
Parallel Multidimensional Scaling Performance on Multicore Systems

Seung-Hee Bae
sebae@cs.indiana.edu

Community Grids Laboratory
Indiana University, Bloomington

Abstract

SMACOF algorithm is a gradient descent approach to
solve Multidimensional scaling problem. We design paral-
lel SMACOF program using parallel matrix multiplication
to run on a multicore machine. Also, we propose a block de-
composition algorithm based on the number of threads for
the purpose of keeping good load balance. In this paper, we
investigate performance results of the implemented parallel
SMACOF in terms of the block size, data size, and the num-
ber of threads. The speedup (or efficiency) factor is almost
7.7 with 2048 points data over 8 running threads. In ad-
dition, performance comparison between jagged array and
two-dimensional array in C# language is carried out. The
jagged array data structure performs at least 40% better
than the two-dimensional array structure.

1. Introduction

As CPU clock speed-up is limited by several physical
limitations, such as heat, energy loss, and limit of light
speed, most CPU architecture companies introduced mul-
ticore architectures, which is the most popular CPU archi-
tecture now. Since multicore architectures were invented,
multicore architectures are getting important in software de-
velopment and effecting on client, server and supercomput-
ing systems [1, 7, 8, 16]. In addition, the CPU developers
have a vision to develop many-core chips which will have
hundreds or thousands cores on a single chip. As [16] men-
tioned, the parallelism became a critical issue to develop
softwares for the purpose of getting maximum performance
gains of multicore machines.

Also, Intel proposed that the Recoginition, Mining, and
Synthesis (RMS) approach as a killer application for the
next data explosion era, and machine learning and data min-
ing algorithms are suggested as important algorithms for the
data deluge era by [8]. Those algorithms are, however, usu-
ally highly compute-intensive algorithms, so the running
time will be increasing in quadratic or even more as the

data size increases. As [8] already described, the amount
of data will be huge in every domain, due to digitization
of not only scientific data but personal documents, photos,
and videos. From the above statements, the necessary com-
putation will be enormous for data mining algorithms in the
future, so that implementing in scalable parallelism of those
algorithms will be one of the most important procedures for
the coming many-core and data explosion era.

As the amount of the scientific data is also increasing,
data visualization could be another interesting area since
it is hard to imagine data distribution of the most scien-
tific data or to depict relative position among data points
due to high dimensionality. Dimension reduction algo-
rithms is used to reduce dimensionality of high dimensional
data into viewable low dimensional space, so that dimen-
sion reduction algorithms are used as visualization tools.
Some dimension reduction approaches, such as generative
topographic mapping (GTM) [2, 17] and Self-Organizing
Map (SOM) [11], seek to preserve topological properties
of given data rather than proximity information, and other
methods, i.e. multidimensional scaling (MDS) [13, 3], work
on maintaining proximity information, similarity or dissim-
ilarity information, between points as much as possible. In
this paper, the author uses parallel matrix multiplication to
parallelize an elegant algorithm, named SMACOF (Scal-
ing by MAjorizing a COmplicated Function) [5, 6, 10], for
computing MDS solution in C# language and presents per-
formance analysis of parallel implementation of SMACOF
on multicore machines.

Section 2 describes MDS and the SMACOF algorithm
which is used in this paper, briefly. How to parallelize the
described SMACOF algorithm is shown in Section 3. We
explain the experimental setup in Section 4. In Section 5,
the author discusses the performance results with respect to
several aspects, such as block size, the number of threads,
and a C# language specific issue. Finally, the conclusion
and the future works are in Section 6.

2. Multidimensional Scaling (MDS)

Multidimensional scaling (MDS) [13, 3] is a general
term for a collection of techniques to configure data points
with proximity information, typically dissimilarity (inter-
point distance), into a target space which is normally Eu-
clidean low-dimensional space. Formally, the dissimilarity
matrix should be symmetric, nonnegative, and zero diago-
nal elements. Thus, the conditions of nonnegative elements
(δij ≥ 0), zero diagonal elements (δii = 0), and symmetric-
ity (δij = δji) should be met for an n × n dissimilarity
matrix ∆ = (δij), where n is the number of points. From
the given dissimilarity matrix ∆, a configuration of points
is constructed by the MDS algorithm in a Euclidean target
space with dimension p. The output of MDS algorithm can
be an n × p configuration matrix X , whose rows represent
each data points in Euclidean p-dimensional space. From
configuration matrix X , it is easy to compute the Euclidean
interpoint distance dij(X) among n configured points in the
target space and to build the n×n Euclidean interpoint dis-
tance matrix D(X) = (dij(X)). The purpose of MDS al-
gorithm is to construct a configuration points into the target
p-dimensional space, while the interpoint distance dij(X)
is approximated to δij as much as possible. Two different
measurements were suggested as an objective value of MDS
algorithms. First, Kruskal proposed STRESS (σ or σ(X))
criterion (Eq. 1) which is based on squared error between
distance of configured points and corresponding dissimilar-
ity [12]. The SSTRESS (σ2 or σ2(X)) criterion (Eq. 2) is
based on squared error between squared distance of mapped
points and squared dissimilarity [18].

