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Abstract— Many learning algorithms fitting into Statistical
Query Model can be written in a certain summation form [1]. In
this form, the calculation can be easily distributed: iterations of
local data computation and subsequent global data aggregation
and redistribution. However, this parallelism pattern is not well
presented in the current Apache Big Data Stack. On the other
hand, MPI has long adopted these global data aggregation and
redistribution operations. Since this technique deeply anchors in
the HPC systems, it cannot be transplanted to clouds easily. In this
paper, we express the algorithms as iterations of allreduce oper-
ations and develope an allreduce framework on top of the REEF
framework to support an efficient, fault-tolerant and elastic way
to run the algorithms. Instead of using traditional broadcast +
reduce with tree topology on allreduce operators, for efficiency,
we apply Hypercube-like topology, making the time complexity
of allreduce operations O(nlogp) for unsplittable data objects
and O(2n) for chunked data objects, where p is the number of
processes and n is the size of data objects in each process. For
fault tolerance, unlike popular disk-based checkpointing methods
which only ensures computation fault tolerance, we design a fault
tolerant allreduce operator and recover the computation from
failures using an algorithmic method by re-synchronizing global
data through allreduce operations. For elasticity, a property not
owned by many contemporary tools in which only the number of
tasks is fixed, we make computation tasks join or quit allreduce
topology dynamically so that the algorithm can be executed in
ramp up mode and failure ignorance mode, thereby the efficiency
on online processing is improved and the expenses on cloud
resources can be saved.
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I. INTRODUCTION

Past research shows that iterative algorithms following
Statistical Query Model in which the algorithms calculate
sufficient statistics or gradients fitting in the model, and are
expressible as a summation over data points, such as locally
weighted linear regression, nave bayes, Gaussian discrimina-
tive analysis, k-means clustering, logistic regression, neural
network, principal components analysis, independent compo-
nent analysis, independent component analysis, expectation
maximization, and support vector machine, can be parallelized
as iterations of local data computation with corresponding
global data aggregation and redistribution [1].

Nowadays many such kinds of iterative applications are
implemented in the MapReduce model for big data processing
[2]. However, these MapReduce implementations suffer from
repeated input data loading from the distributed file system and
slow diskbased intermediate data communication (shuffling)
through iterations. It has been ten years since MapReduce

Fig. 1: Comparison between a typical (iterative) MapReduce
application flow and an iterative allreduce application flow.

came onto the scene of computing [3], and in this time
computers have gained more and more memory capacity, as
such many new MapReduce-like tools [4][5] are designed to
utilize memory for data caching and communication instead
of using disk-based operations to improve the performance of
iterative algorithms.

However, the global data aggregation and redistribution,
this kind of communication pattern in the iterative algorithms
does not appear in initial MapReduce model. Later in Hadoop
[6] MapReduce, data aggregation is added through a single
Reduce task and then redistribution occurs using distributed
cache. Other MapReduce-like tools prefer to add additional
APIs/components to complete this process: first gather the data
to a driver/master task and compute the final results, then
broadcast them to all the tasks for the next round of com-
putation [4][5]. However, using broadcast + reduce not only
shows the limitation of the original MapReduce model, but also
results in bad performance upon implementation. While there
are engineering enhancements [7][8][9][10], it does not change
the fact that data movement has to be done in two rounds and
the master/driver task is always a bottleneck in the commu-
nication. Additionally, these tools using broadcast + reduce
only ensure the fault tolerance of the computation, but not the
process of the communication itself. Once the communication
fails, the master has to roll back the computation to the last
disk checkpoint. By contrast, MPI [11] exposes all the global
data aggregation and redistribution operations as collective
communication operations. These can be divided into two



Fig. 2: REEF Architecture

categories [12]. One is data redistribution operations which
include broadcast, scatter, gather, and allgather. The other is
data consolidation operations, including reduce, reduce-scatter
and allreduce. The MPI collective communication operations
are implemented with good performance. Despite this they
cannot be used in Apache Big Data Stack directly because
MPI is designed almost exclusively for HPC systems whose
infrastructure is very different from cloud environments.

In this paper, instead of using broadcast + reduce, we
directly use an allreduce operation to express the data aggre-
gation and redistribution in iterative applications (see Fig. 1).
We propose a new framework which describes the iterative
applications as iterations of parallel local data computations
and allreduce operations that are able to run these applications
in an efficient, fault tolerant and elastic way. We implement
the allreduce framework on REEF [13] (see Fig. 2). REEF pro-
vides a reusable control plane for scheduling and coordinating
task-level work on cluster resource managers. With REEF, we
can simplify task failure detection, as well as task adding or
removing.

