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Classical molecular dynamics simulations are based on solving Newton’s equations of motion. Using a
small timestep, numerical integrators such as Verlet generate trajectories of particles as solutions to Newton’s
equations. We introduce integrators based on recurrent neural networks that accurately solve Newtons equations
utilizing sequences of past trajectory data and produce energy-conserving dynamics of particles using timesteps
up to 4000 times larger compared to the Verlet timestep. We demonstrate significant speedup in many example
problems including 3D systems of up to 16 particles.

Newton’s equations of motion [1] are the basis of pow-
erful computational methods such as classical molecular
dynamics (MD) that are used to understand the micro-
scopic origins of a wide range of material and biological
phenomena [2, 3]. In the MD method, Newton’s equa-
tions are integrated for a system of many particles using
numerical integrators such as Verlet [4] to produce par-
ticle trajectories. The time evolution is performed one
small timestep at a time for long times to accurately sam-
ple enough representative configurations in order to ex-
tract useful information. Consider the 2nd order ordinary
Verlet integrator ~x(t+∆) = 2~x(t)−~x(t−∆)+∆2 ~f/m
that updates the current position ~x(t) of a particle of mass
m at time t to position ~x(t + ∆) after timestep ∆ using
the previous position ~x(t−∆) and the force ~f at time t.
This integrator produces an error of O(∆4) in each local
update and incurs the global error ofO(∆2) [3, 5]. These
discretization errors in solving Newton’s equations are
reduced by choosing a small ∆ which often makes the
simulations computationally expensive.

The ordinary Verlet integrator requires a sequence of 2
positions (~xt−∆, ~xt) to update the particle position using
other quantities such as ~f and m. These other quantities
can be inferred using the information encoded in a longer
stream of position data such that the time evolution can
be done with only the history of positions as input. We
illustrate this with a 1-dimensional example of a particle
experiencing simple harmonic motion governed by the
force f = −kx. One can show that the particle position
can be evolved to t + ∆ using a sequence of 3 positions
via the function V = x−1

t−∆

(
x2
t − x2

t−∆ + xtxt−2∆

)
,

which also incurs a global error of O(∆2). This idea
generalizes for higher-order integrators [6] and many-
particle systems such that the time evolution can be
performed via the operator V (~xt, ~xt−∆, . . . ~xt−s∆) that
takes a sequence of s positions. The longer history of
input positions enables integrators to perform accurate
time evolution with larger ∆. However, this advan-
tage generally comes at the expense of higher computing
costs per timestep that often offset the net speedup.

The use of deep learning (DL) in sequence process-
ing and time series prediction problems has been well

studied by the industry for different applications includ-
ing voice recognition and translation [7], pattern recog-
nition in stock market data [8], and ride-hailing [9].
Recurrent neural networks (RNNs) are established DL
tools in these applications. We demonstrate that RNNs
can be used to design integrators that perform accurate
time evolution utilizing sequences of past configurations.
The RNN-based integrators are trained using the ground
truth results obtained with the 2nd order Verlet integra-
tor. They possess a complex mathematical structure de-
scribed with up to 100, 000 parameters. We demonstrate
that the network complexity enables the integrators to
perform time evolution of systems of many particles for
a wide range of force fields using a timestep of up to
4000× the baseline Verlet timestep. The relatively small
time for inferring the positions as predictions of the DL
model keeps overhead costs low and we demonstrate sig-
nificant net speedups using larger timesteps.

Machine learning has been used to enhance the perfor-
mance of MD simulations in many recent studies [10–
24]. Of particular relevance to our work are approaches
that use DL to learn differential equations and replicate
the outputs of numerical integrators [25–35]. Recently,
such efforts have focused on obtaining solutions of dif-
ferential equations with discretization steps larger than
the baseline [34, 35]. However, most approaches have
been evaluated on relatively simple 1D systems. Inte-
grators producing accurate time evolution of 3D systems
with larger timesteps have remained elusive.