σ(X) =
∑
i<j

wij(dij − δij)2 (1)

σ2(X) =
∑
i<j

wij [(dij)2 − (δij)2]2 (2)

where dij = ‖xi − xj‖ and wij ≥ 0.
Therefore, the MDS can be thought of as an optimiza-

tion problem, which is minimization of the STRESS or
SSTRESS criteria during construction of a configuration
points in the p-dimension target space.

2.1. Scaling by MAjorizing a COmplicated
Function (SMACOF)

Scaling by MAjorizing a COmplicated Function (SMA-
COF) [5, 6, 10] is an iterative majorization algorithm in or-
der to minimize STRESS criterion. SMACOF is a variant
of steepest descent approach so likely to find local minima.
Though it is trapped in local minima, it is powerful since it
guarantees monotone decreasing the STRESS (σ) criterion.
We will not explain the mathematical details of SMACOF

in this paper (for detail, refer to [3]), but introduce the es-
sential equation, called Guttman transform

X = V †B(Z)Z (3)

where V † is the Moore-Penrose inverse (or Pseudo inverse).
The Guttman transform is generated from the equation

∇σ(X) = 0 which can be written as V X = B(Z)Z.

V = (vij) (4)

vij =
{
−wij if i 6= j∑

i 6=j wij if i = j
(5)

B(Z) = (bij) (6)

bij =


−wijδij/dij(Z) if i 6= j
0 if dij(Z) = 0, i 6= j
−

∑
i 6=j bij if i = j

(7)

If the weights are equal for all distances (wij = 1), then

V = n

(
I − eet

n

)
(8)

V † =
1
n

(
I − eet

n

)
(9)

where e = (1, . . . , 1)t is unit vector whose length is p. In
this paper, we use equal weights.

The iteration is processed by substitution X [k−1] into Z
like following Eq. (10)

X [k] = V †B(X [k−1])X [k−1] (10)

where X [k] is the configuration matrix of k iteration, and
X [0] is random initial configuration or a prior initial con-
figuration matrix. Finally, SMACOF algorithm stops when
∆σ(X [k]) = σ[k−1] − σ[k] < ε, where ε is a relatively
small threshold constant. The Algorithm 1 illustrates the
SMACOF algorithm for MDS solution.

Algorithm 1 SMACOF algorithm

Z ⇐ X [0];
k ⇐ 0;
ε ⇐ small positive number;
Compute σ[0] = σ(X [0]);
while k = 0 or (∆σ(X [k]) > ε and k ≤ max iterations)
do

k ⇐ k + 1;
Compute the Guttman transform X [k] by Eq. (10)
Compute σ[k] = σ(X [k])
Z ⇐ X [k];

end while

2

points 128 256 512 1024 2048
iteration 47 40 52 46 53
time (sec) 1.43 16.22 176.12 1801.21 17632.51

Table 1. The running times of SMACOF pro-
gram in naive way for different data on Intel8b
machine.

2.2. Time Complexity of SMACOF

As discussed in Section 2.1, SMACOF algorithm con-
sists of iterative matrix multiplication as in Eq. (10), where
V and B(X [k−1]) are n× n matrices, and X [k−1] is n× p
matrix. Since the inside of the iteration steps are the dom-
inant steps of the SMACOF approach, the order of SMA-
COF algorithm must be O(k · (n3 + p · n2)), where k is
the iteration number and p is the target dimension. Since
the purpose of the MDS approach is the mapping high di-
mensional data into conceivable low-dimensional space, in
most cases two- or three-dimensional space, the author may
have the assumption that p � n, without loss of generality.
Thus, the order of SMACOF method might be considered
as O(k · n3). The iteration number is totally dependent on
the stop criterion, threshold value (ε). It can be k > n for
small n, but k < n could be typical for large n. We may
think of k as a constant integer, which is not too small con-
stant for some large enough data set. Since the order of
SMACOF method is proportional to n3, the running time is
highly dependent on the number of points (n).

