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Abstract— Most scientific data analyses comprise analyzing 

voluminous data collected from various instruments. Efficient 

parallel/concurrent algorithms and frameworks are the key to 

meeting the scalability and performance requirements entailed 

in such scientific data analyses. The recently introduced 

MapReduce technique has gained a lot of attention from the 

scientific community for its applicability in large parallel data 

analyses. Although there are many evaluations of the 

MapReduce technique using large textual data collections, 

there have been only a few evaluations for scientific data 

analyses. The goals of this paper are twofold. First, we present 

our experience in applying the MapReduce technique for two 

scientific data analyses: (i) High Energy Physics data analyses; 

(ii) Kmeans clustering. Second, we present CGL-MapReduce, a 

streaming-based MapReduce implementation and compare its 

performance with Hadoop. 

MapReduce, Message passing, Parallel processing, Scientific 

Data Analysis  

I.  INTRODUCTION 

Computation and data intensive scientific data analyses 
are increasingly prevalent. In the near future, it is expected 
that the data volumes processed by applications will cross 
the peta-scale threshold, which would in turn increase the 
computational requirements. Two exemplars in the data-
intensive domains include High Energy Physics (HEP) and 
Astronomy. HEP experiments such as CMS and Atlas aim to 
process data produced by the Large Hadron Collider (LHC). 
The LHC is expected to produce tens of Petabytes of data 
annually even after trimming the datasets via multiple layers 
of filtrations. In astronomy, the Large Synoptic Survey 
Telescope produces data at a nightly rate of about 20 
Terabytes. 

Data volume is not the only source of compute intensive 
operations.  Clustering algorithms, widely used in the fields 
such as chemistry and biology, are especially compute 
intensive even though the datasets are comparably smaller 
than the physics and astronomy domains. 

The use of parallelization techniques and algorithms is 
the key to achieve better scalability and performance for the 
aforementioned types of data analyses. Most of these 
analyses can be thought of as a Single Program Multiple 
Data (SPMD) [1] algorithm or a collection thereof. These 
SPMDs can be implemented using different techniques such 
as threads, MPI [2], and MapReduce (explained in section 2) 
[3]. 

There are several considerations in selecting an 
appropriate implementation strategy for a given data 
analysis. These include data volumes, computational 
requirements, algorithmic synchronization constraints, 
quality of services, easy of programming and the underlying 
hardware profile. 

We are interested in the class of scientific applications 
where the processing exhibits the composable property. 
Here, the processing can be split into smaller computations, 
and the partial-results from these computations merged after 
some post-processing to constitute the final result. This is 
distinct from the tightly coupled parallel applications where 
the synchronization constraints are typically in the order of 
microseconds instead of the 50-200 millisecond coupling 
constraints in composable systems. The level of coupling 
between the sub-computations is higher than those in the 
decoupled-model such as the multiple independent sub-tasks 
in job processing systems such as Nimrod [4]. 

The selection of the implementation technique may also 

depend on the quality of services provided by the 

technology itself. For instance, consider a SPMD 

application targeted for a compute cloud where hardware 

failures are common, the robustness provided by the 

MapReduce implementations such as Hadoop is an 

important feature in selecting the technology to implement 

this SPMD. On the other hand, the sheer performance of the 

MPI is a desirable feature for several SPMD algorithms. 
When the volume of the data is large, even tightly 

coupled parallel applications can sustain less stringent 
synchronization constraints. This observation also favors the 
MapReduce technique since its relaxed synchronization 
constraints do not impose much of an overhead for large data 
analysis tasks. Furthermore, the simplicity and robustness of 
the programming model supersede the additional overheads. 

To understand these observations better, we have 
selected two scientific data analysis tasks viz. HEP data 
analysis and Kmeans clustering [5]. We have implemented 
the tasks in the MapReduce programming model. 
Specifically, we have implemented these programs using 
Apache's MapReduce implementation – Hadoop [6], and 
also using CGL-MapReduce, a novel streaming-based 
MapReduce implementation developed by us. We compare 
the performance of these implementations in the context of 
these scientific applications and make recommendations 
regarding the usage of MapReduce techniques for scientific 
data analyses. 