There are several contributions in our research work. In
this solution, we apply a hypercube-like topology on allreduce
operators and provide two different allreduce algorithms for
efficiency. In cloud systems, which use relatively slow ma-
chines and networks, the failure rate is high. Instead of using
expensive disk-based checkpointing [14], we make allreduce
operators be fault tolerant and use an algorithmic way to
recover the computation from failures. Applications on cloud
systems may also need to handle elasticity events to expand
or shrink the computation dynamically to save expenses on
resource usage. This aspect is not covered by current tools
which only support a fixed number of tasks. We design a
mechanism to allow tasks to join in or leave from the allreduce
topology dynamically.

For the remainder of this paper, Section 2 talks about the

TABLE I: Allreduce Operation Interfaces

AllReduceResult < T > allreduce(T aElement);
AllReduceResult< T > allreduce(T aElement);

programming model in the allreduce framework. Section 3
demonstrates how the applications are written in the frame-
work. Section 4 introduces the hypercube topology and how
it is applied on allreduce algorithms. Section 5 describes how
failure and elasticity events are handled in the allreduce frame-
work. Section 6 shows experiment results. We give discussions
about the related work in Section 7 and conclusions in Section
8.

II. ALLREDUCE PROGRAMMING MODEL

In allreduce programming model, the computations in each
task are connected by allreduce operations. By definition, allre-
duce is an all-to-all communication. Every task is a participator
and no task can control the whole process as the master. In
allreduce operations, each task takes the local data as the input
and outputs the result returned by the reduce function which
runs on all the input data. The reduce function is required to
be commutative and associative.

In REEF, allreduce operators are firstly configured and
then used in the tasks. Configuration happens on the driver
side. Each allreduce operator is defined with a name and
related reduce function object. Later, at the task side, every
operator is fetched from the task context according to its name.
The allreduce operation returns an AllReduceResult object
or an AllReduceResultList object. If allreduce succeeds, it
contains the output. If not, it shows it has an empty value.
Because allreduce is an all-to-all operation, if a portion of the
tasks fail, some other tasks may also fail to accomplish the
communication. As a result, among those tasks staying alive,
some may have the result while others do not. Through this
manner, we expose the execution failure of allreduce operation
to the application (see Table I).

This definition of allreduce in the allreduce framework is
different from the original allreduce definition in MPI. Failures
are not exposed to the application; instead the framework
automatically recovers all the tasks back to a consistent system
state through checkpointing and rollback [15]. Therefore the
allreduce operator in MPI assumes it can always get the correct
output. However in the cloud environment, it is unlikely we
can make the execution pause and synchronize all the tasks to
check if each remaining task has the final result. As such, we
have to loosen original strict allreduce definitions and expose
failures to the applications, granting them flexibility on how
they continue with the computation. We also provide an API
to check and update the allreduce topology changes if a failure
is detected. In the next section, we will show how to combine
all these interfaces to write fault-tolerant and elastic iterative
applications.

Finally, we describe the application control flow on each
task as iterations of local computations and allreduce opera-
tions (see Fig. 3). In each iteration, the first allreduce operation
is Control Message Allreduce, then one or more allreduce
operations follow sequentially. The control flow redirects the
control to the related local computation and the allreduce
operation based on the results of the control message allreduce.
If any of the allreduce operations fails, the control flow goes
back to the beginning, updates the topology, redoes the control
message allreduce operation and then redirects the control to
one of the local computations again. For failure recovery, each



Fig. 3: Control Flow on Each Task in Allreduce Framework

computation may need to re-synchronize the global data, which
is the allreduce output from the previous allreduce operation,
among the tasks through another allreduce. In addition to the
time used on task restart and data reloading, the main cost of
failure recovery depends on the global data re-synchronization,
which relies on the performance of allreduce operations. As
long as this is efficient, we can greatly reduce the time cost
on failure recovery.

III. APPLICATIONS

As what we point out in previous sections, many itera-
tive algorithms fitting into Statistical Query Model can be
expressed as iterations of local computation plus subsequent
allreduce operations. Here we use K-means Clustering [16][17]
and Batch Gradient Descent [10] to demonstrate how the
proposed fault-tolerant and elastic allreduce operator works.

A. K-Means Clustering

In K-means Clustering, every iteration generates a new
version of centroids (cluster centers) to use as the input in the
next iteration. Each centroid is calculated through averaging
the coordination values of points which belong to the same
cluster center from the last iteration. In distributed K-means
clustering, a task only owns a portion of data points so that
any task only has a local summation of point coordination
values after local computation. As a result, to generate the
global new centroids for the next iteration, we use an allreduce
operation with addition as the reduce function to get the global
summation result.