Table 1 shows the iteration numbers and the average of
the 5 running times of SMACOF program in C# on Intel8b
machine (refer to Table 2 for the detail information of the
machine) for each data, which are four-dimensional Gaus-
sian distribution data having different number of points, by
a naive (non-parallel, non-block based) SMACOF imple-
mentation. In Table 1, the average running time is increased
about 10 (> 23) times as the data size is increased in twice.
This result supports the above time complexity analysis of
SMACOF. It takes more than 30 minutes for the 1024 points
Gaussian distribution data and more than 4 hour 50 minutes
for the 2048 points Gaussian distribution data. The num-
ber of points, however, could be more than millions in real
scientific data which we are interested in, so it would take
more than 0.5 × 1010 hours to run the ordinary SMACOF
algorithm with those large scientific data. Even though In-
tel8b machine has two 4-core processors which actually 8
cores, the normal SMACOF program uses only one of the
8 cores. (The other 7 cores do nothing, even the program
takes almost 5 hours for only 2048-point data.) As in mul-
ticore era, implementation in a parallel approach is critical
not only for high performance but for hardware utilization.

These are the reasons why parallel implementation of SMA-
COF (or any application which takes huge amount of time)
is interesting now.

3. Parallel Implementation of SMACOF

Since the dominant time consuming part of SMACOF
program is the iterative matrix multiplication, which is
O(k ·n3), Building parallel matrix multiplication is the most
natural thought to implement parallel SMACOF in efficient
way. Parallel matrix multiplication makes two benefits in
terms of performance issue. First, High hardware utilization
and computation speed-up is achieved as implied in paral-
lelism on multicore machines. In addition, the performance
gain of cache memory usage is also achieved, since paral-
lel matrix multiplication is composed of a number of small
block matrix multiplication, which would be fit into cache
line. Fitting into cache line reduces unnecessary cache in-
terferences, such as false sharing and cache I/O overhead.
The cache memory issue is significant in performance, as
you see in Section 5.1.

Figure 1. Parallel Matrix multiplication.

Parallel matrix multiplication is composed of a block de-
composition and block multiplications of the decomposed
blocks. Figure 1 illustrates how to operate matrix multipli-
cation (A · B = C) using block decomposition. In Figure
1, n×n square matrices are used as an example, but square
property of matrix is not necessary for the block version
of matrix multiplication. Also, decomposed blocks can be
rectangular if row of block in matrix A is equal to column
of block in matrix B, though the Figure 1 use b × b square
block. In order to compute block cij in Figure 1, we should
multiply ith block-row of matrix A with jth block-column
of matrix B, correspondingly, as in Eq. (11).

cij =
m∑

k=1

aik · bkj (11)

where cij , aik, and bkj are b×b blocks, and m is the number
of blocks in block-row of matrix A and in block-column of
matrix B. Thus, if we assume that the matrices A, B, and C
are decomposed m×m blocks by b× b block, without loss

3

Algorithm 2 First mapping block index of each thread
/* starting block index of each thread is (0, id) */
row ⇐ 0;
col ⇐ id; /* 0 ≤ id ≤ TH − 1 */
/* where id is the thread ID, and TH is the number of
threads */

Algorithm 3 Mapping blocks to a thread
while col ≥ the number of the column blocks do

row ⇐ row + 1;
if row ≥ the number of the row blocks then

return false
end if
col ⇐ (row + id + row · (TH − 1)/2)%TH;

end while

return true

of generality, the matrix multiplication (A ·B = C) can be
finished with m2 block matrix multiplications. Note that
computation of cij blocks (1 ≤ i, j ≤ m, cij ⊂ C) are
independent each other.