The rest of the paper is organized as follows. Section 2 
gives an overview of the MapReduce technique and a brief 
introduction to Hadoop. CGL-MapReduce and its 
programming model are introduced in Section 3. In section 
4, we present the scientific applications, which we used to 
evaluate the MapReduce technique while the section 5 
presents the evaluations and a detailed discussion on the 
results that we obtained. The related work is presented in 
section 6 and in the final section, we present our conclusions. 

II. THE MAPREDUCE 

In this section, we present a brief introduction of the 
MapReduce technique and an evaluation of existing 
implementations. 

A. The MapReduce Model 

MapReduce is a parallel programming technique derived 
from the functional programming concepts and is proposed 
by Google for large-scale data processing in a distributed 
computing environment. The authors [3] describe the 
MapReduce programming model as follows: 

 

 The computation takes a set of input key/value pairs, 
and produces a set of output key/value pairs. The 
user of the MapReduce library expresses the 
computation as two functions: Map and Reduce. 

 Map, written by the user, takes an input pair and 
produces a set of intermediate key/value pairs. The 
MapReduce library groups together all intermediate 
values associated with the same intermediate key I 
and passes them to the Reduce function.  

 The Reduce function, also written by the user, 
accepts an intermediate key I and a set of values for 
that key. It merges together these values to form a 
possibly smaller set of values. Typically, just zero or 
one output value is produced per Reduce invocation. 
 

Counting word occurrences within a large document 
collection is a typical example used to illustrate the 
MapReduce technique. The data set is split into smaller 
segments and the map function is executed on each of these 
data segments. The map function produces a <key, value> 
pair for every word it encounters. Here, the “word” is the key 
and the value is 1. The framework groups all the pairs, which 
have the same key (“word”) and invokes the reduce function 
passing the list of values for a given key. The reduce 
function adds up all the values and produces a count for a 
particular key, which in this case is the number of 
occurrences of a particular word in the document set. Fig. 1 
shows the data flow and different phases of the MapReduce 
framework. 

B. Existing Implementations 

Google's MapReduce implementation is coupled with a 
distributed file system named Google File System (GFS) [7]. 
According to J. Dean et al., in their MapReduce 
implementation, the intermediate <key, value> pairs are first 
written to the local files and then accessed by the reduce  

 
Figure 1.  The MapReduce programming model 

tasks. The same architecture is adopted by the Apache's 
MapReduce implementation - Hadoop. It uses a distributed 
file system called the Hadoop Distributed File System 
(HDFS) to store data as well as the intermediate results. 
HDFS maps all the local disks to a single file system 
hierarchy allowing the data to be dispersed at all the 
data/computing nodes. HDFS also replicates the data on 
multiple nodes so that a failure of nodes containing a portion 
of the data will not affect computations, which use that data. 
Hadoop schedules the MapReduce computation tasks 
depending on the data locality and hence improving the 
overall I/O bandwidth. This setup is well suited for an 
environment where Hadoop is installed in a large cluster of 
commodity machines. 

Hadoop stores the intermediate results of the 

computations in local disks, where the computation tasks are 

executed, and then informs the appropriate workers to 

retrieve (pull) them for further processing. Although this 

strategy of writing intermediate result to the file system 

makes Hadoop a robust technology, it introduces an 

additional step and a considerable communication overhead, 

which could be a limiting factor for some MapReduce 

computations. Different strategies such as writing the data to 

files after a certain number of iterations or using redundant 

reduce tasks may eliminate this overhead and provide a 

better performance for the applications. 
Apart from Hadoop, we found details of few more 

MapReduce implementations targeting multi-core and shared 
memory architectures, which we will discuss in the related 
work section. 

