
Parallel Multidimensional Scaling Performance on Multicore Systems

Seung-Hee Bae
sebae@cs.indiana.edu

Community Grids Laboratory
Indiana University, Bloomington

Abstract

Multidimensional scaling constructs a configuration
points into the target low-dimensional space, while the
interpoint distances are approximated to corresponding
known dissimilarity value as much as possible. SMA-
COF algorithm is an elegant gradient descent approach to
solve Multidimensional scaling problem. We design paral-
lel SMACOF program using parallel matrix multiplication
to run on a multicore machine. Also, we propose a block de-
composition algorithm based on the number of threads for
the purpose of keeping good load balance. The proposed
block decomposition algorithm works very well if the num-
ber of row blocks is at least a half of the number of threads.
In this paper, we investigate performance results of the im-
plemented parallel SMACOF in terms of the block size, data
size, and the number of threads. The speedup factor is al-
most 7.7 with 2048 points data over 8 running threads. In
addition, performance comparison between jagged array
and two-dimensional array in C# language is carried out.
The jagged array data structure performs at least 40% bet-
ter than the two-dimensional array structure.

1. Introduction

Since multicore architectures were invented, multicore
architectures have been getting important in software devel-
opment and effecting on client, server and supercomputing
systems [2, 8, 10, 22]. As [22] mentioned, the parallelism
has become a critical issue to develop softwares for the pur-
pose of getting maximum performance gains of multicore
machines. Intel proposed that the Recoginition, Mining,
and Synthesis (RMS) [10] approach as a killer application
for the next data explosion era. Machine learning and data
mining algorithms are suggested as important algorithms
for the data deluge era by [10]. Those algorithms are, how-
ever, usually highly compute-intensive algorithms, so the
running time increases in quadratic or even more as the data
size increases. As [10] described, the amount of data is huge

in every domain, due to digitization of not only scientific
data but personal documents, photos, and videos. From the
above statements, the necessary computation will be enor-
mous for data mining algorithms in the future, so that imple-
menting in scalable parallelism of those algorithms will be
one of the most important procedures for the coming many-
core and data explosion era.

As the amount of the scientific data is increasing, data vi-
sualization would be another interesting area since it is hard
to imagine data distribution of the most high-dimensional
scientific data. Dimension reduction algorithms are used
to reduce dimensionality of high dimensional data into Eu-
clidean low dimensional space, so that dimension reduction
algorithms are used as visualization tools. Some dimension
reduction approaches, such as generative topographic map-
ping (GTM) [23] and Self-Organizing Map (SOM) [16],
seek to preserve topological properties of given data rather
than proximity information, and other methods, i.e. mul-
tidimensional scaling (MDS) [18, 3], work on maintaining
proximity information, similarity or dissimilarity informa-
tion, between mapping points as much as possible. The
MDS uses several matrices which are full and n × n ma-
trices for the n given points. Thus, the matrices could be
very large for large problems (n could be as big as million
even today). For large problems, we will initially cluster the
given data and use the cluster centers to reduce the problem
size. In this paper, the author uses parallel matrix multi-
plication to parallelize an elegant algorithm for computing
MDS solution, named SMACOF (Scaling by MAjorizing
a COmplicated Function) [6, 7, 14], in C# language and
presents performance analysis of parallel implementation of
SMACOF on multicore machines.

Section 2 describes MDS and the SMACOF algorithm
which is used in this paper, briefly. How to parallelize the
described SMACOF algorithm is shown in Section 3. We
explain the experimental setup in Section 4. In Section 5,
the author discusses the performance results with respect to
several aspects, such as block size, the number of threads
and data size, and a C# language specific issue. Finally, the
conclusion and the future works are in Section 6.