Recurrent neural networks process input sequence
data and maintain a vector~ht known as the “hidden state”
for each recurrent cell to model the temporal behavior of
sequences through directed cyclic connections between
cells. ~ht is updated by applying a function f to the pre-
vious hidden state (~ht−1) and the current input (~xt). The
cells are arranged in a fashion where they fire when the
right sequence is fed. A common choice for f is the
Long Short Term Memory (LSTM) networks [36]. An
LSTM unit contains a cell which is the memory of the
unit, and three gates (input gate, output gate, and forget
gate) which regulate the flow of information into and out
of the cells, enabling LSTM to remember longer depen-
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FIG. 1. Overview of the RNN-based approach to integrate Newton’s equations and perform time evolution in MD simulations.

dencies of the sequences fed into the network. We now
show how RNNs with LSTMs can describe integrators
evolving positions of particles. Similar process describes
integrators that evolve both positions and velocities.

Each component of the position vector of a particle is
identified as a feature. The feature size of both inputs
and outputs for N particles in D physical dimensions is
d = N × D. For example, for N = 16 particles inter-
acting in 3D, the feature size is d = 48. An operator R
based on RNN is introduced to predict the future posi-
tion at time t + ∆R by employing a position sequence
{x} = ~xt, ~xt−∆R , . . . , ~xt−SR∆R of length SR up to time
t. R can be expressed as R[{x}] = D [L2[L1[{x}]]],
where D , L1 , L2 are operators associated with the
dense layer, first LSTM layer, and second LSTM layer
of the RNN respectively. The layers are stacked up on
each other such that the output of one (e.g., L1) becomes
the input for another (L2) [37]. Each LSTM layer con-
sists of n number of LSTM units and contains a set of
parameters in the form of weights, biases, and activation
functions. For example, L1 has n1 LSTM units and is
characterized with weights W and U , and bias b. It takes
input feature vector {x} and outputs hidden state vectors
{h} which are fed as input to the L2 layer characterized
with its own set of weights and biases. A similar con-
nection is made between L2 and the dense layer D . Post
training, these layers acquire well-determined values for
all the parameters and the integrator R emerges as:

~xt+∆R
= D [L2 [L1 [{x}, {P1}] , {P2}] , {PD}] , (1)

where {P1}, {P2}, {PD} are trained parameters associ-
ated with LSTM layer 1, LSTM layer 2, and the dense
layer respectively. R has a complex mathematical struc-
ture characterized with up to 100, 000 parameters which
accounts for its ability to handle larger timesteps.

Figure 1 describes our DL approach using R to evolve
the dynamics of an N particle system with timestep ∆R.
R is trained using the ground-truth particle trajectories
generated via the Verlet integrator V with small timestep
∆ = 0.001. First, input system attributes and ∆ are fed
to V to simulate the dynamics with timestep ∆ up to
SV = ∆R(SR − 1)/∆ computational steps, where SR

is the sequence length. Out of the full trajectory data up
to SV steps, SR number of configurations (frames) sepa-

rated by ∆R are distilled to feed the R operator. R pre-
dicts the time evolution of the system after timestep ∆R.
Then, the input sequence to R is left shifted to discard
the oldest time frame, and the latest frame predicted by
R is appended to the right of the sequence. The adjusted
input sequence is fed back to R to evolve the system ∆R
further in time until the end of the simulation.

We now present the results obtained from simulations
using R as an integrator. Single particle experiments in
1D are performed for a variety of potentials including
simple harmonic oscillator (SHO), double well (DW),
Lennard-Jones (LJ), and rugged [24] [38]. Many-particle
experiments in 3D are performed on particles interact-
ing with LJ potential. We adopt units such that the sys-
tem parameters and predicted quantities are around 1. In
these initial studies, training and testing datasets are gen-
erated by sweeping parameters that shift the initial con-
figuration (e.g., particle positions), scale the particle at-
tributes (e.g., particle mass) and, in some cases, change
the shape of the potential energy (e.g., spring constant k
in SHO). R uses a sequence length of SR = 5.