When a failure happens, some tasks may lose the most
updated version of the centroids and cannot continue the com-
putation for the next iteration. In this situation, the broadcast
operation is required to distribute the most updated centroids
from one task to the rest. Here we use another allreduce
operator to simulate the broadcast operation. The task which is
identified to broadcast the most updated data puts the centroids
into the allreduce operator as the input, while tasks which need
the newest centroids for the current iteration input an empty
value. In the reduce function, we keep the real data and ignore
empty values. In Section 4, we will show how this operation
simulation takes effect without influencing the performance.

Fig. 4: Parallelism Pattern and Control Flow on Each Task in
K-Means Clustering

Finally, the control flow of the K-Means clustering is
as follows: at the beginning of each iteration, we invoke a
allreduce operation called Control Message Allreduce. Using
the status of all the tasks as the input, this allreduce operation
determines control information such as the current iteration
number, and whether global centroid data is required to be
synchronized. Once the control information is decided, if data
synchronization is required, the tasks start to perform allreduce
on centroids synchronization first followed by new centroids
calculation. If not, they apply allreduce on new centroids
calculation directly. At the end of the iteration, or if a failure
happens during the iteration, the task always goes back to the
beginning of the control flow, checks and updates the allreduce
topology, and applies Control Message Allreduce again (see
Fig. 4).

B. Batch Gradient Descent

Batch gradient descent (BGD) is another application ex-
ample. It tries to minimize an objective function to

achieve maximum-likelihood estimation through moving
the training model to the direction learned from the gradient
calculated in each iteration. In a normal algorithm flow, the
BGD application needs two allreduce operations per iteration.
One is loss and gradient calculation and another is line search.
The results are used to update a model vector which is held
on all the tasks across iterations (see Fig. 5). We have seen
that in K-Means Clustering, an additional allreduce operator is
used to synchronize the global centroids data. Similarly, here
we need two additional allreduce operators if failure occurs. A
allreduce operator is used to synchronize the global parameter
vector (the training model) before applying loss and gradient
allreduce. Additionally an allreduce operator for the model
vector and gradient descent vector is used before doing line
search allreduce. The control flow is very similar to that in K-
Means Clustering only with more steps. At the beginning of
the iteration, control message allreduce is executed to decide
the control status of the current iteration. It returns the current
iteration number, determining which allreduce operation to
execute and whether global data synchronization is required.
Once an iteration ends (successfully or due to a failure),
the control flow returns to the beginning of the iteration to



Fig. 5: Parallelism Pattern and Control Flow on Each Task in
BGD

check and update the topology and launch Control Message
Allreduce.

Now we have talked about the mechanism of failure
recovery in two applications. The general method is to re-
launch the failed tasks, update the topology, redo Control Mes-
sage Allreduce and then perform global data synchronization.
Noting that in REEF a task failure is exposed to the application
driver, and it can decide if it just removes the failed task or
needs to add a new task, it shows that our allreduce framework
is not only able to recover from failures, where the original
computation can be resumed, but also able to handle elasticity
demands, where we can shrink or expand the computation
scale.

We find that the BGD application, as a learning algorithm,
can maintain the accuracy in the change of the computation
scale, namely the elasticity in computation. It can be executed
in ramp-up mode and failure-ignorance mode as shown in
Section 6. In ramp-up mode, it can start with a small number
of tasks with a portion of sample data if all the computation
resources are not available yet. Then when more tasks are
allocated, they will automatically join the computation at later
iterations. In failure-ignorance mode, if some tasks fail and
there are no computation resources available to replace them,
the application can continue with the rest of the tasks. When
these tasks are allocated later, they can still join back with the
computation. BGD shows that in both modes, the application
can obtain correct results.

IV. ALLREDUCE TOPOLOGY AND ALGORITHMS

We use hypercube topology for the topology in allreduce
operators. The original topology introduced in MPI requires
the number of nodes to be a power of 2. Here we allow
the topology to work on any number of p processes so as to
easily add or remove nodes in O(log2p)steps. There are two
data exchange algorithms for allreduce operation in hypercube
topology. One is for small unsplittable data and another is
for large chunkable data. Both of them can achieve good
theoretical performance.

A. Hypercube Topology

A typical hypercube topology is a 3D cube with 8 nodes
(see Fig. 6). Along the x-, y-, z-axes, each node has 3 different
neighbors. To obtain the reduced value from all the nodes, all

nodes firstly exchange data with their neighbors on the x-
axis, then on the y-axis, and finally on the z-axis.

