Experiences in Deploying Services within Apache Axis Container
Beytullah Yildiz, Shrideep Pallickara, Geoffrey Fox
Community Grids Lab, Indiana University
(byildiz,spallick,gcf)@indiana.edu
Abstract

The Web Services framework, since it engenders Service Oriented Architecture, enables the development of applications that are loosely coupled and easier to manage. A web service is typically hosted within a Web Service Container. There are several choices for these containers depending on the platform and language in which the applications would be developed. In this paper our focus is on applications build using the Java platform. Here, the most dominant Web Service container is the open source Apache Axis Web Service container. In this paper we describe our experiences in deploying Web Services, specifically WS-ReliableMessaging, within this container. We enumerate the problems and limitations that we encountered with Axis, and our solutions to get around this problem. We also have a set of recommendations that would make this a more flexible container for sophisticated Web Service applications.
1. Introduction

Web Service provides a distributed computing environment to solve interoperability issues. It is an effort to provide a solution for seamless communications and interoperability. Perhaps what distinguishes Web Services from previous attempts is its leveraging of XML. Support from a large community of vendors/users is another advantage. Companies, universities and organizations are committing a large amount of resources to this effort. This has hastened the maturity of the Web Services framework. This has resulted in several specifications targeting several application domains. In some cases there are competing specifications within the same application domain.
Some specifications lay the foundation for building the Web Service framework. These include SOAP [1], WSDL [2] and UDDI [3]. Web services leverage XML extensively. SOAP is a widely accepted, XML-based format for messaging in Web Services In order to process SOAP messages and provide a good environment for services; several containers are now available for different platforms and languages. Of interest to us in this paper is the open-source Apache Axis (version 1.2) [4] container for Java-based Web Service applications. Axis is currently the most dominant container within the open-source community and has a plethora of applications developed around this container.
Axis basically provides three main interfaces, Remote Procedure Calls (RPC), document/wrapped and message style communications. In the RPC style, a Java object is serialized into XML and de-serialized back into Java object at the target point. It is very handy if a Java program, which needs to be deployed, has been already been implemented. Document and wrapped style are very similar but differ in their use of SOAP encoding. The data is encapsulated within a plain XML document. Although the serialization and de-serialization are not required, binding is needed in this type of deployment. The Message style is a user defined style and is typically very flexible. Since the message is already an XML document, a serializer and deserializer are not needed. There are several scenarios where message style Web services have clear advantages.
In addition to the services themselves, several containers (including Axis) incorporate support for Handlers or Filters which facilitate incremental addition of capabilities at a service endpoint. An example of a Handler is an encryption handler which encrypts messages originating from a client and an inverse-Handler at the Service side which performs the appropriate decryption. By setting up appropriate Handlers (and inverse Handlers) in the request and response flows originating from a service endpoint, that endpoint’s capability is enhanced without the need for making changes to the application. One typically configures Handlers through a deployment descriptor file that is part of the Web Service container. Finally, several Handlers could be cascaded together to comprise a Handler Chain.
Although the Axis architecture provides very good functionalities, there are several areas where we see a need for improvement. We enumerate this below.
1. Injection of messages: Within Axis currently only the Clients are allowed to inject (or initiate) messages.

2. Based on the request-response paradigm: In Axis every message is considered a request which should have its accompanying response within a pre-defined period of time. This does not fit very well with interactions where no responses are issued.
3. No ability to gracefully terminate processing related to a message within the Handler chain associated with a service.

4. Handlers cannot initiate messages on their own.

5. Static configuration of the handler chain.

6. Problems with initiating responses.

7. Problems with corruption of SOAPMessage: Specifically this is the deviation from the original intended schema-validated XML document encapsulated within the SOAPMessage.

We will discuss these issues and our solution in the remainder of this paper.
2. Messaging Issues and Solutions
2.1 Message Injection
Axis is mainly based on the request and response paradigm. A Service issues a response as soon as it receives a request from client (see Figure 1).

Since this interaction is a one-time effort, the service does not keep any information about the client address for further messaging. Therefore, message injection is a very difficult task in the service part. Only the client can initiate a message between two entities. Server components, either handler or target service, do not have this ability.
There are several scenarios that indicate the need for message initiation in the server part. Having reliable messaging between two endpoints requires several message exchanges such as hand-shaking and acknowledgment. Although the server part can send a response back as soon as it gets a request, it can not send the same massage more than once when it is required. A message may need to be retransmitted if the client has not received it (this is the case in WS-ReliableMessaging [5]).

