaluate 

TSet’s to show the performance of the framework. 

Keywords— dataflow, big data, mapreduce, batch, stream, 

iterative, parallel programming 

I. INTRODUCTION 

In recent years, the big data domain has seen a massive 

increase in popularity because of the ever-increasing volume 

of data that needs to be processed and analyzed in order to 

gain valuable information. The ever-increasing number of 

use cases that emerge with the wide adoption of big data in 

both commercial and scientific communities also contributed 

to this popularity. This has led to the creation of a wide 

variety of frameworks that cater to different user 

requirements. Hadoop[21], Spark[1], Flink[2] focuses on 

batch processing, Storm[3], Heron[4], Flink[2] targets on 

stream processing, and TensorFlow[5], PyTorch[6], for 

machine learning are just a few popular examples for such 

frameworks.  

Such frameworks provide various higher-level 

abstractions and API’s for end users to program applications 

hiding the complexities of parallel programs. Even though 

each framework has its own abstraction and implementation, 

it is observable that most frameworks share a common 

dataflow programming model. Once an application is 

developed using the dataflow model, the runtime [16] system 

takes the responsibility of dynamically mapping the dataflow 

graph into an execution graph. This execution graph is then 

executed on a cluster as a distributed program. Another 

important observation is the similarities that data analytics 

frameworks have with HPC frameworks at the parallel 

operator level. For example, most operations supported by 

big data frameworks can be mapped to operations that are 

well established in HPC frameworks, such as gather, reduce, 

partition operations which will be discussed in more detail in 

section II. However, these similarities and the common model 

is not very well defined in the research literature. A good 

understanding of the dataflow model and how each 

framework has implemented it would help to build more 

optimized systems. In [15] the authors discussed this topic in 

more detail, and the findings motivated the development of 

Twister2 [22] [9], which is a data analytics framework for 

both batch and stream processing. The goal of Twister2 is to 

provide users with performance comparable to HPC systems 

while exposing a user-friendly dataflow abstraction for 

application development. TSet’s is the dataflow abstraction 

of Twister2, which will be discussed in more detail in section 

III. 

Iterations are one of the core building blocks of parallel 

applications. Frameworks built around the dataflow model 

handle iterations with different approaches. The way 

iterations are incorporated into a framework has a significant 

effect on the performance of the framework especially for 

more complex algorithms with many iterative elements [15]. 

Furthermore, it affects usability, and even the way 

frameworks handle fault tolerance.  Complex machine 

learning algorithms, written using frameworks such as 

OpenMPI using bulk synchronous programming (BSP) 

model have much better performance because of their 

approach to iterations and local data [15]. The handling of 

iterations in Twister2 is a major distinction between Twister2 

and other popular frameworks such as Spark[1], and Flink[2]. 

This will be discussed in more detail in section III.  

In this paper, we first discuss the generic dataflow model 

and how different capabilities of the dataflow model can be 



mapped to those in the HPC domain using MPI as an 

example. This is done to better understand the similarities and 

differences between the two domains. Next, we introduce the 

dataflow model adopted by Twister2 for stream and batch 

processing and discuss the rationale behind the model 

decisions taken. Finally, we present experimental 

performance results of Twister2. The main contributions of 

the paper are summarized below:  

 An overview of the dataflow model for batch and 

stream processing in Twister2.  

 A more efficient way of handling iterations for 

dataflow framework with Twister2 TSet API. 

 An evaluation of the presented framework to 

showcase its expressiveness and performance 

II. Comparison of DataFlow and MPI 

MPI is a generic messaging standard that can support 

different programming models. Most MPI programs are 

written using the BSP model. MPI operations can be used to 

build APIs for other programming paradigms such as 

dataflow. However, most people will agree that in its pure 

form, MPI specification is suited for BSP style programs as 

the user needs to define higher level API’s to make it easily 

programmable in areas such as graph processing and 

streaming analysis. DataFlow programming model is widely 

used frameworks designed for as streaming, data analysis, 

and graph processing. 

Collective operations are arguably the major use case of 

MPI for parallel programs.  MPI collectives are generalized 

versions of popular communication patterns for parallel 

programs. We have identified the same collectives with 

slightly different semantics used for big data computing. MPI 

collectives in its pure form are hard to use in data applications 

as their requirements are slightly different. Twister:Net [7] is 

an attempt to define collective semantics for data analytics 

jobs and provides an implementation of various operations 

both using OpenMPI and TCP sockets. DataFlow collectives 

are driven by following requirements that make them slightly 

different from MPI specification based collectives. 