After decomposing matrices, we should assign a number
of cij blocks to each threads. The load balance is essen-
tial for assigning jobs (blocks in this paper) to threads (or
processes) for the maximum performance gain (or the min-
imum parallel overhead). In the best case, the number of
decomposed blocks assigned each thread should be as equal
as possible, i.e. dm2/THe or dm2/THe − 1. Algorithm 3
is used for block assignment to each thread in consideration
of load balance in our implementation. As in Algorithm 2,
(0, id) block is the starting position of each thread. If (0, id)
block exists, then thread id starts computing (0, id). Other-
wise, the Algorithm 3 will find an appropriate block to com-
pute for the thread, and then the thread computes the found
block. After computation a block multiplication is done,
the thread will call again Algorithm 3 with increase only
col value to col+TH . Iteration these steps, until the thread
gets false from calling Algorithm 3. Then the assigned
blocks to the thread is done for the matrix multiplication.

After finishing assigned computation, each thread sends
a signal to the main thread which is waiting on the Ren-
dezvous (actually ‘waitingAll’ method is called). Finally,
the main thread will complete the matrix multiplication af-
ter getting all signals from the participated threads. For the
purpose of synchronization and other thread issues, a novel
messaging runtime library CCR (Concurrency and Coordi-
nation Runtime) [4, 14] developed by Microsoft Research
is used for this application.

After needed matrix multiplications are completed, the
parallel SMACOF application calculates STRESS value (σ)
of the current solution, and measures difference between

previous STRESS value and current STRESS value (∆σ).
If ∆σ < ε, where ε is a threshold value for the stop condi-
tion, the application returns the current solution as the final
answer. Otherwise, the application will iterate the proce-
dure again using the current solution as previous solution.

4. Experimental Settings

4.1 Experimental Platforms

For the experiments of the parallel SMACOF, two mul-
ticore machines depicted in Table 2 are used. Both intel8a
and intel8b have two quad-core CPU chips, and a total of
8 cores. Both of them use Microsoft Windows OS system,
since the program is written in C# programming language
and CCR for this test.

ID Intel8a Intel8b
CPU Intel Xeon E5320 Intel Xeon x5355
CPU Clock 1.86 GHz 2.66 GHz
Core 4-core × 2 4-core × 2
L2 Cache 2 × 4 MB 2 × 4 MB
Memory 8GB 4GB
OS XP pro 64 bit Vista Ultimate 64 bit

Table 2. Multicore PC’s used in this experi-
ments

4.2 Experimental Data

For the purpose of checking quality of the implemented
parallel SMACOF results, the author generated simple 4-
dimensional 8-centered Gaussian distribution data with dif-
ferent number of points, i.e. 128, 256, 512, 1024, 2000, and
2048. The 8 center positions in 4-dimension are following:
(0,0,0,0), (2,0,0,0), (0,2,0,1), (2,2,0,1), (0,0,1,0), (2,2,1,0),
(2,0,4,1), and (0,2,4,1). Note that the fourth dimension val-
ues are only 0 and 1. Thus, for those data, it would be natu-
ral to be mapping into three-dimensional space near by cen-
ter positions of the first three dimensions.

It is sure that the real scientific data are much more com-
plex than those simple Gaussian distribution data in this
paper. However, nobody can verify the mapping results
of those high dimensional data visually, since it is hard to
imagine high dimensional space. That is the reason those
proposed simple data used in this paper. Figure 2 shows
three different screen captures of the parallel SMACOF re-
sults of the given 2000 points data in a 3D image viewer,
called Meshview [9]. Combining three images in Figure 2
shows that the expected mapping is achieved by the SMA-
COF program.

4

Figure 2. The example of SMACOF results
with 8-centered Gaussian distribution data
with 2000 points shown with Meshview in 3D.

4.3 Experimental Designs

Several different aspects of performance issue are inves-
tigated by the following experimental designs:

• Different number of block sizes: This experiment
demonstrates the performance of parallel SMACOF
program with respect to block size. Three different
data set of 4-dimensional Gaussian distribution are
used for this test. As Section 5.1 describes, differ-
ent block size will affect on the cache memory per-
formance, since computers will fetch (or flush) data
into cache by a cache line amount of data, whenever
it needs to fetch (or flush) data, without regart to the
actual needed data size. Note that whenever the author
mentions the block size, says b, it means a b× b block,
so that the actual block size is not b but b2.

• Different number of threads: As the number of
threads increases, the number of used core will be in-
creased unless the number of threads is bigger than the
number of cores in the system. However, when we
use more threads then the number of cores, thread per-
formance overhead, like context switching and thread
scheduling overhead, will increase. We experiment
the number of thread from one to sixteen, double of
the number of cores of the used systems in Table 2.
This experiment setup will investigate the thread per-
formance overhead and what is the appropriate number
of thread for the parallel SMACOF program.