2. Multidimensional Scaling (MDS)

Multidimensional scaling (MDS) [18, 3] is a general
term for a collection of techniques to configure data points
with proximity information, typically dissimilarity (inter-
point distance), into a target space which is normally Eu-
clidean low-dimensional space. Formally, the n × n dis-
similarity matrix ∆ = (δij) should be satisfied symmet-
ric (δij = δji), nonnegative (δij ≥ 0), and zero diagonal
elements(δii = 0) conditions. From the given dissimilar-
ity matrix ∆, a configuration of points is constructed by the
MDS algorithm in a Euclidean target space with dimension
p. The output of MDS algorithm can be an n × p config-
uration matrix X , whose rows represent each data points
xi in Euclidean p-dimensional space. From configuration
matrix X , it is easy to compute the Euclidean interpoint
distance dij(X) = ‖xi − xj‖ among n configured points
in the target space and to build the n × n Euclidean inter-
point distance matrix D(X) = (dij(X)). The purpose of
MDS algorithm is to construct a configuration points into
the target p-dimensional space, while the interpoint dis-
tance dij(X) is approximated to δij as much as possible.
Two different measurements were suggested as an objec-
tive function of MDS algorithms. First, Kruskal proposed
STRESS (σ or σ(X)) criterion (Eq. (1)) which is based
on weighted squared error between distance of configured
points and corresponding dissimilarity [17]. The SSTRESS
(σ2 or σ2(X)) criterion (Eq. (2)) is an weighted squared er-
ror between squared distance of configured points and cor-
responding squared dissimilarity [24].

σ(X) =
∑

i<j≤n

wij(dij(X)− δij)2 (1)

σ2(X) =
∑

i<j≤n

wij [(dij(X))2 − (δij)2]2 (2)

where wij is a weight value, so wij ≥ 0.
Therefore, the MDS can be thought of as an optimiza-

tion problem, which is minimization of the STRESS or
SSTRESS criteria during constructing a configuration of
points in the p-dimension target space.

2.1. Scaling by MAjorizing a COmplicated
Function (SMACOF)

Scaling by MAjorizing a COmplicated Function (SMA-
COF) [6, 7, 14] is an iterative majorization algorithm in or-
der to minimize STRESS criterion. SMACOF is a variant
of gradient descent approach so likely to find local minima.
Though it is trapped in local minima, it is powerful since it
guarantees monotone decreasing the STRESS (σ) criterion.
We will not explain the mathematical details of SMACOF

in this paper (for detail, refer to [3]), but introduce the es-
sential equation, called Guttman transform

X = V †B(Z)Z (3)

where V † is the Moore-Penrose inverse (or Pseudo in-
verse). The Guttman transform is generated from the sta-
tionary equation ∇σ(X) = 0 which can be written as
V X = B(Z)Z.

V = (vij) (4)

vij =
{
−wij if i 6= j∑

i 6=j wij if i = j
(5)

B(Z) = (bij) (6)

bij =

−wijδij/dij(Z) if i 6= j
0 if dij(Z) = 0, i 6= j
−

∑
i 6=j bij if i = j

(7)

If the weights are equal for all distances (wij = 1), then

V = n

(
I − eet

n

)
(8)

V † =
1
n

(
I − eet

n

)
(9)

where e = (1, . . . , 1)t is unit vector whose length is p. In
this paper, we use Eq. (9) for V †.

The iteration is processed by substitution X [k−1] into Z
in Eq. (3) like following Eq. (10)

X [k] = V †B(X [k−1])X [k−1] (10)

where X [k] is the configuration matrix after k iteration, and
X [0] is random initial configuration or a prior initial con-
figuration matrix. Finally, SMACOF algorithm stops when
∆σ(X [k]) = σ[k−1] − σ[k] < ε, where ε is a relatively
small threshold constant. The Algorithm 1 illustrates the
SMACOF algorithm for MDS solution.

Algorithm 1 SMACOF algorithm

Z ⇐ X [0];
k ⇐ 0;
ε ⇐ small positive number;
Compute σ[0] = σ(X [0]);
while k = 0 or (∆σ(X [k]) > ε and k ≤ max iterations)
do

k ⇐ k + 1;
Compute the Guttman transform X [k] by Eq. (10)
Compute σ[k] = σ(X [k])
Z ⇐ X [k];

end while

2

points 128 256 512 1024 2048
time (sec) 1.4 16.2 176.1 1801.2 17632.5

Table 1. The running times of SMACOF pro-
gram in naive way for different data on Intel8b
machine.