Our first experiments test R to predict the dynamics of
single particle systems in 1D. Training datasets of trajec-
tories simulated using V with ∆ = 0.001 up to time
t = 200 are used. For all potentials considered, we
find that the errors in positions (trajectory errors) pre-
dicted by R do not increase with time t up to 10000, and
are O(10−3) for all ∆R ∈ (100∆, 4000∆) (Figure 2A
and 2B). For the same systems, the trajectory errors in-
curred using V with timestep 10∆ show the expected ex-
ponential increase with t (Supplemental Material). The
errors rise with increasing complexity of the potential
(e.g., higher for rugged than SHO) and with an increase
in timestep ∆R from 100∆ to 4000∆, but remain within
an order of magnitude (O(10−3); Figure 2C). In com-
parison, errors incurred using V rise much more rapidly
with increasing timestep and are already three orders of
magnitude larger for timestep of 100∆ (Figure 2C inset).
Figure 2 (bottom row) shows the long time dynamics of
a particle in an LJ potential. The positions and velocities
predicted by R for timestep ∆R ∈ [100∆, 4000∆] track
the ground truth. Further, the energy deviation (from the
initial energy at t = 0) produced by R is small and does
not rise with ∆R. On the other hand, trajectories and
energy deviation obtained using V show significant de-
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FIG. 2. Trajectory errors and particle dynamics for 1D potentials. Top row: Errors (log scale) in position updates using R for
∆R = 100∆ (circles), 400∆ (squares), 1000∆ (triangles), and 4000∆ (pentagons). (A) Error vs. time for SHO with mass
m = 10, spring constant k = 1, initial position x0 = −10; (B) Error vs. time for rugged potential with m = 1, x0 = −6; and (C)
Trajectory error using R at t = 1000 vs. timestep for different potentials; inset shows corresponding error using Verlet integrator
V . Note the order of magnitude difference between the outset and inset y-axis values. Bottom row: Dynamics of a particle in a
1D LJ potential (m = 1, x0 = 2.5, ε = 1) from t = 987 to 1000. Open and solid symbols are results produced using R with
timestep ∆R ∈ (100∆, 4000∆) and V with timestep 50∆ respectively. Black lines are the ground truth results obtained using V
with ∆ = 0.001. (D) Position vs. time. (E) Velocity vs. position. (F) Deviation in the total energy vs. time.

viation from the ground truth for timestep of 50∆.
Next, we performed experiments to assess the stabil-

ity of the trajectories predicted by R. This is typically
discussed in terms of Lyapunov instability which states
that close-by trajectories diverge exponentially [39, 40].
Lyapunov instability is present in standard Verlet integra-
tors for many potentials. Trajectories of a particle in 1D
LJ potential generated using V timestep ∆ = 0.001 and
R with timestep ∆R = 100∆ are used for these experi-
ments. A small perturbation in the momentum δp is in-
troduced at the start to investigate its effects on long-time
evolution of the trajectory. As Figure 3 shows, R inher-
its the characteristic Lyapunov instability of V . As δp
increases from 10−4 to 10−3, the trajectories predicted
by R and V exhibit similar average divergences from
0.0153 to 0.149 for R and 0.0152 to 0.148 for V .

It is instructive to examine the role of sequence length
SR in determining the accuracy of R. For smaller SR =
3 or 4, R is only able to accurately propagate the dy-
namics for ∆R . 10∆ (Supplemental Material). For
SR = 3, the trajectory error associated with R rises
steeply for ∆R > 10∆, similar to the results for the
2nd order Verlet integrator. For SR = 4, the accuracy
improves and error scaling is similar to that produced
by traditional 4th order integrators [6]. Trained with
SR = 5, R shows a much weaker rise in error limited to
within an order of magnitude as ∆R rises up to 4000∆.

Our next set of experiments probe the extension of the
approach to 3D systems of N = 3, 8, 16 particles in-
teracting with LJ potential. R is trained using trajecto-
ries generated by V in a cubic box with periodic bound-

ary conditions (PBC) or in a spherical hard-wall confine-
ment with reflective boundaries. In the former case, R
observed the positions of the particles governed by New-
ton’s equations of motion and the re-mapping dictated by
the use of PBC. We find that R successfully evolved the
positions and velocities of particles up to time t = 106

for all the N -particle systems studied with ∆R up to
4000∆. In the interest of brevity, we discuss the re-
sults of experiments on the N = 16 system in PBC.
The training dataset for this study involved time evolu-
tion up to t = 2000 and the characteristic LJ potential
energy ε = 1. Results are shown for time evolution us-
ing R for ε = 2. The initial positions were selected
randomly from outside the training dataset and initial ve-
locities were set to 0. The total energy Et and the energy
deviation δEt = (Et −E0)/E0 of the system (Figure 4)
show that R exhibits excellent energy conservation (δEt

. 10−3) for up to t = 106 for ∆R ∈ (100∆, 4000∆).
In strike contrast, V suffers from growing accumulated
error when simulated with timestep of 40∆ and exhibits
a rapid divergence in the energy for t > 105.