A general hypercube topology is a simulation of a hyper-
cube of dimension d which contains 2d nodes. It is constructed
from two hypercubes of dimension d− 1 by connecting nodes
with a corresponding index, then adding a leading binary bit
to the index of each node [12]. For all nodes in one of the
two hypercubes this leading bit is set to 0 and to 1 for the
nodes in the other hypercube. In the example of 8 nodes: we
firstly build a hypercube topology of 1 dimension with two
nodes 0 and 1. Next we build a hypercube of two dimensions
with 2 hypercubes of 1 dimension. Then we connect Node
0 with Node 2 and connect Node 1 with Node 3. Now we
have a square. Finally we build a hypercube with 3 dimensions
by combining two 2D hypercubes. Then we connect Node 0
with Node 4, Node 2 with Node 6, Node 1 with Node 5, and
Node 3 with Node 7. In the allreduce algorithm, a node always
exchanges data with its connected neighbor nodes.

B. Allreduce Topology in REEF

We adapt this hypercube topology to an allreduce operator
in REEF. However, in practice, the total number of nodes may
not be a power of two. We can add additional rules to control
the construction of the allreduce topology. We give each node
an ID when adding it to the topology, which starts from 0 and
increases in order. Dimension d is labeled from 0 to dmax−1.
where dmax is the max dimension of the hypercube and is
calculated based on the current max node ID in the topology:

dmax =

{
1, if maxNodeID = 0

dlog2(maxNodeID + 1)e , if maxNodeID > 0

For example, in a hypercube of 8 nodes, nodes are num-
bered from 0 to 7 and the 3 dimensions are numbered as
Dimension 0, 1 and 2. If some nodes are removed from the

Fig. 6: Hypercube Topology of 8 Nodes



Fig. 7: Add Node 0 ∼ Node 5 to Allreduce Topology

topology, their IDs are kept in a freed ID list and reused for
later node addition. Nodes are connected in three ways based
on their communication: pairing, sending, or receiving. Pairing
means the two connected nodes both send and receive data
from each other. Sending means that one node sends data to
the other node. A receiving node only receives data from the
other node.

C. Add a Node to Allreduce Topology

When a node with a given ID is added (the node ID is
assigned either by adding 1 on the current max node ID, or
being retrieved from a list with freed node IDs), we search its
neighbor on this dimension. The algorithm is as follows:

1) Calculate the neighbor ID of this node ID for pairing.

neighborID =


nodeID − 2d, if

maxNodeID mod 2d+1 ≥ 2d

nodeID + 2d, if

maxNodeID mod 2d+1 < 2d

2) If the nodeID for pairing is not available, find an
alternative node to send data. Mark sending on the
node, and receiving on the neighbor node.
altNeighborID = neighborID ± 2d+1

3) If no alternative node exists, mark the neighborID as
-1.

4) If no alternative node is available, mark the neigh-
borID as -2.

5) If the neighbor ID of the neighbor node (which is
calculated based on Rule 1 and Rule 2) was originally
assigned to -2, find all the nodes available in Rule 2,
receive data from all these nodes.

Here we give examples by adding nodes from 0 5 to a
topology. At the beginning, there is only one node, Node 0.
Based on Rule 2, we find its neighbor for pairing is Node 1.
But this ID is larger than the current max node ID. Based on
Rule 2 and Rule 3, its neighbor node is set to -1. Then we
add Node 1. Now the max dimension is 1. Based on Rule 1,
we find its neighbor for pairing is Node 0. Then we connect
Node 0 and Node 1.

Next we have Node 2. Now the max dimension is 2, so we
need to find Node 2s neighbors on Dimension 0 and Dimension
1. On Dimension 0, based on Rule 1, we find its neighbor
for pairing is Node 3. However, this node is not available in
the topology. So we use Rule 2 and get its neighbor Node
1 for sending. On Dimension 1, based on Rule 1, we find
that its neighbor node is Node 0. Next comes Node 3. On
Dimension 0, we find its neighbor is Node 2. So Node 2
removes its original neighbor for sending, and connects to
Node 3 for pairing. On Dimension 1, we connect Node 3 with
Node 1 based on Rule 1. Now these 4 nodes form a complete
hypercube of 2 dimensions. Similar strategies are also used
when adding Node 4 and Node 5 (see Fig. 7).