III. CGL-MAPREDUCE 

CGL-MapReduce is a novel MapReduce runtime that 
uses streaming for all the communications, which eliminates 
the overheads associated with communicating via a file 
system. The use of streaming enables the CGL-MapReduce 
to send the intermediate results directly from its producers to 
its consumers. Currently, we have not integrated a distributed 
file system such as HDFS with CGL-MapReduce, and hence 
the data should be available in all computing nodes or in a 
typical distributed file system such as NFS. The fault 
tolerance support for the CGL-MapReduce will harness the 
reliable delivery mechanisms of the content dissemination 
network that we use. Fig. 2 shows the main components of 
the CGL-MapReduce. 

 



 
 

Figure 2.  Components of the CGL-MapReduce 

CGL MapReduce runtime comprises a set of workers, 
which perform map and reduce tasks and a content 
dissemination network that handles all the underlying 
communications. As in other MapReduce runtimes, a master 
worker (MRDriver) controls the other workers according to 
instructions given by the user program. However, unlike 
typical MapReduce runtimes, CGL-MapReduce supports 
both single-step and iterative MapReduce computations. 

A. MapReduce computations with CGL-MapReduce 

The different stages, which the CGL-MapReduce passes 

through during typical MapReduce computations, are shown 

in Fig. 3 and the description of each stage follows. 

 
Initialization Stage – The first step in using CGL-

MapReduce is to start the MapReduce workers and configure 
both the map and reduce tasks. CGL-MapReduce supports 
configuring map/reduce tasks and reusing them multiple 
times with the aim of supporting iterative MapReduce 
computations efficiently. The workers store the configured 
map/reduce tasks and use them when a request is received 
from the user to execute the map task. This configuration 
step, which occurs only once, can be used to load any fixed 
data necessary for the map tasks. For typical single pass 
MapReduce computations, the user may not need to 
implement the configuration step. 

 
Map Stage – After the workers are initialized, the user 

program instructs the MRDriver to start the map 
computations by passing the variable data (<key, value> 
pairs) to the map tasks. MRDriver relay this to the workers, 
which then invoke the configured map tasks. This approach 
allows the user program to pass the results from a previous 
iteration to the next iteration in the case of iterative 
MapReduce. The outputs of the map tasks are transferred 
directly to the appropriate reduce workers using the content 
dissemination network.  

 
Reduce Stage – Reduce workers are initialized in the 

same manner as the map workers. Once initialized, the 
reduce workers wait for the map outputs. MRDriver instructs 
the reduce workers to start executing the reduce tasks once  

 

 

Figure 3.  Various stages of CGL-MapReduce 

all the map tasks are completed. Output of the reduce 
computations are also sent directly to the user program. 

 
Combine Stage – Once the user program receives all the 

outputs of the reduce computations; it may perform a 
combine operation specified by the user. For a typical single-
pass MapReduce computation this step can be used to 
combine the results of the reduce tasks to produce the final 
results. In the case of iterative MapReduce computations, 
this step can be used to compute the deciding value to 
continue the iterations. 
 

Termination Stage – The user program informs the 
MRDriver its status of completing the MapReduce 
computation. The MRDriver also terminates the set of 
workers used for the MapReduce computation. 

B. Implementation 

CGL-MapReduce is implemented in Java and utilizes 
NaradaBrokering [8], a streaming-based content 
dissemination network developed by us. The CGL-
MapReduce research prototype provides runtime capabilities 
of executing MapReduce computations written in the Java 
language. MapReduce tasks written in other programming 
languages require wrapper map and reduce tasks in order for 
them to be executed using CGL-MapReduce. 