2.2. Time Complexity of SMACOF

As discussed in Section 2.1, SMACOF algorithm con-
sists of iterative matrix multiplication as in Eq. (10), where
V and B(X [k−1]) are n× n matrices, and X [k−1] is n× p
matrix. Since the inside of the iteration steps are the most
time-consuming steps of the SMACOF approach, the order
of SMACOF algorithm must be O(k ·(n3 +p ·n2)), where k
is the iteration number and p is the target dimension. Since
the target dimension p is typically two or three, the author
may have the assumption that p � n, without loss of gen-
erality. Thus, the order of SMACOF method might be con-
sidered as O(k ·n3), and we may think of k as a constant in-
teger, which is not too small constant for some large enough
data set. Since the running time of SMACOF method is pro-
portional to n3, the running time is highly dependent on the
number of points (n).

Table 1 shows the average of the 5 running times of a
naive (non-parallel, non-block based) SMACOF program
in C# on Intel8b machine (refer to Table 2 for the detail
information of the machine) for four-dimensional Gaussian
distribution data set to map in 3D space. In Table 1, the
average running time is increased about 10 (> 23) times as
the data size is increased in twice. It takes more than 30
minutes for the 1024 points Gaussian distribution data and
more than 4 hour 50 minutes for the 2048 points Gaussian
distribution data. The number of points, however, could be
more than millions in real scientific data which we are in-
terested in, so it would take more than 0.5 × 1010 hours to
run the ordinary SMACOF algorithm with those large sci-
entific data. You should note that even though Intel8b ma-
chine has two 4-core processors which has actually 8 cores,
the naive SMACOF implementation uses only one of the 8
cores. As in multicore era, parallel approach is essential to
software implementation not only for high performance but
for hardware utilization. These are the reasons why paral-
lel implementation of SMACOF, or any application which
takes huge amount of time, is interesting now.

3. Parallel Implementation of SMACOF

Since the dominant time consuming part of SMACOF
program is the iterative matrix multiplication, which is
O(k ·n3), building parallel matrix multiplication is the most

natural thought to implement parallel SMACOF in efficient
way. Parallel matrix multiplication [4, 1, 9, 25, 12] makes
two benefits in terms of performance issue. First, High
hardware utilization and computation speed-up is achieved
as implied in parallelism on multicore machines. In addi-
tion, the performance gain of cache memory usage is also
achieved, since parallel matrix multiplication is composed
of a number of small block matrix multiplications, which
would be fitter into cache line than the whole matrix multi-
plication. Fitting into cache line reduces unnecessary cache
interferences, such as false sharing and cache I/O overhead.
The cache memory issue is significant in performance, as
you see in Section 5.1.

Figure 1. Parallel Matrix multiplication.

Parallel matrix multiplication is composed of a block de-
composition and block multiplications of the decomposed
blocks. Figure 1 illustrates how to operate matrix multipli-
cation (A · B = C) using block decomposition. In Figure
1, n×n square matrices are used as an example, but square
property of matrix is not necessary for the block version
of matrix multiplication. Also, decomposed blocks can be
rectangular if row of block in matrix A is equal to column
of block in matrix B, though the Figure 1 use b × b square
block. In order to compute block cij in Figure 1, we should
multiply ith block-row of matrix A with jth block-column
of matrix B, correspondingly, as in Eq. (11):

cij =
m∑

k=1

aik · bkj (11)

where cij , aik, and bkj are b×b blocks, and m is the number
of blocks in block-row of matrix A and in block-column of
matrix B. Thus, if we assume that the matrices A, B, and C
are decomposed m×m blocks by b× b block, without loss
of generality, the matrix multiplication (A ·B = C) can be
finished with m2 block matrix multiplications. Note that
computation of cij blocks (1 ≤ i, j ≤ m, cij ⊂ C) is
independent each other.