D. Remove a Node from Allreduce Topology

To remove a node, we extract it from the topology and
return the ID to the freed node ID list. Then we check
the neighbors of the node on all dimensions and do related
modifications on each dimension. We obey the following rules:

1) If the neighbor node was “sending” or “pairing” to
this node, find an alternative node to send the data
towards.
altNeighborID = neighborID ± 2d+1

2) If no alternative node is available, mark the neigh-
borID as -2.

3) If the neighbor node was receiving data from this
node, remove the receiving directly.

Taking the topology of 6 nodes as an example, we want to
remove Node 3 from the topology. Node 3 has two neighbors.
They are Node 2 on Dimension 0, Node 1 and Node 5 on
Dimension 1. Node 2 was pairing with Node 3 on Dimension
0. Based on Rule 1, we choose Node 5 as the new neighbor
for Node 2 to send data towards. Node 1 was pairing with
Node 3. Because there is no alternative node, based on Rule
2, we mark the neighbor ID as -2. Node 5 was sending data
to Node 3. Based on Rule 2, its new neighbor ID is also -2.
If we want to add back Node 3 later, we can use Rule 1 and
5 for node addition (see Fig. 8).

Both adding and removing a node takes about O(log2p)
steps. In the worst case when we need to apply Rule 5 in

Fig. 8: Remove Node 3 and Add Node 3 Back



node addition or Rule 2 in node deletion, both take about O(p)
steps. For example, if all but one node with even ID numbers
are removed, then the only node left has p/2 links. In this
situation, both removing this node and adding it back later
take about p/2 steps. But this is a very low possibility

E. Allreduce Algorithms

We use two different algorithms to do allreduce on this
topology. For unsplittable data, which is usually a small data
object containing a few numbers, strings, and Boolean values,
we exchange this kind of data object directly on the topology.
If the topology is balanced, each node has around O(log2p)
neighbors and the allreduce time is about O(nlog2p), where
n is the size of the data object in bytes and p is the number
of processes.

For the chunkable data object, which is usually a large
array, we use reduce-scatter and allgather to implement allre-
duce. Assuming the data object can be split into chunks with
IDs from 0 to numChunks-1 (numChunks means the number
of chunks), in reduce-scatter on every dimension d, each node
sends the chunks to the neighbor with the following criteria:
chunkIDmod2d+1 = neighborIDmod2d+1 In this way, each
task (which is a node in the topology) only needs to reduce a
small number of chunks. Then in allgather, on each dimension
d, nodes send the data originally owned after doing reduce-
scatter and data received on the dimensions whose IDs are
less than d. On a balanced topology, both processes take around
O(n) time complexity where n is the total size of all the chunks
in bytes.

The performance could suffer when the topology becomes
unbalanced. Potentially, if all but one node with odd ID num-
bers fail, then all the nodes with even ID numbers need to send
data to the only node left, and the allreduce time complexity is
about O(np). One possible solution is to rebalance the whole
topology when there is a large number of node failures.

These two allreduce algorithms can simulate broadcasting
in global data synchronization. In this simulation, the task
which owns the global data puts the data as the allreduce input
while other tasks put an empty value. Inside of an allreduce
function, we keep the real data and ignore empty values. With
this method, we can have broadcasting done in O(log2p) ime
for unsplittable data and O(2n) time for chunkable data.

V. TOPOLOGY CONTROL

In REEF, task failure events and new task incoming events
are reported to the application driver. We use this information
to control topology update and notify client side topology
update on the tasks dynamically. In this way, we can re-launch
failed tasks for failure recovery, or directly shrink or expand the
computation scale for the elasticity. This section will illustrate
how tasks and the driver work together to track and update the
allreduce topology.

A. Iteration Control

Because there is no master to coordinate tasks in the
allreduce operation, once a task enters an allreduce operation
of an allreduce operator, it communicates with the neighbor
nodes and then leaves the operation without waiting for the

completion of the execution on other tasks. As a result, some
tasks may finish the execution earlier and enter the next round
of the allreduce operation while others remain in the current
one.

We then employ iteration numbers to track the progress on
each task. When the current iteration ends, the iteration number
is updated and this indicates that the execution can enter the
next. Later we will show how to use this information to guide
topology updates. To synchronize the allreduce operations in
one iteration, we dont update the iteration number of each
allreduce operator immediately at the end of every allreduce
operation, instead we wait and update it at the beginning of
each iteration as a part of topology checking and update.

B. Remove Failed Tasks

When some tasks fail, the event is reported to the task
driver and processed inside of it. In this situation, the allreduce
operation cannot be executed on the current topology, therefore
the driver sends a message with type Source Dead to all the
tasks in the current topology. From the viewpoint of a task,
once it receives a Source Dead message, it will send an ACK
message to the driver to report its current iteration number.