As mentioned in the introduction, the fault tolerance is an 
important aspect for MapReduce computations since the 
overall computation depends on the results produced by each 
execution of the map and reduce functions. In CGL-
MapReduce, we have identified three crucial components, 
which need to support, fault tolerance. They are: (i) 
MRDriver, (ii) Map Worker, and (iii) Reduce Worker. 
MRDriver can be made fault tolerant by using redundancy 
and typical checkpointing strategies. Failure of a Map 
Worker can easily be corrected by adopting a policy of re-
executing failed map tasks. Handling the failures of reduce 
workers is more crucial in our implementation since a given 
reduce worker may have the results of many map tasks 
which have already completed and these intermediate results 
are directly transferred to the Reduce Worker without writing 
them to the persistence storage. We are planning to use the 
reliable streaming feature of NaradaBrokering [9] to 
implement the fault tolerance in CGL-MapReduce. We will 
present details of our ongoing research in fault-tolerance in 
subsequent articles. 



IV. SCIENTIFIC APPLICATIONS 

This section describes the scientific data analysis tasks, 
which we implemented using both Hadoop and CGL-
MapReduce and the challenges we faced in implementing 
them. 

A. HEP Data Analysis 

As part of an effort funded by the DoE we are working 
with the High Energy Physics group at Caltech with their 
particle physics data analysis tools. The data analysis 
framework used by these tools is ROOT [10], and the 
analysis functions are written using an interpreted language 
of ROOT named CINT [11]. 

The goal of the analysis is to execute a set of analysis 
functions on a collection of data files produced by high-
energy physics experiments. After processing each data file, 
the analysis produces a histogram of identified features. 
These histograms are then combined to produce the final 
result of the overall analysis. This data analysis task is both 
data and compute intensive and fits very well in the class of 
composable applications. Fig. 4 shows the program flow of 
this analysis once it is converted to a MapReduce 
implementation. 

Although there are many examples for using MapReduce 
for textual data processing using Hadoop, we could not find 
any schemes for using MapReduce for these types of 
applications. Hadoop expects the data for the MapReduce 
tasks to be in its distributed file system but currently there is 
no support from accessing the data in HDFS using other 
languages such as C++. Hadoop supports map and reduce 
functions written in other languages via a special API called 
Hadoop streaming, which executes the functions as separate 
processes and then collects the output of the function from 
standard output and feeds it to the reduce tasks. However, we 
could not use the above approach since the output of the map 
task is also in the binary format (a histogram file) and the 
reduce function expects it as a data file. We could modify the 
analysis function used for the map task in such a way that it 
will output the histogram file name instead of the data and 
then let Hadoop transfer this file name to the appropriate 
reduce task. This approach does not work either since the 
outputs are created in the local file system and the reduce 
tasks cannot access them unless they are stored in the HDFS. 

 

 
 

Figure 4.  MapReduce for the HEP data analysis 

 

The solution we came up with this is to write wrapper 
functions for the map and reduce tasks in Java, and use these 
wrapper functions to execute the data analysis functions 
written in CINT. The data is placed on a high-speed/high-
bandwidth network file system so that all the map tasks can 
access them without reading them via HDFS.  

The input to the map function is the names of the data 
files. Each map task will process some of these files and 
produce a histogram file. The map wrapper function reads 
this histogram file and saves it using HDFS. The output of 
the map wrapper will be the location of this file in HDFS. 
Hadoop's runtime collects these locations and send them to 
the appropriate reduce tasks (reduce wrappers). The reduce 
wrapper reads these histogram files from the HDFS and 
copies them to the local disk, where it has been executing, 
and invokes the reduce task written in CINT to perform the 
merging of the histograms. The merged histogram is again 
stored in HDFS by the reduce wrapper and the location is 
passed to the user program, which then performs a similar 
operation to merge them all into a single histogram. 

We adopted the same technique to implement the CGL-
MapReduce version of the above data analysis. However, in 
CGL-MapReduce version, the output histograms are directly 
transferred to the appropriate reduce tasks via 
NaradaBrokering. The reduce wrapper saves the data as local 
files and executes the reduce task written in CINT. The 
output of the reduce task is also read by the reduce wrapper 
and transferred directly to the user program where a similar 
computation to merge all the histograms to a single 
histogram is performed. 