• Different number of data points: The bigger data
will use more computation time as in Table 1. Us-
ing this test setup, The author also examines how ef-
ficiency and overhead will change as the data size dif-
fers. The tested number of data points are from 128
to 2048 as increased by factor of 2, i.e. 128, 256, . . . ,
2048.

• Two-dimensional array vs. jagged array: It is
known as jagged array (array of arrays) shows bet-
ter performance than two-dimensional array in C#

[15][19]. This knowledge is investigated by compar-
ing performance results of the two different versions of
parallel SMACOF program, which are based on jagged
array and two-dimensional array.

Due to gradient descent attribute of SMACOF algorithm,
the final solution highly depends on the initial mapping.
Thus, it is appropriate to use random initial mapping for
the SMACOF algorithm unless specific prior initial map-
ping exists, and run several times to increase the probability
to get optimal solution. If the initial mapping is different,
however, the computation amount can be varied whenever
the application runs, so that we could not verify the over-
head, efficiency, and speed up of the parallel SMACOF ap-
plication. Also, any other performance comparison between
two experimental setups would be inconsistent. Therefore,
though the application is originally implemented with ran-
dom initial mapping for real solutions, the random seed is
fixed for the performance measures of this paper to gener-
ate the same answer and the same necessary computation
for the same problem. The stop condition threshold value
(ε) is also fixed at 1000 for 2000 and 2048 points data, and
at 100 for the other data.

5. Experimental Results and Performance
Analysis

5.1. Performance Analysis of Different
Block Sizes (Cache Effects)

As mentioned the previous section, the author tested per-
formance of parallel SMACOF program with respect to
block sizes. We used three different data set of 1024, 2000,
and 2048 points data and experimented with 8 threads on
Intel8a and Intel8b machines. The tested block size is in-
creased in factor of 2 from one to 256 for 1024 points data
(in order to keep the number of blocks more than the num-
ber of threads or cores) or 512 for 2000 and 2048 points
data, as shown in Figure 3. Note that the curves for every
test case show the same shape. When the block size is 64,
the application performs best with 2000 and 2048 points
data. For the data with 1024 points, performance of the
block size 64 is comparative with block size 128. From
those results, we could make conclusion that there are fit-
ter block sizes for each problem and it might different for
each machines. For the two machines in Table 2, block size
64 could be fitter than other block sizes. Note that the run-
ning time of 2000 points data is longer than that of 2048
points data on both test platforms, even though the number
of points are less. The reason is that the iteration number
of 2000 data is 80, but that of 2048 data is only 53 for the
performance tests.

Running results with only one thread will be more help-
ful to investigate the cache effect, since there is no other

5

Figure 3. Parallel SMACOF running time with
respect to block sizes with 8 threads.

performance criteria except the block size. Table 3 and Ta-
ble 4 describe the running time with only one thread with
512, 1024, and 2048 points data. Based on the 8-thread re-
sults, we chose more fitted block sizes which are b = 32, 64
to test cache effect and measure the speedup of selected
block sizes based on the result of using one big whole ma-
trix (n×n). As we expected, the result shows that there are
more than 1.6 speedup for the 1024 and 2048 points data,
and around 1.1 speedup for the even small 512 points data
on Intel8b and a little smaller speedup on Intel8a. Also,
performance of b = 64 is better than b = 32 in all cases.
Note that there is some additional tasks (a kind of over-
heads) for the block matrix multiplication, such as dividing
blocks, finding correct block positions, and the iteration of
submatrix multiplication.

points blockSize avgTime(sec) speedup
512 32 228.39 1.10
512 64 226.70 1.11
512 512 250.52

1024 32 1597.93 1.50
1024 64 1592.96 1.50
1024 1024 2390.87
2048 32 14657.47 1.61
2048 64 14601.83 1.61
2048 2048 23542.70

Table 3. Running results with only one thread
with different block sizes for 512, 1024, and
2048 points data on Intel8a machine.

points blockSize avgTime(sec) speedup
512 32 160.17 1.10
512 64 159.02 1.11
512 512 176.12
1024 32 1121.96 1.61
1024 64 1111.27 1.62
1024 1024 1801.21
2048 32 10300.82 1.71
2048 64 10249.28 1.72
2048 2048 17632.51

Table 4. Running results with only one thread
with different block sizes for 512, 1024, and
2048 points data on Intel8b machine.

5.2. Performance Analysis with respect to
the Number of Threads and Data
Sizes

We also investigated the relation between performance
gains and the data sizes. Based on the result of the previous
section, block size b = 32, 64 cases are only examined and
we compute the speedup of 8 threads running on the two
8-core test machines over 1 thread running with the same
block size with respect to five different Gaussian distribu-
tion data, such as 128, 256, 512, 1024, and 2048 points
data. For the 128 points data set we measure only b = 32
case, since the number of blocks will be only 4 if b = 64
so only 4 threads will do actual submatrix multiplication.
Figure 4 illustrates the speedup of the Parallel SMACOF
with respect to different data sizes. As Figure 4 depicted,
the speedup ratio increases as the data size increases. For
the two small data set, i.e. 128 and 256 points data, the
overhead ratio would be relatively high due to the running
time is quite short. However, for the 512 points and big-
ger data set, the speedup ratio is more than 7.0. Note that
the speedup ratio for the 2048 points data is around 7.7 and
the parallel efficiency is around 0.96 for both block sizes on
both Intel8a and Intel8b machines. Those values represent
that our parallel SMACOF implementation works very well
in parallel, since the it shows significant performance gains
but negligible overhead.

In addition to experiments on data sizes, the perfor-
mance gain with respect to the number of threads is also
experimented. Again, we test the cases, where block size
b = 32, 64 with 1024 points data. Figure 5 illustrates the
speedup of the Parallel SMACOF with respect to the num-
ber of threads on Intel8a and Intel8b machines. As we ex-
pected, the speedup increase almost linearly until the num-
ber of threads becomes 8, which is the number of cores.

6

Figure 4. Speedup by 8 threads on 8 core ma-
chines with respect to different Data sizes

Then, when the number of threads is 9, the speedup factor
suddenly decreases on both machines. That might be depen-
dent on context switch and thread scheduling algorithms of
the operating system. When the number of threads is above
9, the performance gain increases again, but it is less than
when the number of threads equals to the number of cores
on the machine. Note that the the speedup curves in the Fig-
ure 5 are different for more than 9 threads on the machines
Intel8a and Intel8b. That must be effected by the operat-
ing systems on those machines (refer to Table 2). Based on
Figure 5, Windows Vista system shows better thread man-
agement than Windows XP for those tests.

5.3. Performance of two-dimensional Array
vs. Jagged Array (C# Language Spe-
cific Issue)

It is known that jagged array (array of arrays) performs
better than two-dimensional (multidimensional) array in C#
language [15, 19]. The author also wants to measure per-
formance efficiency of jagged array over two-dimensional
array on the proposed parallel SMACOF algorithm. The
Figure 6 describes the efficiency value with respect to dif-
ferent size of data set. The left figure of Figure 6 is the
runtime plottings of both jagged and two-dimensional array
on both test machines with block size b = 64 and the right
figure demonstrates the efficiency of jagged array over two-
dimensional array on both Intel8a and Intel8b. Note that
the left figure of Figure 6 use log scale on x- and y-axes.
As shown in the right figure of Figure 6, the efficiency is
about 1.5 on Intel8b and 1.4 on Intel8a for all the test data
set, 128, 256, 512, . . . , 2048 points data. In other words,
jagged array data structure is more than 40% faster than

Figure 5. Speedup on 8 core machines with
respect to the number of threads with 1024
points data

Figure 6. Performance comparison of Jagged
and 2-Dimensional array in C# language on
Intel8a and Intel8b.

two-dimensional array structure in C# language.

6. Conclusions & Future Works

In this paper, a machine-wide multicore parallelism is
designed for the SMACOF algorithm, which is used to find
a solution for MDS problem, and a several different per-
formance analyses have been done. Since the SMACOF
algorithm highly depends on matrix multiplication opera-
tion, the parallel matrix multiplication approach is used to
implement parallel SMACOF. For load balance issue of the
parallel SMACOF, we suggested a quite nice block decom-
position algorithm. The algorithm works well if the the
number of blocks in a row is more than a half of the num-
ber of running threads. The experimental results show that
quite high efficiency and speed up is achieved by the pro-
posed parallel SMACOF, about 0.95% and 7.5 over 8 cores,
for larger test data set with 8 threads running, and the ef-
ficiency is increased as the data size increased. Also, we

7

tested the cache effect of the performance with the differ-
ent block sizes, and the block size b = 64 is most fitted on
both tested 8-core machines for the proposed parallel SMA-
COF application. In addition, the performance comparison
between jagged array and two-dimensional array in C# is
carried out. Jagged array shows about 1.5 times efficiency
than two-dimensional array in our experiments.

Investigation over other programming languages and
OS, for instance C/C++ under Linux and Windows systems,
and over the multicore clusters or clouding computing sys-
tems would be interesting research issues. Based on high
efficiency of the proposed parallel SMACOF on a single
multicore machine, it would be highly intertesting to de-
velop reasonably high efficient multicore cluster level (or
even cloud computing system level) parallel SMACOF im-
plementation.

References

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Hus-
bands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf,
S. W. Williams, and K. A. Yelick. The landscape of par-
allel computing research: A view from berkeley. Techni-
cal Report UCB/EECS-2006-183, EECS Department, Uni-
versity of California, Berkeley, Berkeley, California, Dec
2006. http://www.eecs.berkeley.edu/Pubs/
TechRpts/2006/EECS-2006-183.html.

[2] C. M. Bishop, M. Svensén, and C. K. I. Williams. GTM:
The generative topographic mapping. Neural Computation,
10(1):215–234, 1998. http://citeseer.ist.psu.
edu/bishop98gtm.html.

[3] I. Borg and P. J. Groenen. Modern Multidimensional Scal-
ing: Theory and Applications. Springer, New York, NY,
U.S.A., 2005.

[4] G. Chrysanthakopoulos and S. Singh. An asynchronous
messaging library for c#. In Proceedings of Workshop on
Synchronization and Concurrency in Object-Oriented Lan-
guage (SCOOL), OOPSLA, San Diego, CA, U.S.A., 2005.

[5] J. de Leeuw. Applications of convex analysis to multidi-
mensional scaling. Recent Developments in Statistics, pages
133–145, 1977.

[6] J. de Leeuw. Convergence of the majorization method
for multidimensional scaling. Journal of Classification,
5(2):163–180, 1988.

[7] J. Dongarra, D. Gannon, G. Fox, and K. Kennedy.
The impact of multicore on computational science
software. CTWatch Quarterly, 3(1), Feb 2007.
http://www.ctwatch.org/quarterly/
archives/february-2007.

[8] P. Dubey. Recognition, mining and synthesis moves com-
puters to the era of tera. Technology@Intel Magazine, Feb
2005.

[9] A. J. Hanson, K. I. Ishkov, and J. H. Ma. Meshview: Vi-
sualizing the fourth dimension, 1999. http://www.cs.
indiana.edu/˜hanson/papers/meshview.pdf.

[10] W. J. Heiser and J. de Leeuw. Smacof-1. Technical Report
UG-86-02, Department of Data Theory, University of Lei-
den, Leiden, The Nethelands, 1986.

[11] T. Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin,
Germany, 2001.

[12] J. B. Kruskal. Multidimensional scaling by optimizing
goodness of fit to a nonmetric hypothesis. Psychometrika,
29(1):1–27, 1964.

[13] J. B. Kruskal and M. Wish. Multidimensional Scaling. Sage
Publications Inc., Beverly Hills, CA, U.S.A., 1978.

[14] J. Richter. Concurrent affairs: Concurrency and
coordination runtime. MSDN Magazine, Sep.
2006. http://msdn.microsoft.com/en-us/
magazine/cc163556.aspx.

[15] D. Solis. Illustrated C# 2005. Apress, Berkely, CA, U.S.A.,
2006.

[16] H. Sutter. The free lunch is over: A fundamental turn toward
concurrency in software. Dr. Dobb’s Journal, 30(3), Mar
2005.

[17] M. Svensén. GTM: The Generative Topographic Mapping.
PhD thesis, Neural Computing Research Group, Aston Uni-
versity, Birmingham, U.K., 1998.

[18] Y. Takane, F. W. Young, and J. de Leeuw. Nonmetric in-
dividual differences multidimensional scaling: an alternat-
ing least squares method with optimal scaling features. Psy-
chometrika, 42(1):7–67, 1977.

[19] W. Vogels. Hpc.net - are cli-based virtual machines suit-
able for high performance computing? In SC ’03: Proceed-
ings of the 2003 ACM/IEEE conference on Supercomputing,
page 36, Washington, DC, U.S.A., 2003. IEEE Computer
Society.

8