[image: image1.emf]Client Request Response

Web Service

Container

Service

Figure 1. Simple request response paradigm
WS-Notification [6] and WS-Eventing [7] are the other examples for necessity of the message initiation in the service side; a message may need to be reproduced in order to send the copies to multiple end points. These specifications provide a solution for publish/subscribe mechanism [8] in Web Services. Since every subscriber which is interested in a topic must get the published messages, a new connection for each subscriber must be initiated by server side.
2.2 One Way Messaging

Sometimes an entity may just need to inform another entity about an event. For example, an acknowledgment is a notification for a received message in Web Service Reliable Messaging (WSRM) [9]. The receiver of an acknowledgment does not have to acknowledge this acknowledgement.

Axis does not support one-way messaging very well. Although client to service messaging may be achieved without much effort, the opposite direction, service to client, seems to be problematic because of the lack of message injection capability in the service side.

2.3 Asynchronous Messaging
Axis naturally supports synchronous communications. The client and service have to be available during the interaction. Client has to wait the answer after requesting a service; in other words, the client communication is also blocking I/O.
There exist many scenarios that show the necessity for asynchronous communication. Client asks a request from a remote service and then continues its processing without waiting (or blocking) for a response. The service part lets the client know when the result is ready. For example, in reliable messaging, an acknowledgment can be sent back by gathering several of them together. The acknowledgment interval is specified so that the client is notified with a bunch of acknowledgment instead of sending each of them individually. This helps to increase network performance by decreasing the number of acknowledgments in transit between the endpoints.
2.4 Solution and Analysis

We bypass the limitations by using a client where a message initiation is required. Since a client can not call another client, a new service end point needs to be created on the client side. We called them as sink and source. The source represents the client side while sink represents server side. Both the sink and source are deployed within the Axis/Tomcat container [10].
We gather the results for two types of service calls. The first type, which we call RPC, is a regular Remote Procedure Calls (RPC) [11] of Axis. The second type utilizes one way messaging and achieves the same task of RPC call of the first type. We will call this One Way style. One way style messaging is utilized in both directions, client to service and service to client. To achieve this messaging style, we also deploy the source within a container (see figure 2). Source, client side, sends a message to sink, service sides, by using one way messaging. The service in the sink processes the message and passes the response to the client of the sink side and finally the client in sink calls the service in the source. This mechanism basically provides asynchronous messaging.

[image: image2.emf]Web Service Container

Service

Web Service Container

Client

One way Messaging

Service Client

One way Messaging

 Figure 2. Making asynchronous messaging
The first test performed between two machines of Indiana University, Local Area Network (LAN). One of the machines has Pentium 4 CPU operating at 2.80GHz with 1 GB memory. It utilizes Fedora 4 Linux operating system. The other machine, Sun Fire V880, has Solaris 9 operating system which utilizes 8 UltraSPARC III processors operating at 900 MHz with 16 GB Memory.
[image: image3.jpg]LAN Web Service Compatrion

200 T T T T T T T T T
—4—RPC

180 - —— One Way

160 ; ; ; : : : : 4

140 - : . .

Elapsed Time {Microsecond)

0 5 10 15 20 25 30 35 40 45 50
Test Number

Figure 3. LAN Web Service
One way style messaging cost more than RPC style messaging (see Table 1 and Figure 3).
Table 1. LAN Web Service results

	Mean
	Mean
	Standard Deviation
	Standard Error

	RPC
	34.9216
	16.2282
	2.2724

	One Way
	39.4200
	15.3691
	2.1735

The second test performed between Indiana university and University of Southern California, Wide Area Network(WAN). The first machine is Pentium 4 CPU operating at 2.80GHz with 1 GB memory. It utilizes Fedora 4 Linux operating system. The second machine has two Pentium III processors operating 731.07 MHz with 512 MB memory. It utilizes Red Hat Enterprise Linux AS operating system.