B. Kmeans Clustering 

The HEP data analysis task discussed in the previous 
section represents a class of MapReduce computations where 
the entire computation is performed in a single pass of data 
through the map and the reduce functions. Kmeans clustering 
is within the class of applications where multiple iterations 
of MapReduce computations are necessary for the overall 
computation. For this purpose, we used the Kmeans 
clustering algorithm to cluster a collection of 2D data points.  

In Kmeans clustering, the target is to cluster a set of data 
points to a predefined number of clusters. An iteration of the 
algorithm produces a set of cluster centers where it is 
compared with the set of cluster centers produced during the 
previous iteration. The total error is the difference between 
the cluster centers produced at n

th
 iteration and the cluster 

centers produced at (n-1)
th

 iteration. The iterations continue 
until the error reduces to a predefined threshold value. Fig. 5 
shows the MapReduce version of the Kmeans algorithm that 
we developed. 

In Kmeans clustering, each map function gets a portion 
of the data, and it needs to access this data split in each 
iteration. These data items do not change over the iterations, 
and it is loaded once for the entire set of iterations. The 
variable data is the current cluster centers calculated during 
the previous iteration and hence used as the input value for 
the map function. 



 

Figure 5.  MapReduce for Kmeans clustering 

Hadoop’s MapReduce API does not support configuring 
and using a map task over multiple iterations and hence in 
the Hadoop version of the Kmeans algorithm, the map task 
loads the data in each iteration. 

As mentioned in section 3, CGL-MapReduce allows the 
map tasks to be configured and used for multiple iterations. 
This gives the CGL-MapReduce a performance advantage 
over Hadoop in addition to the performance gain obtained by 
the use of streaming. 

 The output of the map task is a set of partial cluster 
centers. Hadoop handles the transfer of these partial centers 
to the reduce tasks via its distributed file system. In CGL-
MapReduce these outputs are directly transferred to the 
reduce task by the runtime using the content dissemination 
network. 

Once the reduce task receives all the partial cluster 
centers it computes new cluster centers. In the Hadoop 
version of this algorithm, the new cluster centers are written 
to HDFS and then read by the user program, which 
calculates the difference (error) between the new cluster 
centers and the previous cluster centers. If the difference is 
greater than a predefined threshold, the user program starts a 
new iteration of MapReduce using this new cluster centers as 
the input data. CGL-MapReduce version performs the same 
computations as the Hadoop version. However, the data 
transfer happens much faster because it uses streaming 
instead of a file system. 

C. Experimental Setup 

The amount of data we have for the HEP data analysis is 
about 1 Terabytes (TB). The data is stored in IU Data 
Capacitor: a high-speed and high-bandwidth storage system 
running the Lustre File System. For HEP data, we processed 
them using a cluster of 12 computing nodes. For Kmeans 
clustering, which uses a small data set of around 2GB, we 
used a cluster of 5 nodes.  

 All machines involved in the benchmarks had Dual 
Quad Core Intel Xeon processors and 8GB of memory and 
were running Red Hat Enterprise Linux operating system 
version 4. The JVM version 1.6.0_07 was used for the 
benchmarks and the gcc version 3.4.6 compiler was used for 
the C++ code. LAM MPI version 7.1.4 was used for the MPI 
implementations. 

V. EVALUATION 

To evaluate the MapReduce technique for the HEP data 
analysis we first measured the total execution time it takes to 
process the data under different implementations by 
increasing the amount of data. As we increase the amount of 
data, we also increase the number of map tasks so that each 
map task processes almost the same amount of data in every 
run. Fig. 6 depicts our results. 

Hadoop and CGL-MapReduce both show similar 
performance. The amount of data accessed in each analysis 
is extremely large and hence the performance is limited by 
the I/O bandwidth of a given node rather than the total 
processor cores. The overhead induced by the MapReduce 
implementations has negligible effect on the overall 
computation. 