DataFlow collectives are driven by following 

requirements that make them slightly different from MPI 

specification based collectives. 

1. The collectives are between a set of tasks in an 

arbitrary task graph. 

2. Collectives handle data that doesn’t fit in memory 

3. Dynamic data sizes for operators. 

4. Keys are part of the abstraction. 

5. Collectives can involve imbalanced data and 

requires termination detection. 

The dataflow programming model is different from the 

BSP model in many aspects. Dataflow mostly is an event-

driven model where user programs a set of event handlers 

arranged in a graph. The user is hidden from important details 

of the parallel program such as threads, parallel operators and 

data handling. MPI specification based BSP programs 

provide the bare minimum requirements for a parallel 

program while user handles aspects such as thread and data 

management. It is a challenge to preserve MPI performance 

while providing a higher level abstraction that can be used for 

data analytics and TSets is an attempt to balance both. 

III. TWISTER2 DATAFLOW MODEL 

Dataflow is the preferred choice for processing large-scale 

data. It hides the underlying details of the distributed 

processing, coordination, and data management. It also 

simplifies the process of parallelizing tasks and provides the 

ability to dynamically determine the dependency between 

those tasks. In the dataflow programming model, the 

application is designed as a dataflow graph which could be 

created either statically or dynamically. The nodes in the 

dataflow graph consist of task vertices and edges in which 

task vertices represent the computational units of an 

application and edges represent the communication edges 

between those computational units. A dataflow graph 

consists of multiple subtasks which are arranged based on the 

parent-child relationship between the tasks. In other words, it 

describes the details about how the data is consumed between 

those units. Each node in the dataflow graph holds the 

information about the input and its output. The task could be 

a long-running or short-running which depends on the type of 

application. In static dataflow graph, the structure of the 

complete graph is known at compile time whereas, in 

dynamic dataflow graph, the structure of the graph is not 

known at compile time it is dynamically defined during the 

run time of the application. This graph is converted into an 

execution graph once the actual execution takes place.  
The Twister2 framework has been developed around the 

dataflow model such that it supports both streaming and batch 

operations as first-class concepts. 

A. Layered Model 

The Twister2 dataflow model can be thought of as a 

layered structure, which consists of 3 layers of abstraction 

namely communication layer [7], task layer and the TSet 

layer (data layer), each layer has a higher level of abstraction 

than the previous layer. The most powerful aspect of the 

Twister2 design is that each layer is clearly defined through 

a set of API’s which users can use to compose different 

implementations for each layer. This layered structure has 

two major benefits. First, the end users can choose to 

implement their application in any layer and secondly; the 

framework has the freedom to create optimized 

implementations for each layer to improve performance. At 

the communication layer, the dataflow model is presented as 

a set of processes with data flowing between them through 

communication channels. At this level, the framework only 

provides the user with basic dataflow operations which model 

communication patterns such as gather, reduce, partition, etc. 

[7]. At the task layer, communications are abstracted out, and 

the users interact with dataflow through a “Task,” so the 

dataflow model is seen as a set of tasks that pass messages 

between them. The users model the application as a graph 

which consists of tasks and the connections between them.  

The framework will handle the dataflow between tasks for 

the defined structure by utilizing the underlying 

communication layer. At the highest layer termed as the TSet 

layer, the dataflow model is expressed as a set of 

transformations and actions on data, TSet’s are similar to 

RDD’s [17] in Spark or DataSets in Flink [2]. At the TSet 



layer, the user provides a set of transformations that need to 

be performed and actions that need to be executed to achieve 

the end result. While the semantics of TSet’s are similar to 

RDD’s and DataSets the difference in the underlying 

implementation and dataflow model allows TSet’s to produce 

better performance in most cases. Details about the 

communication and task layer are beyond the scope of this 

paper, in section IV we will look at the TSet layer in more 

detail to understand how the TSet layer implements the 

dataflow model. 

B. Iterations 

How iterations are handled in the Twister2 dataflow 

model is an important point that distinguishes it from other 

frameworks. The ability to handle iterations efficiently is 

essential for a big data framework, in order to support 

complex parallel applications. Initially, in Hadoop, the 

iterative computations needed to be addressed by writing data 

to disk and reading it back for the next iteration. This was 

very inefficient and led to the development of iterative 

MapReduce frameworks such as Spark[1] and Twister[18] 

which allowed in-memory operations, removing the need to 

write to disk for each iteration. This can be seen as moving 

the iterations from the client to the driver or master. However, 

performing iterations at the driver as done in Spark, still 

creates the issue of having to gather results to the driver for 

each iteration and broadcasting them back. For example, if 

the algorithm needs to perform a reduce operation at the end 

of each iteration, the results need to be collected at the driver, 

reduced to generate the answer, and then broadcast back to be 

used in the next iteration. This creates a bottleneck which 

hinders the performance of more complex iterative 

algorithms [15]. In Flink iterations are embedded into the 

dataflow graph, the iterations are moved to the worker; 

however since the iteration are embedded in the dataflow 

graph, it does not support nested iterations. 