After decomposing matrices, we should assign a number
of cij blocks to each threads. The load balance is essen-
tial for assigning jobs (cijblocks in this paper) to threads
(or processes) for the maximum performance gain (or the
minimum parallel overhead). In the best case, the num-

3

Algorithm 2 First mapping block index of each thread
/* starting block index of each thread is (0, id) */
row ⇐ 0;
col ⇐ id; /* 0 ≤ id ≤ TH − 1 */
/* where id is the thread ID, and TH is the number of
threads */

Algorithm 3 Mapping blocks to a thread
while col ≥ the number of the block columns do

row ⇐ row + 1;
if row ≥ the number of the block rows then

return false
end if
col ⇐ (row + id + row · (TH − 1)/2)%TH;

end while

return true

ber of decomposed blocks assigned to each thread should
be as equal as possible, which means either dm2/THe or
dm2/THe − 1 blocks assigned to all threads. Algorithm
3 is used for block assignment to each thread in consider-
ation of load balance in our implementation, and it works
very well if the number of row blocks is at least a half of the
number of running threads. As in Algorithm 2, (0, id) block
is the starting position of each thread. If (0, id) block ex-
ists, then thread id starts computing (0, id). Otherwise, the
Algorithm 3 will find an appropriate block to compute for
the thread, and then the thread computes the found block.
After block multiplication is done, the thread will execute
Algorithm 3 again with assigning col value to col + TH .
Each thread keeps those iteration, to do matrix multiplica-
tion and find the next working block by Algorithm 3, until
the thread gets false from calling Algorithm 3. Finally, ev-
ery assigned blocks to each thread is finished for the full
matrix multiplication.

After finishing assigned computation, each thread sends
a signal to the main thread which is waiting on the Ren-
dezvous (actually ‘waitingAll’ method is called). Finally,
the main thread will wrap up the matrix multiplication af-
ter getting all signals from the participated threads. For the
purpose of synchronization and other thread issues, a novel
messaging runtime library CCR (Concurrency and Coordi-
nation Runtime) [5, 19] is used for this application.

After kth iteration is completed, the parallel SMACOF
application calculates STRESS value (σ[k]) of the current
solution (X [k]), and measures ∆σ[k](= σ[k−1] − σ[k]). If
∆σ[k] < ε, where ε is a threshold value for the stop condi-
tion, the application returns the current solution as the final
answer. Otherwise, the application will iterate the above
procedure again to find X [k+1] using X [k] as in Eq. (10).

Figure 2 is an example of MDS results by SMACOF

Figure 2. MDS result by SMACOF algorithm
of 117 ALU sequence data with labeled by DA
Pairwise Clustering.

algorithm of 117 ALU sequence data. The sequences are
clustered in three clusters by deterministic annealing pair-
wise clustering method [15]. Three clusters are represented
in red, blue, and green in the Figure 2. Though we use only
117 ALU sequence data for the gene visualization problem
now, we need to apply MDS to very large system (e.g. one
million ALU sequences) so we should consider parallelism
for the large systems.

4. Experimental Settings

4.1 Experimental Platforms

For the performance experiments on multicore machines
of the parallel SMACOF, two multicore machines depicted
in Table 2 are used. Both intel8a and intel8b have two
quad-core CPU chips, and a total of 8 cores. Both of them
use Microsoft Windows OS system, since the program is
written in C# programming language and CCR [5, 19].

ID Intel8a Intel8b
CPU Intel Xeon E5320 Intel Xeon x5355
CPU Clock 1.86 GHz 2.66 GHz
Core 4-core × 2 4-core × 2
L2 Cache 2 × 4 MB 2 × 4 MB
Memory 8GB 4GB
OS XP pro 64 bit Vista Ultimate 64 bit

Table 2. Multicore machine specification

4.2 Experimental Data

For the purpose of checking quality of the implemented
parallel SMACOF results, the author generated simple 4-
dimensional 8-centered Gaussian distribution data with dif-
ferent number of points, i.e. 128, 256, 512, 1024, 2000, and
2048. The 8 center positions in 4-dimension are following:

4

Figure 3. The example of SMACOF results
with 8-centered Gaussian distribution data
with 2000 points shown with Meshview in 3D.