We performed another benchmark to see how the two 
MapReduce implementations scale as the number of 
processing units increases. We fixed the volume of the data 
at 100 GB, and measured the execution time by varying the 
number of nodes in the cluster. Since the overall 
performance is limited by the I/O bandwidth, we use only 
one processor core in each node for this evaluation. We also 
measured the time it takes to process the same 100GB of 
data using a sequential program and calculated the speedups 
achieved by Hadoop and CGL-MapReduce. The results 
shown in Fig. 7 and Fig. 8 highlight the scalability of the 
MapReduce technique itself and the two implementations. 
The results also indicate how the speed gain diminish after a 
certain number of parallel processing units (after around 10 
units) for the data set that we used. This is because after this 
threshold the overhead associated with the parallelization 
technique negates the effect of increased concurrency. 

For the Kmeans clustering, we first evaluate the overall 
performance of Hadoop and CGL-MapReduce by measuring 
the execution time as we increase the number of data points 
for clustering. We also evaluate the performance of an MPI 
version of the same Kmeans clustering algorithm 
implemented in C++. The results are shown in Fig. 9. 

The lack of support for iterative MapReduce tasks and 
the large overhead caused by the file system based 
communication have largely affected the overall  

 

Figure 6.  HEP data analysis, execution time vs. the volume of data (fixed 

compute resources) 

Each test is performed using 12 compute nodes 
(Total of 96 processor cores) 



 

Figure 7.  Total time vs. the number of compute nodes (fixed data) 

 
Figure 8.  Speedup for 100GB of HEP data 

performance of Hadoop. CGL-MapReduce shows a 
performance close to the MPI implementation for higher 
number of data points. 

To verify the above observation we calculated the 

overhead () associated in each approach using the following 
formula: 

  

In Eq. (1) P denotes the number of hardware processing 
units used and TP denotes the total execution time of the 
program when P processing units are used. T1 denotes the 
total execution time for a single threaded program. T1 is 
measured using programs, implemented in Java for Hadoop 
and CGL-MapReduce and C++ for the MPI version, which 
are run on a single node of the same cluster. The result of 
this analysis is shown in Fig. 10. 

The results in Fig. 9 and Fig. 10 show how the approach 
of configuring once and re-using of map/reduce tasks for 
multiple iterations and the use of streaming have improved 
the performance of CGL-MapReduce for iterative 
MapReduce tasks making it almost comparable to the results 
of MPI for higher number of data points. The 
communication overhead and the loading of data multiple  

 

Figure 9.  Total Kmeans time against the number of data points (Both axes 

are in log scale) 

times have caused the Hadoop results to be almost hundred 
times more than that of CGL-MapReduce. 

Cheng-Tao et al. [12] and Colby Ranger et al. [13] both 
used Kmeans clustering algorithm to evaluate their 
MapReduce implementations for multi-core and multi-
processor systems. However, other clustering algorithms 
such as Deterministic Annealing [14], which we are 
investigating in our current research, will have much higher 
computation requirements and hence for such algorithms we 
expect that Hadoop’s overhead will be smaller than the 
above. 

VI. RELATED WORK 

The SPMD programming style introduced by Frederica 
Darema has been a core technique in parallelizing 
applications since most applications can be considered as a 
collection of SPMD programs in different granularities. 
Parallel Virtual Machine [15] became the first standard of 
the SPMD programming and currently the MPI is the de-
facto standard in developing SPMD programs.  

MapReduce was first introduced in the Lisp 
programming language where the programmer is allowed to 
use a function to map a data set into another data set, and 
then use a function to reduce (combine) the results [16]. 