Twister2 takes the handling of iterations a step further and 

manages iterations at the worker level, similar to how 

iterations are managed in the BSP model. Fig. 1 summarizes 

how Spark, Flink, and Twister2 manage iterations. This move 

eliminates the need to gather results at a centralized location 

before each iteration. However, this does not remove the need 

for synchronization after each iteration, but it allows the 

framework and algorithms developed utilizing the 

framework, to employ better communications patterns to 

achieve this. For example at each iteration, the algorithm can 

perform an AllReduce operation to achieve synchronization 

rather than it being handled by a centralized entity such as a 

driver. The K-Means example discussed in section VI will 

attest to this.  

 

TABLE I.  TSET API OPERATIONS 

 

The migration of iterations into the workers can be seen 

as the logical next step, from managing iterations at the client 

level as in Hadoop, to managing iterations at a centralized 

entity as in Spark to managing iterations at the worker level. 

Such handing of iterations have been tested and proven to be 

efficient in the HPC community for decades, especially in 

MPI implementations. This claim is further strengthened in 

the results that are showcased in section VI as well as from 

results showcased in Twister:Net[7]. 

IV. TSETS 

TSet API is the highest level of abstraction provided by 

the Twister2 framework. TSet’s are semantically similar to 

RDD’s in Spark and DataSets in Flink. It provides the user 

with an API that allows them to program applications through 

a set of transformations and actions. It also supports both 

batch and stream processing, the concepts discussed in the 

section apply to both modes; if a specific topic does not apply 

to both, it will be specifically noted.  

Applications developed using TSet’s are modeled as a 

graph where vertices represent computations and edges 

represent communications. The TSet programming API 

allows the users to simply define the structure of this graph 

and then execute it. Underneath, the graph will be converted 

into a more detailed graph in the task layer which takes into 

account parallelism of each vertex and data dependencies, 

before executing it.  The TSet API consists of two main 

entities which are namely “TSet” and “Link.”  Table I lists 

the TSet’s and Link’s that are currently supported by 

Twister2.  

A. TSet 

A TSet represents a vertex in the dataflow graph. All 

applications start with a SourceTSet which can represent any 

datasource. The application graph can be then built by 

connecting other TSet’s with some Link in between them. 

However, there are few restrictions on the combinations that 

can be made when creating the graph. For example, a 

KeyedReduce cannot be directly applied on a map since the 

former expects a key-value pair, therefore keyed operations 

can only be done after a GroupBy. These restrictions are 

embedded into the programming API so that the end user will 

not have to worry about creating invalid graphs.  

TSet Source: void => O 
Map: I => O 
FlatMap: I => O 
GroupBy: V => K,V 
Cache: I => I (cached) (batch only) 
Sink: I => I (result) 

Link Direct: I => I ( 1-to-1 mapping) 
Partition: I => I ( N-to-M mapping) 
Reduce: I => I (N-to-1 mapping) 
Gather: I => Iter[I] (N-to-1 mapping) 
AllReduce: I => I (N-to-M mapping) 
AllGather: I => Iter[I] (N-to-M mapping) 
KeyedPartition: K, V => K, V (N-to-M mapping) 
KeyedReduce: K, V => K, V (N-to-M mapping) (batch only) 
KeyedGather: K, V => K, Iter[V] ((N-to-M mapping) (batch 
only) 

Fig. 1.  Iteration model for Spark, Flink and Twister2 



B. Link 

A Link represents an edge in the dataflow graph, which is 

essentially a form of communication. Twister2 supports 

several types of Link’s to cover all the basic communication 

patterns, as listed in Table I Each pattern is implemented in 

the communication layer using optimized algorithms to gain 

the best performance, for example, the reduce operation is 

done using an inverted binary tree pattern to reduce the 

number of network calls that are made.  

C. Lazy Evaluation 

Applications are evaluated in a lazy manner. That is the 

graph will not be evaluated unless special transformation 

operations are done. Currently, cache() and sink() are the two 

action operations that would result in a graph execution.  

D. Caching 

The TSet API allows users to cache intermediate results 

that need to be used more than once during the computation. 