We introduce metrics to capture the performance en-
hancement of simulations resulting from the use of
DL-based integrators. Our DL approach uses Ver-
let integrator V to kickstart the simulation and R
to evolve the dynamics forward in time. Incorporat-
ing this detail, we propose the speedup metric Sp =
STtV/ [SVtV + (ST − SV) tR∆/∆R], where ST is the
total number of steps needed if the time evolution is
performed only using V , SV = ∆R(SR − 1)/∆ is
the total number of steps that generate the initial tra-
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FIG. 3. Lyapunov instability tests in 1D simulations of a particle in an LJ potential with m = 1, x0 = 5.1. Legend indicates
(integrator, δp) where δp represents the small momentum shift introduced at the start of trajectory. Lines and markers are the
results of simulations driven by V and R integrators respectively. Outset shows trajectories for δp = 0, 10−4, 10−3. Left and right
insets show the difference ∆x(t)=|x(t, 0)− x(t, δp)| in trajectories produced by V and R respectively for δp = 10−4, 10−3.

FIG. 4. Energy conservation using R in a 16 particle 3D
simulation with LJ interactions in PBC. Black crosses are the
ground truth results obtained using V with ∆ = 0.001. Outset
shows the energy deviation δE vs. time t predicted by R for
∆R = 100∆, 400∆, 1000∆, 4000∆. Inset shows the corre-
sponding results using V with timestep 10∆, 40∆, and 100∆.

jectory using V , and tV and tR are the times for one
forward step propagation using V and R respectively.
We have not accounted for the time spent on creating
training datasets (one time investment of < 24 hours for
the experiments shown). Sp is 1 if ST = SV (no time
evolution using R). In the limit ST � SV, we ob-
tain Sp ≈ tV∆R/(tR∆). Clearly, the greater the ratio
∆R/∆, the higher the speedup. For example, for the
system of 16 LJ particles with tV ≈ 0.04392 seconds,
tR ≈ 0.0026 seconds, ∆ = 0.001 and ∆R = 4000∆, we
find Sp > 104. We note that Sp can be less than 1 when
∆R is small and tR � tV, which can happen in perform-
ing time evolution of simpler 1D systems. As the com-
plexity of the system rises, we find generally tR < tV.
For dynamics up to t = 106 requiring ST = 109 steps,
we find Sp up to 45× for the 1D systems, and up to

32000× for the many particle 3D systems [41]. While
the main source of speedup is the use of large timestep,
R also exhibits a relatively small forward step propaga-
tion (inference) time tR that is largely independent of ∆R
and exhibits O(N) scaling.

While state-of-the-art results in terms of timesteps,
number of particles, and the potential complexity are
shown for a diverse set of example benchmark problems,
research is needed to make further progress towards the
long-term goal of machine-learning-assisted MD simu-
lations of many particle systems. Scaling the approach
to large N or needing the RNN to “see” a variety of dis-
tinct configurations in systems where kinetic barriers can
trap particles in metastable pathways may require net-
works with greater architectural complexity and much
longer training times. While these limitations represent
a challenge, there are emerging physics-informed neural
network architectures [30, 42–45] that can be integrated
with the RNN-based approach. The use of hierarchical
RNNs [46, 47] and transformers [48] can also be ex-
plored. Another key goal will be to test the accuracy of
the RNN-based integrators in different ensembles.

We have introduced integrators derived using recurrent
neural networks that learn both the interaction potentials
and the dynamics of the particles based on their experi-
ence with the ground-truth solutions of Newton’s equa-
tions of motion. We showed that these integrators exhibit
excellent energy conservation, inherit the Lyapunov in-
stabilities of the Verlet integrator, and produce accurate
predictions for the time evolution of particles over a va-
riety of force fields using up to 4000× larger timestep
than the Verlet integrators. The idea of formulating the
dynamics of particles into a sequence processing prob-
lem solved via the use of recurrent neural networks il-
lustrates an important approach to learn the time evolu-
tion operators, which is applicable across different fields
[31, 33, 49] including fluid dynamics and robotics.
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