 

Figure 10.  Overheads associated with Hadoop, CGL-MapReduce and MPI 

for iterative MapReduce (Both axes are in log scale) 

100GB of data processed by varying 
the number of compute nodes. One 
processor core is used in each node 

Each test is performed using 5 compute 
nodes (Total of 40 processor cores) 



Swazall is an interpreted programming language for 
developing MapReduce programs based on Google's 
MapReduce implementation. R. Pike et al. present its 
semantics and its usability in their paper [17]. The language 
is geared towards processing large document collections, 
which are typical operations for Google. However, it is not 
clear how to use such a language for scientific data 
processing.  

M. Isard et al. present Dryad - a distributed execution 
engine for coarse grain data parallel applications [18]. It 
combines the MapReduce programming style with dataflow 
graphs to solve the computation tasks. Dryad's computation 
task is a set of vertices connected by communication 
channels, and hence it processes the graph to solve the 
problem.  

Hung-chin Yang et al. [19] adds another phase “merge” 
to MapReduce style programming, mainly to handle the 
various join operations in database queries. In CGL-
MapReduce, we also support the merge operation so that the 
outputs of the all reduce tasks can be merged to produce a 
final result. This feature is especially useful for the iterative 
MapReduce where the user program needs to calculate some 
value depending on all the reduce outputs. 

Disco [20] is an open source MapReduce runtime 
developed using a functional programming language named 
Erlang [21]. Disco architecture shares clear similarities to the 
Google and Hadoop MapReduce architectures where it stores 
the intermediate results in local files and access them later 
using HTTP from the appropriate reduce tasks. However, 
disco does not support a distributed file system as HDFS or 
GFS but expects the files to be distributed initially over the 
multiple disks of the cluster.   

The paper presented by Cheng-Tao et al. discusses their 
experience in developing a MapReduce implementation for 
multi-core machines [12]. Phoenix, presented by Colby 
Ranger et al., is a MapReduce implementation for multi-core 
systems and multiprocessor systems [13]. The evaluations 
used by Ranger et al. comprises of typical use cases found in 
Google's MapReduce paper such as word count, reverse 
index and also iterative computations such as Kmeans. As 
we have shown under HEP data analysis, in data intensive 
applications, the overall performance depends greatly on the 
I/O bandwidth and hence a MapReduce implementation on 
multi-core system may not yield significant performance 
improvements. However, for compute intensive applications 
such as machine learning algorithms, the MapReduce 
implementation on multi-core would utilize the computing 
power available in processor cores better. 

 

VII. CONCLUSION 

In this paper, we have presented our experience in 
applying the map-reduce technique for scientific 
applications. The HEP data analysis represents a large-scale 
data analysis task that can be implemented in MapReduce 
style to gain scalability. We have used our implementation to 
analyze up to 1 Terabytes of data. The Kmeans clustering 
represents an iterative map-reduce computation, and we have 

used it to cluster up to 40 million data points requiring 
around 250 MapReduce iterations. 

We performed the above two data analyses using Hadoop 
and CGL-MapReduce and compared the results. Our results 
confirm the following observations. 

 

 Most scientific data analyses, which has some form 
of SMPD algorithm can benefit from the 
MapReduce technique to achieve speedup and 
scalability. 

 As the amount of data and the amount of 
computation increases, the overhead induced by a 
particular runtime diminishes. 

 Even tightly coupled applications can benefit from 
the MapReduce technique if the appropriate size of 
data and an efficient runtime are used. 
 

Our experience shows that some features such as the 
necessity of accessing binary data, the use of different 
programming languages, and the use of iterative algorithms, 
exhibited by scientific applications may limit the 
applicability of the existing MapReduce implementations 
directly to the scientific data processing tasks. However, we 
strongly believe that MapReduce implementations with 
support for the above features as well as better fault tolerance 
strategies would definitely be a valuable tool for scientific 
data analyses. 

In our future works, we are planning to improve the 
CGL-MapReduce in two key areas: (i) the fault tolerance 
support; (ii) integration of a distributed file system so that it 
can be used in a cluster of commodity computers where there 
is no shared file system. We are also studying the 
applicability of the MapReduce technique in cloud 
computing environments. 
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