Calling the cache() method on a TSet result in the current 

graph to be evaluated and the results to be cached in-memory 

as a CachedTSet, which could be utilized in two ways. First, 

users can treat it as a source and build a new graph with it as 

a starting point. Secondly, it can be set as an input to a 

separate TSet so the cached values can be accessed during 

computation steps.  

The concepts in TSets can be better understood by 

analyzing a simple algorithm. Fig. 2 shows the pseudocode 

for implementing the K-Means algorithm using the TSet API. 

The first two lines load the points and centers and cache them 

in memory. Line 4, calls a map transformation on the cached 

points TSet, this map function contains the logic to calculate 

the new center allocations for each data point. These new 

centers values are all-reduced to collect results from the 

parallel map operation (line 6), and finally, the last map 

operation (line 7) averages the values to generate the new 

centers, which are again added as an input for the next 

iteration (line 5). The structure of the dataflow graph for the 

K-Means algorithm is shown in Fig. 3. 

V. RELATED WORK 

While there is no formal agreed upon definition for 

dataflow in the research literature, the term dataflow is used 

to denote various versions of the same underlying model. In 

[10] the authors present dataflow process networks, which 

can be seen as a formal definition of the dataflow model to 

some extent. [11] introduces a layered dataflow model 

building on top of [10] to represent big data analytics 

frameworks which follow the dataflow paradigm, they 

introduce three layers of dataflow models which describe 

different levels of abstractions that are present in modern data 

analytics frameworks. They show how several popular 

frameworks map into those three layers. Those three layers 

can be loosely mapped to the communication, task and data 

layer of Twister2. In [12] the authors describe how Google 

cloud dataflow adopts the dataflow model in its design and 

implementation.  

Timely dataflow is another dataflow model which is 

implemented in the Naiad[8] system for iterative and 

incremental distributed computation processing. It works on 

the principle of stateful dataflow model in which the dataflow 

nodes contain the mutable state, and the edges carry the 

unbounded streams of data. Dryad [19] is a high-performance 

distributed execution engine for running coarse-grained data 

parallel applications which are embedded with an acyclic 

dataflow graph.  In general, a Dryad application combines 

computational vertices with communication links to form a 

dataflow graph. In addition to that, the user has to program 

the dataflow graph in the Dryad explicitly. Turbine [20] is a 

distributed many-task dataflow engine which uses extreme-

scale computing to evaluate program overhead and 

generation of tasks. The execution model of the system 

breaks parallel loops and invocation of concurrent functions 

into fragments for the execution of tasks in a distributed 

manner. Using Twister2, the explicit dataflow programming 

is hidden to the user which is different from Dryad and 

similar to the Turbine model. 

The relation between dataflow and MPI at an operator 

level is not well defined within the research literature to our 

knowledge. However, there is work done in this area which 

discusses the role of dataflow for parallel programs such as 

MPI programs. In [13] authors discuss the importance of 

understanding dataflow within MPI programs and introduce 

a dataflow analysis framework for an MPI implementation. 

In [14] the authors introduce OpenStream which is a dataflow 

extension to OpenMP and discuss the advantages of such a 

model.  

Fig. 2: K-means TSet API pseudocode 

Fig. 3. K-Means TSet API dataflow graph 



 
Fig. 4. K-Means job execution time on 16 nodes with varying centers, 2 

million data points with 128-way parallelism for 100 iterations. 

VI. EVALUATION 

In order to test the performance of Twister2 and to 

understand the overheads created by each layer of 

abstraction, we developed and evaluated a couple of 

applications. To this end, Twister2 is evaluated against 

identical (algorithmically) implemented versions of the same 

algorithms and applications in OpenMPI (v3.1.2) and Spark 

(v2.4). This evaluation focuses more on understanding the 

performance of Twister2 Task layer and TSet layer. A more 

detailed evaluation of Twister2 which involves other 

frameworks such as Flink, Storm, Heron, etc. can be found at 

[7]. The applications implemented to evaluate the 

performance are namely K-Means and Distributed SVM. 

Two compute clusters were used to perform the 

evaluation. The first cluster had 16 nodes of Intel Platinum 

processors with 48 cores in each node and 56Gbps InfiniBand 

and 10Gbps network connections. The second cluster had 

Intel Haswell processors with 24 cores in each node with 

128GB memory, 56Gbps InfiniBand, and 1Gpbs Ethernet 

connections. 16 nodes of this cluster were used for the 

experiments. K-Means and SVM are the algorithms 

discussed in this paper considering iterative-based and 

ensemble based designing, respectively.  

A. Kmeans 

The need to process large amounts of continuously 

arriving information has led to the exploration and 

application of big data analytics techniques. Likewise, the 

painstaking process of clustering numerous datasets 

containing large numbers of records with high dimensions 

calls for innovative methods. Traditional sequential 

clustering algorithms are unable to handle it. They are not 

scalable in relation to larger sizes of data sets, and they are 

most often computationally expensive in memory space and 

time complexities. Yet, the parallelization of data clustering 

algorithms is paramount when dealing with big data. K-

Means clustering is an iterative algorithm hence, it requires a 

large number of iterative steps to find an optimal solution, 

and this procedure increases the processing time of 

clustering. Twister2 provides both dataflow task graph-based 

and TSet-based approach to distribute the tasks in a parallel 

manner and aggregate the results which reduce the processing 

time of the K-Means clustering process. The pseudocode for 

the K-Means algorithm is given in Fig. 2. 

Fig. 4 shows the total running time for K-means on a 16 

node cluster with a parallelism of 128 for OpenMPI, Spark, 

Twister2 Task and Twister2 TSet layers. Each run was done 

with 2 million data points with 2 features and a varying 

number of centers. The results show that Twister2 out 

performs Spark, it also shows that the TSet layer adds a small 

but expected overhead over the Task layer in Twister2. BSP 

style K-means outperforms both systems which are expected 

because of the low level abstractions and minimal overheads 

in OpenMPI. The efficient handling of iterations in Twister2 

is the main reason Twister2 is able to outperform Spark for 

iterative algorithms such as K-Means.  

B. SVM 

In the supervised learning algorithm domain, Support 

Vector Machines (SVM) is one of the prominent algorithms 

used by most of the researches related to vivid domain 

sciences. In the SVM algorithm, there are three major types 

of implementations. Matrix decomposition methods, 

sequential minimal optimization based methods, and 

stochastic gradient descent based methods. The latter is 

proven to be computation and communication wise efficient. 

Implementation can be done as an iterative or ensemble 

model. Ensemble method is a very popular type of 

implementation among domain scientists. Twister2 SVM 

implementation uses SGD-based ensemble model, and the 

designed model is training wise highly efficient. Twister2 

SVM was evaluated on 16 node cluster with variable 

parallelisms with all node usage enabled. From Fig. 5 we can 

observe that both Twister2 implementations outperform 

Spark and manage to perform at the same level as OpenMPI.   

C. Dataflow Node 

There are many tests that can be performed to understand 

the overheads in dataflow systems. One important test would 

be to evaluate the overhead added when a single dataflow 

node is added to the dataflow graph. To test this, we created 

two dataflow graphs, with one map vertice that performs no 

operation. The first graph is “source-map-allreduce” and the 

second is “source-map-map-allreduce.” The operations were 

done for 200K data points and 100 iterations in both 

frameworks. Fig. 6 shows the results of running these two 

configurations with parallelisms of 128 and 256 for both 

Twister2 (Task layer) and Spark. From the results, we can 

observe a slight overhead in Twister2 framework. This 

overhead is not present in Spark because Spark stages 

consecutive map operations and runs them as a single 

pipelined unit, removing the overhead. However, even with 

Fig. 5. SVM job execution time for 320K data points with 2000 features 

and 500 iterations, on 16 nodes with varying parallelism 



the overhead, it can be observed that Twister2 framework 

outperforms Spark by a large factor, this is because of the 

optimized communication patterns that are employed by 

Twister2 and its efficient model for iterations. Task execution 

optimizations such as pipelining will be introduced into 

Twister2 in the future updates to address these overheads. 

VII. CONCLUSION AND FUTURE WORK 

This paper presented a hybrid approach for dataflow 

based iterative programs. The implementation achieved 

reasonable performance compared to OpenMPI and much 

better performance compared to Spark for K-Means and 

SVM applications. We believe there are many aspects of the 

framework that can be improved further to reduce the 

overheads and make it closer to OpenMPI performance.   

Twister2 provides a dataflow model that is similar to 

Spark where a central scheduler is used for allocating parallel 

tasks. Such a central scheduler is more suitable for workflow 

style applications and not suitable for parallel applications as 

the overhead of the central scheduler (distributing tasks to 

workers at each iteration as a “sequential bottleneck”) is high. 

We are actively working on incorporating checkpointing 

based fault tolerance to the system for both streaming and 

batch applications.  
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Fig. 6. Execution time for Source-Map-AllReduce (SMA) and Source-

Map-Map-AllReduce(SMMA) graph configurations. With 200K data 
points and 100 iterations 