The driver waits for the arrival of all the task reports.
It examines the iteration number on each task and finds the
maximum number maxIteration. The driver generates the
topology with the new iteration numbermaxIteration + 1
through deleting the nodes related to the failed tasks, then
sends the new topology to all the tasks (each task gets a list of
its own neighbors with related communication types). When a
task receives the new topology, it stores the topology with the
iteration number as the key. Once it is checked and updated,
tasks are redirected to the new iteration with the new topology.

C. Add New Tasks

Handling adding a new task is similar to handling removing
a task. In contrast, the original topology can still work when a
new task is coming. For the purpose of decreasing the number
of tasks communicating with the driver and getting better
scalability, the driver only communicates with the tasks which
need to communicate with the new task.

When an event about an incoming new task is learned by
the driver, it sends a message with type Source Add to the
tasks. When all the related tasks get the message, they reply
to the driver with an ACK message which contains their current
iteration. Similarly, the driver waits for the arrival of all the
ACK messages. It finds the current max iteration number and
generates the topology for the new iteration maxIteration+1.

Once the tasks receive the new topology from the driver,
they save it locally with its iteration number as the key. As
opposed to the task failure method, tasks wont update to the
new topology immediately at the coming iteration. They still
go through the iterations one by one until the iteration which
contains the new topology arrives. Because only about log2p
number of nodes are notified of the topology update, many
other tasks are still working with the original pace.



D. Control under Multiple Events and Multiple Operators

In the real execution environment, there may be many task
failure events or new task adding events, even a mixture of
both. This presents a challenge: how to ensure the integrity
of the topology when it changes dynamically. We take the
following 5 steps to do topology updates (see Fig. 9):

1) When a task event arrives, we copy the current active
topology to a sandbox topology.

2) Process task adding/removing events on the sandbox
topology.

3) We notify each task with a Source Dead/Add message
and wait for the ACK message from each task. Notice
that each task only gets one message; if a task already
gets one Source Dead/Add message, it wont receive
another one.

4) Once all replies are received, the driver sets the
sandbox topology as the active topology and updates
the related iteration number.

5) The driver sends the new topology to all the tasks
including new tasks if they exist. The message also
includes other information such as if there is a failure
in the old topology or not. If the topology update
is because of the failure, the tasks are redirected to
the new iteration with the new topology in topology
checking and updating. If the topology is updated
because of new tasks, all the tasks just increase the
iteration number as normal.

In this mechanism, the driver is responsible for failure
detection and takes the initiative in topology update. The driver
always waits for the arrival of replies from all the tasks related
to the events. Then the topology update is consistent with the
events processed.

We synchronize the topology update on all the allreduce
operators in one iteration. Afterwards the operator topologies
are checked and updated together at the end. This helps
to avoid deadlocks and computation incorrectness caused by
topology inconsistency.

There is a control parameter on the driver side which tells
the minimum number of tasks required in the allreduce task
group. If the minimum number of tasks is equal to the total

Fig. 9: Topology update control

number of tasks in the execution, when a failure happens, the
driver has to re-launch the failed task otherwise the execution
will pause. In this way, we make the computation fault-tolerant
because we resume the original failed computation. If the
minimum number of tasks is smaller than the total number of
tasks, the driver will remove the task directly. In this way, we
shrink the original computation scale and make the execution
elastic.

VI. EXPERIMENTS

We deployed REEF on the Big Red II [18] supercomputer
at Indiana University. Following this we ran experiments
on REEF Allreduce framework in which we benchmarked
allreduce and tested two real applications, K-Means Clustering
and Batch Gradient Descent. We allocated 128 compute nodes
and ran up to 512 tasks.

A. Test Environments

We used the nodes in the cpu queue on Big Red II
for the experiments. Each of these nodes has 32 processors
and 64GB memory, and are connected with Cray Gemini
interconnect. Every experiment utilized 128 nodes, which is
the maximum number that can be allocated on Big Red II,
and we chose Cluster Compatibility Mode in job submission
to let the compute nodes behave like nodes in a normal Linux
cluster.

The following software was installed on Big Red II: JDK
1.7, Hadoop-2.5.0 and REEF 0.8. Hadoop is not naturally
adopted by supercomputers such as Big Red II because each
node does not have large local disk space to run HDFS. As
a result we had to use only the local /tmp directory, which is
mapped to 32GB of the total memory on a compute node.

In all the experiments, scaling was evaluated based on the
number of tasks; in other words, the number of containers. We
decided not to exploit the locality of the task assignment in
the allreduce topology in order to explore the scalability by
using a small number of compute nodes, thereby simulating
a distributed environment with a large number of nodes.
The allreduce benchmark started with 2 tasks and then kept
doubling the number of tasks to 4, 8, 16, all the way up
to 1024. In K-Means clustering, we ran strong scaling tests
initially with 32 tasks and then continued doubling as described
above. For Batch Gradient Descent, to easily select input data,
we ran weak scaling tests on 10, 50, 100, 200 and 500 tasks.

B. Allreduce Benchmarking

We benchmarked allreduce performance with three differ-
ent methods: allreduce without chunking input data, allreduce
with chunked input data, and broadcast + reduce using tree
topology.

We first tested allreduce on 100MB data. The input data
on each task is a double array with 13,107,200 and the reduce
function is addition. We present the results using logarithmic
scale based on 2. In the first test, we allocate only one task
in each node (see Fig. 10). As what we analyzed for this
paper, allreduce with chunked input data performs best of all.
When the number of tasks increases, the performance does not
change much, maintaining around 2.7 seconds. The execution



time of allreduce without chunking input data grows following
a logarithmic scale. At the same time, the third method, which
broadcasts 100 MB data and reduces all the data back with
tree topology, takes around twice the time of allreduce without
chunking input data.

Then we tested again with setting the maximum number
of tasks per node up to 8 and the total number of tasks up
to 1024 (see Fig. 11). We note that although the scaling trend
doesnt change on 3 methods, the execution time of allreduce
without chunking input data and allreduce with chunked input
data increases.Taking the results on 128 tasks as an example,
allreduce

without chunking input data originally uses 9.2 seconds
but now it uses 15.2 seconds. Allreduce with chunked input
data originally uses 2.7 seconds but now it uses 4 seconds.
But broadcast + reduce with tree topology doesnt change
much.The execution time only increases from 15.8 seconds
to 17.9 seconds. This test shows the limitation of the test
environment. In the first allreduce two methods, each task
has log2p connections in the communication while in the last
broadcast + reduce method each task only has 2 connections
at maximum. As the number of tasks per node increases,
network contention occurs on the first two allreduce methods.
In spite this, we still can see allreduce methods have better
performance compared with using broadcast + reduce.

C. K-Means Clustering

The experiments on K-means clustering with two different
data sets. One is to cluster 200 million 3D points to 4 thousand
clusters (50K points : 1 cluster in average). Another is to
cluster 2 million 3D points to 400 thousand clusters (5 points
: 1 cluster in average). The former is a normal use scenario
while the latter is a special case which uses clustering as
classification.

We increased the number of tasks from 32 to 512 as shown
in Fig. 12. The speedup in two test cases is considered linear
over 32 tasks. With this baseline, the speedup on 512 tasks in
clustering 200 million points to 4 thousand centroids is about
491, which is near linear speedup. In the other test, the speedup

Fig. 10: Allreduce with 100MB data with Each Node One
Task Only

on 512 tasks is 432, slightly lower than the linear speedup due
to the allreduce overhead of the big centroids data.

As explained in previous sections, the implementation of
this K-Means Clustering application is both fault tolerant and
elastic. The driver can add new tasks with new point data to the
allreduce topology for subsequent iterations. Note the accuracy
of elastic K-Means Clustering application is not covered in this
paper. As a result, we are not going to evaluate elastic K-Means
Clustering here.

We evaluated the cost of failure recovery in K-Means
Clustering application (see Fig. 13). When some tasks failed,
the REEF driver automatically re-launched the failed tasks.
We measured the average time of normal iterations and the
average iteration time of recovered iterations. Our findings
show the time consumption in failure recovery is dominated by
task input data loading and the global data re-synchronization.
Since both input data per task and global data are not very
large, a recovered iteration only takes slightly more time than
a normal iteration.

D. Batch Gradient Descent

In this experiment, we used batch gradient descent to learn
splice site recognition data in order to recognize a human
acceptor splice site [9]. We ran a Hadoop Map-only job to
generate 500 partitions of feature data while taking sample data
of 50 million sequences as the input. Each partition created
is about 1.5GB after compression. Later the partitions are
processed by one task in the BGD application. The global
model data is a double array with 11,725,480 dimensions,
about 100MB in total.