(0,0,0,0), (2,0,0,0), (0,2,0,1), (2,2,0,1), (0,0,1,0), (2,2,1,0),
(2,0,4,1), and (0,2,4,1). Note that the fourth dimension val-
ues are only 0 and 1. Thus, for those data, it would be natu-
ral to be mapping into three-dimensional space near by cen-
ter positions of the first three dimensions.

In fact, the real scientific data would be much more com-
plex than those simple Gaussian distribution data in this pa-
per. However, nobody can verify that the mapping results of
those high dimensional data is correct or not, since it is hard
to imagine original high dimensional space. Figure 3 shows
three different screen captures of the parallel SMACOF re-
sults of the given 2000 points data in a 3D image viewer,
called Meshview [13]. Combining three images in Figure 3
shows that the expected mapping is achieved by the parallel
SMACOF program.

4.3 Experimental Designs

Several different aspects of performance issues are in-
vestigated by the following experimental designs:

• Different number of block sizes: This experiment
demonstrates the performance of parallel SMACOF
program with respect to block size. Three different
data set of 4-dimensional Gaussian distribution are
used for this test. As Section 5.1 describes, different
block affects on the cache memory performance, since
computers fetch data into cache by a cache line amount
of data, whenever it needs to fetch data, without regard
to the actual necessary data size. Note that whenever
the author mentions the block size, says b, it means a
b× b block, so that the actual block size is not b but b2.

• Different number of threads and data points: As the
number of threads increases, the number of used core
will be increased unless the number of threads is big-
ger than the number of cores in the system. However,
when we use more threads than the number of cores,
thread performance overhead, like context switching
and thread scheduling overhead, will increase. We ex-
periment the number of thread from one to sixteen.

This experiment setup will investigate the thread per-
formance overhead and how many threads would be
used to run the parallel SMACOF on the test machines.
The bigger data uses more computation time. The au-
thor examines how speedup and overhead change as
the data size differs. The tested number of data points
are from 128 to 2048 as increased by factor of 2.

• Two-dimensional array vs. jagged array: It is
known as jagged array (array of arrays) shows bet-
ter performance than two-dimensional array in C#
[21][26]. This knowledge is investigated by compar-
ing performance results of the two different versions of
parallel SMACOF program, which are based on jagged
array and two-dimensional array.

Due to gradient descent attribute of SMACOF algorithm,
the final solution highly depends on the initial mapping.
Thus, it is appropriate to use random initial mapping for the
SMACOF algorithm unless specific prior initial mapping
exists, and to run several times to increase the probability to
get optimal solution. If the initial mapping is different, how-
ever, the computation amount can be varied whenever the
application runs, so that we could not measure any perfor-
mance comparison between two experimental setups, since
it could be inconsistent. Therefore, though the application
is originally implemented with random initial mapping for
real solutions, the random seed is fixed for the performance
measures of this paper to generate the same answer and the
same necessary computation for the same problem. The
stop condition threshold value (ε) is also fixed for each data.

5. Experimental Results and Performance
Analysis

5.1. Performance Analysis of Different
Block Sizes (Cache Effects)

As mentioned the previous section, the author tested per-
formance of parallel SMACOF program with respect to
block sizes. We used three different data set of 1024, 2000,
and 2048 points data and experimented with 8 threads on
Intel8a and Intel8b machines. The tested block size is in-
creased by the factor of 2 from one to 256 for 1024 points
data ,in order to keep the number of blocks (m2) more than
the number of threads (TH), or to 512 for 2000 and 2048
points data, as shown in Figure 4. Note that the curves for
every test case show the same shape. When the block size is
64, the application performs best with 2000 and 2048 points
data. For the data with 1024 points, performance of the
block size 64 is comparative with block size 128. From
those results, block size 64 could be fitter than other block
sizes for the Intel8a and Intel8b in Table 2. Note that the

5

Figure 4. Parallel SMACOF running time with
respect to block sizes with 8 threads.

running time of 2000 points data is longer than that of 2048
points data on both test platforms, even though the number
of points are less. The reason is that the iteration number
of 2000 data is 80, but that of 2048 data is only 53 for the
performance tests.

Running results with only one thread will be more help-
ful to investigate the cache effect, since there is no other
performance criteria but the block size. Table 3 describes
the running time with only one thread with 512, 1024, and
2048 points data. Based on the 8-thread results, we chose
block sizes b = 32, 64 to test cache effect and measure the
speedup of selected block sizes based on the result of using
one big whole n×n matrix. The result shows that there are
more than 1.6 speedup for the 1024 and 2048 points data,
and around 1.1 speedup for the even small 512 points data
on Intel8b and a little smaller speedup on Intel8a. Also,
performance of b = 64 is better than b = 32 in all cases.
Note that there is some additional tasks (a kind of over-
heads) for the block matrix multiplication, such as block
decomposition, finding correct starting positions of the cur-
rent block, and the iteration of submatrix multiplication.

5.2. Performance Analysis of the Number
of Threads and Data Sizes

We also investigated the relation between the perfor-
mance gains and the data sizes. Based on the result of the
previous section, block size b = 32, 64 cases are only exam-
ined and we compute the speedup of 8 threads running on
the two 8-core test machines over 1 thread running with the
same block size with respect to five different Gaussian dis-
tribution data, such as 128, 256, . . . , and 2048 points data.
For the 128 points data set we measure only b = 32 case,

points blockSize avgTime(sec) speedup
Intel8a

512 32 228.39 1.10
512 64 226.70 1.11
512 512 250.52
1024 32 1597.93 1.50
1024 64 1592.96 1.50
1024 1024 2390.87
2048 32 14657.47 1.61
2048 64 14601.83 1.61
2048 2048 23542.70

Intel8b
512 32 160.17 1.10
512 64 159.02 1.11
512 512 176.12
1024 32 1121.96 1.61
1024 64 1111.27 1.62
1024 1024 1801.21
2048 32 10300.82 1.71
2048 64 10249.28 1.72
2048 2048 17632.51

Table 3. Running results with only one thread
with different block sizes for 512, 1024, and
2048 points data on Intel8a and Intel8b.

since the number of blocks is only 4 if b = 64 so only 4
threads does actual submatrix multiplication. Figure 5 il-
lustrates the speedup of the Parallel SMACOF with respect
to different data sizes. As Figure 5 depicted, the speedup
ratio increases as the data size increases. Following equa-
tions are the definition of overhead (f), efficiency (e), and
speedup(S(N)):

f =
NT (N)− T (1)

T (1)
(12)

e =
1

1 + f
=

S(N)
N

(13)

where N is the number of threads or processes, T (N) and
T (1) are the running time with N threads and one thread,
and S(N) is the speedup of N threads. For the two small
data set, i.e. 128 and 256 points data, the overhead ra-
tio would be relatively high due to the short running time.
However, for the 512 points and bigger data set, the speedup
ratio is more than 7.0. Note that the speedup ratio for the
2048 points data is around 7.7 and the parallel overhead is
around 0.03 for both block sizes on both Intel8a and In-
tel8b machines. Those values represent that our parallel
SMACOF implementation works very well, since it shows

6

Figure 5. Speedup by 8 threads on 8 core ma-
chines with respect to different Data sizes

significant speedup but negligible overhead.
In addition to the experiments on data size, the perfor-

mance gain with respect to the number of threads (TH) is
also experimented with 1024 points data. Figure 6 illus-
trates the speedup of the Parallel SMACOF with respect to
TH on Intel8a and Intel8b machines. As we expected, the
speedup increases almost linearly during TH ≤ 8, which
is the number of cores. Then, when TH = 9, the speedup
factor suddenly decreases on both machines. That might
be dependent on context switch and thread scheduling algo-
rithms of the operating system. When the number of threads
is above 9, the performance gain increases again, but it is al-
ways less than when the number of threads is equal to the
number of cores on the machine. Note that the speedup
curves in the Figure 6 are different for more than 9 threads
on the machines Intel8a and Intel8b. That must be affected
by thread management algorithm of the operating systems
on those machines (refer to Table 2).

5.3. Performance of two-dimensional Array
vs. Jagged Array (C# Language Spe-
cific Issue)

It is known that jagged array (array of arrays) performs
better than two-dimensional (multidimensional) array in C#
language [21, 26]. The author also wants to measure perfor-
mance efficiency of jagged array over two-dimensional ar-
ray on the proposed parallel SMACOF algorithm. The Fig-
ure 7 describes the runtime and the efficiency value with re-
spect to different size of data set. The left figure of Figure 7
is the runtime plottings of both jagged and two-dimensional
array on both test machines with block size b = 64 and
the right figure demonstrates the efficiency of jagged array

Figure 6. Speedup on 8 core machines with
respect to the number of threads with 1024
points data

Figure 7. Performance comparison of Jagged
and 2-Dimensional array in C# language on
Intel8a and Intel8b with b = 64, TH = 8.

over two-dimensional array on both Intel8a and Intel8b.
As shown in the right figure of Figure 7, the efficiency is
about 1.5 on Intel8b and 1.4 on Intel8a for all the test data
set, 128, 256, 512, . . . , 2048 points data. In other words,
jagged array data structure is more than 40% faster than
two-dimensional array structure in C# language.

6. Conclusions & Future Works

In this paper, a machine-wide multicore parallelism is
designed for the SMACOF algorithm, which is an elegant
algorithm to find a solution for MDS problem. Since the
SMACOF algorithm highly depends on matrix multiplica-
tion operation, the parallel matrix multiplication approach
is used to implement parallel SMACOF. For the load bal-
ance issue of the parallel SMACOF, we suggested a quite
nice block decomposition algorithm. The algorithm works
well if the number of blocks in a row is more than a half of
the number of running threads.

7

Furthermore, several different performance analyses
have been done. The experimental results show that quite
high efficiency and speed up is achieved by the proposed
parallel SMACOF, about 0.95% efficiency and 7.5 speedup
over 8 cores, for larger test data set with 8 threads running,
and the efficiency is increased as the data size increased.
Also, we tested the cache effect of the performance with
the different block sizes, and the block size b = 64 is the
fittest on both tested 8-core machines for the proposed par-
allel SMACOF application. In addition, the performance
comparison between jagged array and two-dimensional ar-
ray in C# is carried out. Jagged array shows at least 1.4
times faster than two-dimensional array in our experiments.

Our group have already tested deterministic annealing
clustering [20] algorithm using MPI and CCR under 8 node
dual-core Windows cluster and it shows scaled speedup
[11], and we will improve the proposed parallel SMACOF
to run on cluster of multicore. Based on high efficiency of
the proposed parallel SMACOF on a single multicore ma-
chine, it would be highly intertesting to develop reasonably
high efficient multicore cluster level parallel SMACOF.

References

[1] R. C. Agarwal, F. G. Gustavson, and M. Zubair. A
high performance matrix multiplication algorithm on a
distributed-memory parallel computer, using overlapped
communication. IBM Journal of Research and Develop-
ment, 38(6):673–681, 1994.

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Hus-
bands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf,
S. W. Williams, and K. A. Yelick. The landscape of par-
allel computing research: A view from berkeley. Techni-
cal Report UCB/EECS-2006-183, EECS Department, Uni-
versity of California, Berkeley, Berkeley, California, Dec
2006. http://www.eecs.berkeley.edu/Pubs/
TechRpts/2006/EECS-2006-183.html.

[3] I. Borg and P. J. Groenen. Modern Multidimensional Scal-
ing: Theory and Applications. Springer, New York, NY,
U.S.A., 2005.

[4] J. Choi, D. W. Walker, and J. J. Dongarra. Pumma:parallel
universal matrix multiplication algorithms on distributed
memory concurrent computers. Concurrency:Practice and
Experience, 6(7):543–570, Oct. 1994.

[5] G. Chrysanthakopoulos and S. Singh. An asynchronous
messaging library for c#. In Proceedings of Workshop on
Synchronization and Concurrency in Object-Oriented Lan-
guage (SCOOL), OOPSLA, San Diego, CA, U.S.A., 2005.

[6] J. de Leeuw. Applications of convex analysis to multidi-
mensional scaling. Recent Developments in Statistics, pages
133–145, 1977.

[7] J. de Leeuw. Convergence of the majorization method
for multidimensional scaling. Journal of Classification,
5(2):163–180, 1988.

[8] J. Dongarra, D. Gannon, G. Fox, and K. Kennedy.
The impact of multicore on computational science

software. CTWatch Quarterly, 3(1), Feb 2007.
http://www.ctwatch.org/quarterly/
archives/february-2007.

[9] J. J. Dongarra and D. W. Walker. Software libraries for lin-
ear algebra computations on high performance computers.
SIAM Review, 37(2):151–180, Jun. 1995.

[10] P. Dubey. Recognition, mining and synthesis moves com-
puters to the era of tera. Technology@Intel Magazine, 2005.

[11] G. C. Fox. Parallel data mining from multicore to cloudy
grids. In International Advanced Research Workshop on
High Performance Computing and Grids, HPC2008, Ce-
traro, Italy, Jul. 2008.

[12] J. Gunnels, C. Lin, G. Morrow, and R. Geijn. A flexible class
of parallel matrix multiplication algorithms. In Proceedings
of First Merged International Parallel Processing Sympo-
sium and Symposium on Parallel and Distributed Processing
(1998 IPPS/SPDP ’98), pages 110–116, 1998.

[13] A. J. Hanson, K. I. Ishkov, and J. H. Ma. Meshview: Vi-
sualizing the fourth dimension, 1999. http://www.cs.
indiana.edu/˜hanson/papers/meshview.pdf.

[14] W. J. Heiser and J. de Leeuw. Smacof-1. Technical Report
UG-86-02, Department of Data Theory, University of Lei-
den, Leiden, The Nethelands, 1986.

[15] T. Hofmann and J. M. Buhmann. Pairwise data clustering
by deterministic annealing. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(1):1–14, 1997.

[16] T. Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin,
Germany, 2001.

[17] J. B. Kruskal. Multidimensional scaling by optimizing
goodness of fit to a nonmetric hypothesis. Psychometrika,
29(1):1–27, 1964.

[18] J. B. Kruskal and M. Wish. Multidimensional Scaling. Sage
Publications Inc., Beverly Hills, CA, U.S.A., 1978.

[19] J. Richter. Concurrent affairs: Concurrency and
coordination runtime. MSDN Magazine, Sep.
2006. http://msdn.microsoft.com/en-us/
magazine/cc163556.aspx.

[20] K. Rose. Deterministic annealing for clustering, com-
pression, classification, regression, and related optimization
problems. Proceedings of the IEEE, 86(11):2210–2239,
1998.

[21] D. Solis. Illustrated C# 2005. Apress, Berkely, CA, 2006.
[22] H. Sutter. The free lunch is over: A fundamental turn toward

concurrency in software. Dr. Dobb’s Journal, 30(3), 2005.
[23] M. Svensén. GTM: The Generative Topographic Mapping.

PhD thesis, Neural Computing Research Group, Aston Uni-
versity, Birmingham, U.K., 1998.

[24] Y. Takane, F. W. Young, and J. de Leeuw. Nonmetric in-
dividual differences multidimensional scaling: an alternat-
ing least squares method with optimal scaling features. Psy-
chometrika, 42(1):7–67, 1977.

[25] R. A. van de Geijn and J. Watts. Summa: Scalable universal
matrix multiplication algorithm. Concurrency:Practice and
Experience, 9(4):255–274, Apr. 1997.

[26] W. Vogels. Hpc.net - are cli-based virtual machines suit-
able for high performance computing? In SC ’03: Proceed-
ings of the 2003 ACM/IEEE conference on Supercomputing,
page 36, Washington, DC, U.S.A., 2003. IEEE Computer
Society.

8