Table 2. WAN Web Service results

	Mean
	Mean
	Standard Deviation
	Standard Error

	RPC
	173.7400
	53.7359
	7.5994

	One way
	234
	64.7274
	9.1538

[image: image4.jpg]Elapsed Time {Microsecond)

WAN Web Service Comparion

1000 T T T T T T T T
—4—RPC
900 - —— One Way
800 : : . : : : :]

600

500

400

300

200

0 5 10 15 20 25 30 35 40 45 50
Test Number

Figure 4. WAN Web Service
Similar to LAN results, one way messaging costs more than RPC style messaging in WAN (see Table 2 and Figure 4).

One way messaging in both tests costs more than RPC style. The overhead comes from a new Axis service call initiated in the sink part which is not the case for RPC.
We now explain the spikes in the test results. Since Axis runs threads to processes SOAP messages, the thread scheduling causes deviation from the average cost. In addition to this cost, network latency definitely has effect in the deviation of the results because the additional cost is larger in WAN settings than in LAN settings.
3. Stopping Message Propagation in Handler Chain
In our implementation, we wanted to be able to stop massage propagation in order to eliminate unnecessary executions while the message is passing through handler chain (see Figure 5). A good example of this necessity is acknowledgment of reliable messaging. Only the reliable messaging handler needs to know whether the other end point has received the message. After getting an acknowledgement in the reliable messaging handler, there is no need to pass it to the endpoint because it is not a message that an end point needs to know. This would be a very crucial performance issue if the end point gets a huge amount of acknowledgements. The reason for sending acknowledgment is to say that “I got the message you sent”. If acknowledgement has not been received from receiver, the retransmission process should be reinitiated. The important thing is that this is the job of reliable handler, not the service.
In Axis, current architecture does not allow us to stop message propagation gracefully. An exception was thrown whenever we attempted to stop the message in a handler. Moreover, this exception propagates back through handler structure until the client. This makes network unnecessarily busy. Another problem is that the completed tasks are rolled back if an exception is thrown during message propagation. Therefore, we wanted to access a mechanism that stops the message propagation and not to cause any extra activities. We come up following solution.

[image: image5.emf]Service

S1

S2

S3

Client

C3

C2

C1

Network

Dummy message

Figure 5. Stopping the message propagation
A message can be forwarded to a dummy task instead of blocking a message. We choose forwarding because we wanted to stop a propagation of a message without getting an exception. If we disposed the message in the blocker handler, we would get exception because of the reasons we mentioned earlier. Throwing exception is prevented by letting the message to reach the end point but to a dummy task. On the other hand, there exists a downside of this solution. Processing dummy message causes performance degradation. However, this is acceptable performance degradation in this axis architecture.

[image: image6.emf]Service

H1

Client

Network

Handle Repository

H2

DS

H3

Figure 6. Flexible handler
4. The Flexibility of Handler Structure

The flexibility of handler architecture needs to be improved. We cannot access anything other than MessageContext. It is said that the handler is triggered by MessageContext. However, the message propagation task must be done by not only MessageContext. There should be a manager which executes successive handlers within the chain. Either MessageContext or some other class should allow reaching the message propagation mechanism. This will help to get rid of static handler deployment.
The axis handler chain is currently static. The chain is decided when a service is being deployed. Static structures are generally easy to implement, but hard to customize. A new handler can not be added, just as an old one can not be removed from the chain after deployment. The Axis architecture only allows for cloning the handler chain. The cloned chain can replace the running one. This is the way adding or removing a handler from chain in the Axis handler architecture.
Handler chain should be customizable on the fly. A Web Service needs to have the ability to select its handlers from the pool of handlers (see Figure 6). For instance, we have a service that sometimes receives signed messages and the verification of the signature is done by handler DS. If we would have the capability to insert DS to the current handler chain for only signed messages, the deployment would be much easier. On the other hand, a handler may need to be removed for specific messages. For example, we have a Web Services with two handlers, H1 and H2 and handler H1 task is to increment a variable by 1 in SOAP message. The result would be inconsistent if we retransmitted a message by applying handler H1 second times. To prevent this inconsistency, we need to remove handler H1 from the chain. The second transition must have only handler H2.
5. Problems in Initiating Responses and Corruption of SOAP Message
We also encountered several problems in terms of API during the implementation. One of them affected our implementation strategy; we utilized a message-style Web Service in this part of implementation. When we tried to send a response back from the server, the original SOAPEnvelope is being modified. There exist four valid signatures for message-style service methods. Since we needed the SOAP header, we used following method:
public void method(SOAPEnvelope request, SOAPEnvelope response);
The problem starts when we try to inject org.apache.axis.message.SOAPEnvelope by using the getBody() getHeader() setBody() and setHeader() methods of the SOAPEnvelope. After injection of the response the SOAPBody and SOAPHeader include different prefixes than those which were originally supplied. While a change of prefixes is in itself not a problem, there are problems with validation since the Axis processing eliminates prefixes for the SOAP body but not for the SOAP envelope or the header. Please note that this is no longer a valid SOAP message since there is no SOAP body. Another interesting side effect is that the processing removes prefixes from elements contained in the body of the SOAPMessage, for e.g. a WSRM Acknowledgement response will have some wsrm: prefixes removed and some left intact. Needless to say such a message cannot be processed at another Axis client not to mention another Container since the over-the-wire XML is no longer valid. This results in exceptions at the receiving side. The scenario is as follows;