We tested the weak scaling of the BGD application by
running the application with 10 partitions, then with 50, 100,
200, and 500. We measure the performance of each iteration
using 3 different allreduce methods. The results are shown
in Fig. 14. Allreduce with chunked input data still performs
the best, although there is overhead of splitting the data into
chunks in each allreduce. The execution time per iteration with
200 partitions shows similar performance as 500 partitions. For
the other methods, namely allreduce without chunking input

Fig. 11: Allreduce with 100MB data with Each Node up to 8
Tasks



Fig. 12: K-Means Clustering Execution Time per Iteration
and Speedup

Fig. 13: Average Execution Time Comparison of Normal
Iterations and Recovered Iterations on 2M Points, 400K

Centroids and 200M Points, 4K Centroids

data and broadcast + reduce using tree topology, both followed
the logarithmic scale but are much slower. All these results
match with our observations in the allreduce benchmark test.

BGD is an algorithm with elasticity. The training process
can be based on any number of partitions of the input data.
Here we present the performance of the BGD application
in ramp up mode and the accuracy of the model learned in
each iteration. We start with 10 partitions and add 14 in each
iteration. Finally we wind up with 500 partitions on Iteration
36 and run with that number until Iteration 100. By recording
the model trained every 5 iterations and evaluating them on
500 data partitions, we get the result shown in Fig. 15. Tasks
are launched sequentially every 4 seconds. In ramp up mode,
the first few iterations take longer than the following iterations
because the new tasks joined in those iterations have to load
data into memory first. This process may take about 200
seconds. In spite of this, ramp up mode still takes hundreds of
seconds less than the normal execution mode. For accuracy,

the loss values of the models trained in the first several
iterations stay on high values (which means the accuracy is
low) and the trend decreases slowly. After all the data is added,

Fig. 14: BGD Weak Scaling

Fig. 15: Ramp up Test v.s. Normal Execution on 500 Tasks

Fig. 16: Normal Execution vs. Failure Ignorance on 500
Tasks



the loss value drops and draws close to the loss value computed
in the normal execution.

Fig. 16 shows the results on a failure ignorance test. In this
experiment, 400 tasks are killed in Iteration 5 and recovered
in Iteration 61. Later we evaluated all the models on 500 input
data partitions. The result shows that the model trained in
the iterations with 100 of 500 tasks has higher loss values
compared with the models trained on the same iteration in
the normal execution. When all the tasks are added back, the
difference between the loss values on the same iteration in
two different execution modes gets progressively smaller, and
finally becomes negligible.

VII. RELATED WORK

Research in collective communication operations for big
data processing is gaining attention. Through our earlier re-
search on iterative applications, we have come to the realiza-
tion that the performance of these collective communication
operations is a distinctive feature of data intensive computa-
tion.

Some initial work in this area has been done in Twister
[7][8] and Spark [9]. Both tools try to improve broadcast
operations in iterative MapReduce chains. Further research
[10][19] aims to add allgather and allreduce into Hadoop. Later
work on Harp [20] attempts to build a complete collective
communication layer which is available to be used in MapRe-
duce big data processing tools. Many existing frameworks only
try to provide an in-memory communication solution. The
performance and related communication topology is not well
studied [19], and these work are done either on top of Hadoop
directly or Hadoop-like MapReduce tools [7][8][9][10][19]. So
all these solutions only support a fixed number of tasks without
elasticity. Furthermore, for fault tolerance, they mainly use
disk-based check pointing between iterations to ensure compu-
tation fault tolerance without considering communication fault
tolerance.

VIII. CONCLUSION

This paper presents an efficient, fault-tolerant, and elastic
allreduce framework. It enables users to express iterative
applications as iterations of allreduce operations. Our research
shows that with a fault-tolerant and elastic allreduce operator,
removing failed tasks and adding new ones can be executed
transparantly between iterations of the computation.

We improved hypercube topology and made an allreduce
topology which can work on any number of tasks. Two
different allreduce algorithms are deployed on this topology:
allreduce without chunking input data and allreduce with
chunked input data through reduce scatter + allgather. Both
methods have better performance and are at least twice as
fast compared with allreduce through broadcast + reduce using
tree topology. Furthermore, allreduce with chunked input data
has better performance than allreduce without chunking the
input data on allreduce of the large data. The experimental
results show that our allreduce framework is highly scalable
with almost constant execution time.

We included a mechanism for updating the allreduce topol-
ogy when removing failed tasks and adding new ones. The

cost of updating topology is low, which only involves message
exchange between tasks and drivers, especially when adding
new tasks, where only log2p tasks are required on the driver.
Our results also show that the cost of computation recovery
from the topology changes is very low. Other than waiting for
the start of the new tasks, one only needs to re-synchronize
the global data shared between tasks. This process can run
without using any disk-based checkpointing, just an additional
allreduce operation.
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