Firstly, we create a valid SOAPEnvelope:
org.apache.axis.message.SOAPEnvelope soapEnvelope;

We get the SOAPBody and SOAPHeader from envelope:
org.apache.axis.message.SOAPBody soapBody = (org.apache.axis.message.

 SOAPBody) soapEnvelope.getBody();

org.apache.axis.message.SOAPHeader soapHeader = (org.apache.axis.message.

 SOAPHeader) soapEnvelope.getHeader();

Next, we insert them into response:

response.setBody(soapBody);

response.setHeader(soapHeader);

At this point, client throws exception:

response.setEnvelope(soapEnvelope);
We tried setSOAPEnvelope method of SOAPEnvelope class. Somehow, it does not work. The response message reaches to the client as an empty message
6. Conclusion
Apache Axis is the most popular SOAP engine and it leads the Java Web Service Community. However, additional capabilities are necessary to have a better deployment environment for Web Services. A SOAP engine should support one way messaging in addition to request and response paradigm. One way messaging can be utilized to create asynchronous messaging. Service entities, handler and end point, need to have message initiation ability. This capability is also required in many Web Service specifications implementation. Finally, handler structure should be reviewed. More flexible and dynamic handler structure will provide many advantages to Web Services.

7. References

[1] Simple Object Access Protocol. http://www.w3.org/TR/soap.
[2] Web Services Description Language http://www.w3.org/TR/wsdl.
[3] Universal Description, Discovery & Integration. http://www.uddi.org.
[4] Apache Axis. http://ws.apache.org/axis.

[5] Shrideep Pallickara, Geoffrey Fox, Beytullah Yildiz, Sangmi Lee Pallickara, Sima Patel and Damodar Yemme. On the Costs for Reliable Messaging in Web/Grid Service Environments. (To appear) Proceedings of the 2005 IEEE International Conference on e-Science & Grid Computing. Melbourne, Australia.
[6] Web Services Notification. http://ifr.sap.com/ws-notification/ws-notification.pdf.

[7] Web Service Eventing. http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
[8] Patrick Th. Eugster , Pascal A. Felber , Rachid Guerraoui , Anne-Marie Kermarrec, The many faces of publish/subscribe, ACM Computing Surveys (CSUR), v.35 n.2, p.114-131, June 2003
[9] Web Services Reliable Messaging ftp://www6.software.ibm.com/software/developer/library/ws-reliablemessaging200502.pdf.
[10] Apache Tomcat. http://jakarta.apache.org/tomcat/
[11] Andrew D. Birrell , Bruce Jay Nelson, Implementing remote procedure calls, ACM Transactions on Computer Systems (TOCS), v.2 n.1, p.39-59, February 1984

_1188392529.vsd
One way Messaging�

Service�

Web Service Container

�

Service�

Web Service Container

�

Client�

Client�

One way Messaging�

_1189514616.vsd
�

Service�

S3�

S1�

Client�

�

S2�

C3�

C2�

C1�

Network�

�

Dummy message�

_1189590810.vsd
Service�

Handle Repository

�

H1�

Client�

�

H2�

DS�

Network�

�

H3�

_1188381050.vsd
Service�

Client�

Request Response�

Web Service Container

�

