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Abstract— In this paper we describe our efforts to build a 
Web Services based architecture to support both real-time 
and archived geographic data in Geographical Information 
System (GIS) Grids. We have built and tested Web Service 
version of OGC Web Feature Service (WFS) that can be used 
to provide archived geospatial data to various clients. Due to 
several performance issues described in this paper we also 
built a streaming version of Web Feature Service for large 
data sets where high performance is desired. We are also 
building a Sensor Filter Grid to process and serve real-time 
GPS messages over a publish/subscribe messaging 
middleware. We describe several filters built for this purpose 
and discuss initial performance results. As an example of how 
we can couple scientific simulation codes with our Grid 
architecture we describe coupling of a scientific data analysis 
application with GPS streams. 
 

Index Terms—GIS, Grids, Web Services, Real-Time data 
analysis. 
 

I. INTRODUCTION 

eospatial data can be classified in two major categories 
in terms of their sources:  a) archival data and b) real-

time data collected from sensors. Traditional GIS 
applications such as map interfaces or geo-processing 
applications require access to spatial databases to extract 
both geographic data and associated metadata. On the other 
hand with the emergence of the sensors as an important new 
technology for real-time data acquisition, a new breed of 
applications developed to analyze the sensor observations 
in real-time or near-real time are appearing. These new type 

of applications require immediate access to data. 
Consequently a complete GIS Data Grid layer must provide 
support for data of both kinds. 
 

The organization of the paper is as follows: The rest of 
the paper is divided into two sections; in Section 2 we 
review our efforts to build two different versions of Web 
Feature Service [1] for supporting archival geographic data 
in GIS Grids. We give summaries for both non-streaming and 
streaming versions and briefly compare their performances. 
In Section 3 we describe our initial implementation of a 
Sensor Filter Grid that supports real-time processing of GPS 
sensor measurements and coupling scientific applications 
with real-time data. We discuss the filters built for this 
purpose and give their initial performance tests results. We 
also review a sample application integration scenario with 
our architecture.  
 

II. SUPPORTING ARCHIVAL GEOGRAPHIC DATA IN 
GEOGRAPHICAL INFORMATION SERVICE GRIDS 

A. Open Standards for Geographical Information Systems 

It is estimated that around 80% of all data available to 
humans contain some sort of a geospatial component [2]. 
This is the major reason for enormous interest from industry 
and academia to develop Geographic Information System 
applications which in turn caused use of a wide variety of 
software methodologies over the years. Several 
organizations produced geographic data adhering to 
proprietary representation schemes and employed different 
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distributed computing practices to serve them. Furthermore 
because the data sources are owned and operated by 
individual groups or organizations, geospatial data is in 
vastly distributed repositories. As a result today the GIS 
community faces unique challenges to support 
interoperability between diverse set of data and service 
standards.  

In recent years several organizations have developed data 
standards and implementation specifications for geospatial 
and location based services, in a bid to make geographic 
information and services neutral and available across any 
network, application, or platform. Two major players in this 
area are Open Geospatial Consortium (OGC) and the 
Technical Committee tasked by the International Standards 
Organization (ISO/TC211). The OGC is an international 
industry consortium of more than 270 companies, 
government agencies and universities participating in a 
consensus process to develop publicly available interface 
specifications. OGC Specifications support interoperable 
solutions that "geo-enable" the Web, wireless and location-
based services, and mainstream IT. OGC has produced many 
specifications for web based GIS applications such as Web 
Feature Service [1] and the Web Map Service (WMS) [3]. 
Geography Markup Language (GML) [4] is widely accepted 
as the universal encoding for geo-referenced data.   The 
OGC is also defining the SensorML [26] family of 
specifications for describing properties of sensors and 
sensor constellations. On the other hand ISO Standards 
proposes a standard framework for the description and 
management of geographic information and geographic 
information services. ISO/TC 211 did not specify the actual 
implementation specifications for different platforms and the 
private software vendors. Instead, ISO/TC 211 defines a 
high-level data model for the public sector, such as 
governments, federal agencies, and professional 
organizations [5]. 
 

B. Web Service implementation of Web Feature Service 

 The Open Geospatial Consortium Web Feature Service 
implementation specification [1] defines interfaces for data 
access and manipulation operations on geographic features 
using HTTP as the distributed computing platform. Via 
these interfaces, a web user or service can combine, use and 
manage geographic data from different sources by invoking 
several standard operations. Without having to consider the 
underlying data stores clients can access and manipulate 
geographic data via Web Feature Service. Also one Web 
Feature Service instance can be integrated with various 
types of data stores at the same time. 

OGC Web Feature Service implementation specification 
defines HTTP as the only explicitly supported distributed 
computing platform which requires use of one of the two 
request methods: GET and POST. Although SOAP 

messages are also supported, they are also required to be 
transported using HTTP POST method. However HTTP 
significantly limits both service providers and consumers in 
terms of various capabilities Grid services can provide. 
These capabilities include providing standard WSDL 
interfaces to access various services, which can 
communicate with various databases or remote resources, 
ability to launch and manage applications remotely, or 
control collaborative sessions etc. Furthermore complex 
scientific applications require access to various data 
sources and run several services consecutively or at the 
same time. This is not in the scope of HTTP but can be 
supported using rapidly developing workflow technologies 
for Web and Grid Services. For these reasons we have 
based our Web Feature Service implementation on Web 
Services principals. Our goal is to make seamless coupling 
of GIS Data sources with other applications possible in a 
Grid environment. 

We have initially implemented a Web Service version of 
basic Web Feature Service which supports three mandatory 
operations via a WSDL interface: GetCapabilities, 
DescribeFeatureType and GetFeature. Request and 
response of these operations are XML encoded GML 
documents. We chose to represent these XML documents 
in <xsd:string> type in our programming implementation. 
Although ideally we would define these in the <wsdl:types> 
section of our WSDL service definition, support for 
complicated, developer-defined types in Apache Axis  [6] 
(our deployment framework) is limited and we wanted to 
keep our implementation as simple as possible for a wide 
variety of applications. However since the Web Service 
returns the XML document as an <xsd:string>, it first has to 
be constructed in memory and the maximum size of this 
document will depend on several parameters such as the 
hardware configuration of the system and memory allocated 
to the Java Virtual Machine etc. Consequently there will be a 
limit on the size of the returned XML documents. 

Our Web Feature Service implementation has been used 
in several scenarios such as producing fault maps of 
Southern California, displaying seismic history of particular 
regions on the map and providing natural gas and electrical 
energy components for IEISS, a simulation application used 
by Los Alamos National Laboratory to analyze 
interdependency between energy nodes. Another 
interesting application domain was integrating our Web 
Feature Service with Pattern Informatics [7] code to forecast 
future seismic activities in a selected geographic region. 
This is described in more detail in [8]. Apart from these use 
cases we have done extensive performance tests to find the 
limits of our Web Feature Service implementation; these 
tests are explained in detail in [9]. From these performance 
tests  we draw following conclusions. First, for small data 
payloads the response time is acceptable. However for 
larger data sets the performance decreases sharply and the 
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response time is relatively long.  Second, there exists a 
maximum threshold for the amount of data to be transported.  

 

C. Streaming Web Feature Service 

Our Web Service implementation of Web Feature Service 
proved to be useful for transporting relatively smaller data 
sets with transmission rates allowed by HTTP. However 
scientific applications such as RDAHMM (a time series data 
analysis program useful for mode change detection in a 
given series of data) [10], Pattern Informatics and IEISS may 
require larger amounts of data to be transferred between 
servers and clients with high transmission rates. Fast 
transfer of data payloads is also very important in crisis 
management and early warning systems where GIS 
applications are often used. For these reasons we have 
researched publish/subscribe based messaging systems as 
alternative to HTTP. Our research showed that 
NaradaBrokering [11] [12] can be used to transfer large 
amounts of data between publishers and subscribers 
without significant overhead.  

NaradaBrokering is a distributed publish/subscribe 
messaging system which supports many-to-many 
messaging between entities such as clients, resources, 
services and proxies. It allows us to choose between 
different transport protocols such as UDP, SSL, HTTP, RTP, 
GridFTP etc. and between different qualities of service such 

as guaranteed delivery, once-only delivery, replayed 
delivery, secure delivery, and so forth. For more information 
about NaradaBrokering capabilities see [13]. Such 
capabilities already inherent in NaradaBrokering led us to 
develop a novel Web Feature Service that integrates OGC 
Web Feature Service specification with Web Service-SOAP 
calls and NaradaBrokering messaging system. 

The difference between our streaming and non-streaming 
Web Feature Service implementations is that the streaming 
service employs NaradaBrokering topics to publish query 
results. The user queries are made with standard SOAP 
messages however instead of returning the results over 
HTTP, they are published to a pre-determined topic. In 
addition to the transport method the streaming-WFS has 
another important advantage: we utilize MySQL’s ability to 
stream results from database row by row thus create and 
publish the GML feature members as they become available. 
This allows us to start publishing the results after a short 
query processing time without waiting for the whole result 
set to be returned from the database as in the conventional 
implementation. 

Initial performance test results for out streaming-WFS 
implementation is discussed in brief in [14]. A more detailed 
discussion is given in [9]. Figure 1 shows the performance 
comparison of two Web Feature Service implementations. 
Note the ‘Request Processing Time’ plots the total amount 
of time it takes for the Web Feature Service to process the 
user requests. Overall the streaming-WFS outperforms non-
streaming version by a significant margin for large data 
payloads and demonstrate an equal or better performance 
for smaller data sizes. Another important point is that there 
is no size limit for the data to be transported between Web 
Feature Service server and the client in streaming version 
which is a major advantage. 

 

III. STREAMING SUPPORT FOR REAL-TIME SENSOR DATA 

A. Background 

Sensors are changing the way we acquire data about 
various entities. Recent advancements in sensor 
technologies such as micro-circuitry, nano-technology and 
low-power electronics allowed sensors to be deployed in a 
wide variety of environments [15] [16] [17] [18] [19]. The 
trend in this field shows us that in the near future we will see 
thousands of sensor nodes being deployed either 
individually or as part of sensor networks. For instance 
Southern California Integrated GPS Network (SCIGN) [20] 
has deployed 250 continuously-operating GPS stations in 
Southern California whereas several hundred more operating 
elsewhere in the United States. 

Sensor networks constitute several sensors and 
advanced communication and computation infrastructures. 
They can be used to collect fine-grain information about the 
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Fig. 1. Performance comparisons of the streaming and non-streaming 
WFS implementations showing the advantage of streaming the data 
over a messaging broker.  
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entity individual devices sense such as soil moisture or 
weather quality of a particular area. Several aspects of 
sensors and sensor networks such as power consumption, 
efficient data routing and security are the topics of much 
research. In this section we describe a service oriented 
approach to support coupling real-time sensor messages 
with scientific applications in a Grid environment. We 
discuss an interesting use case of scientific sensors, the 
GPS station networks and our efforts to make GPS messages 
available to clients such as RDAHMM and displacement 
filters. 

GPS stations deployed alongside the active fault lines [20] 
are a good exa mple of distributed scientific sensors. 
Instantaneous measurements from GPS stations are 
continuously collected and archived by several 
organizations throughout the world. These measurements 
are valuable for understanding the mechanics behind long 
term tectonic movements and seismic activities.  

B. GPS Networks 

The Global Positioning System stations deployed 
alongside the seismically active fault lines have been used 
to identify long-term tectonic deformation and static 
displacements. Continuous GPS has proven very effective 
for measurement of the interseismic, coseismic and 
postseismic deformation [21]. GPS Stations are effectively 
independent sensors that calculate and broadcast their 
instant geographic positions. They can run for long periods 
of times without need for frequent maintenance and can 
communicate with the data collection points using various 
connection types such as Wi-Fi,  modems and phone lines 
or fiber-optic lines. Scripps Orbit and Permanent Array 
Center (SOPAC) [22] in University of California, San Diego 
is one of the several organizations that maintains several 
sub-networks of Southern California Integrated GPS 
Network (SCIGN) [20]. The raw measurements from the GPS 
sensors are continuously collected and locally stored by a 
Common Link Proxy (RTD) Server and later made available 
to public via FTP sites. The GPS networks provide real-time 
position data (less than 1 sec latency) and operate at high 
rate (1 – 2 Hz). The RTD server also broadcasts real-time 
positions in a proprietary binary format called RYO. Each 
RYO message contains the positions of the stations that 
reported for that epoch. 

 

C. Filter Chains  

To process GPS sensor streams in real-time we have 
developed several filters and Web Services to make real-time 
position messages available to scientific applications. In 
summary, the core of the system is to implement filter chains 
that convert or otherwise process the incoming data 
streams.  These filters serve as both subscribers (data sinks) 
and publishers (data sources).  NaradaBrokering topics are 
used to organize different data stream sources into 
hierarchies as shown in Table 1. Currently we are testing our 
system for 8 networks with 85 GPS Stations maintained by 
SOPAC. SOPAC RTD servers broadcast one message per 
network per second.  

In our architecture filters are small applications designed 
to realize simple tasks such as transforming or aggregating 
messages. We have developed an abstract filter interface 
which can be extended to create new filters. A basic filter is 
consisted of three parts: a NaradaBrokering subscriber, a 
publisher and a data processing unit. The abstract filter 
interface provides subscriber and publisher capabilities. 
Typically a filter subscribes to a specified NaradaBrokering 
topic to receive streaming messages, process the received 
data and publishes the results to another topic. However 
outputs need not be always published, for instance a 
Database Filter may only receive the station positions to 
insert into the database. Furthermore filters can be 
connected in parallel or serial for realizing more complicated 
tasks.  

The first filters we have developed are format converters 
that present original binary messages in different formats 
since GIS applications require different representations of 
geographic data. Since the original RYO messages contain 
multiple stations we also developed filters to extract and 
process individual station messages. Figure 2 shows our 
system architecture and current deployment of several 
filters. Here we give a brief overview of the filters we use in 
our architecture: 

ryo2nb Filter: This is a simple message forwarding 
application that opens a TCP socket connection to the RTD 
server to receive the RYO messages and publishes to a 
NaradaBrokering topic (i.e. /RYO). 

ryo2ascii filter: Subscribes to the RYO topic to receive 
binary messages, converts them to simple ASCII format and 
publishes to another topic (i.e. /ASCII). 

ascii2gml filter: Geography Markup Language is 
perhaps today’s most popular geographic data format 
produced by OGC. We have developed a GML Schema 
conformant with the latest Observations and Measurements 
[23] extension to describe GPS station messages. This filter 
converts the ASCII position messages into GML and 
publishes to a new topic (i.e /GML). We expect that in the 
near future most GIS applications will be developed to 
conform to OGC standards and presenting GPS messages in 
GML will help us easily integrate scientific applications. 

TABLE I 
SAMPLE  NARADABROKERING TOPICS FOR  

PARKFIELD GPS NETWORK .   

Filter Topic 

ryo2ascii /SOPAC/GPS/PARKFIEL/ASCII 
ascii2pos /SOPAC/GPS/PARKFIELD/POS 
ascii2gml /SOPAC/GPS/PARKFIELD/GML 
Single Station /SOPAC/GPS/PARKFIELD/HOGS 
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Fig. 2.  Real-Time GPS messages are processed and served using various filters connected via 
NaradaBrokering messaging substrate.  

 
ascii2pos filter: The RYO message type contains several 

sub parts other than physical position of the station such as 
position quality and several optional blocks. However most 
of this extra information is not required by the applications. 
This filter eliminates optional blocks and unnecessary 
information from the ASCII messages to create concise 
position messages which only include a time stamp, station 
id and position measurements.  

Station Displacement Filter: One of the use cases of GPS 
stations is to detect seismic activities. We have developed a 
simple filter that analyzes position information of a GPS 
Station and outputs its real-time physical displacement. The 
filter allows displacements to be calculated based on 
different time intervals, i.e. actual displacement of the station 
in last hour or in last 24 hours. 

Station Health Filter: One advantage of dealing with the 
real-time measurements is that we can instantly see if any of 
the sensors in a network is not publishing information. We 
have developed a filter that logs the down times of the 
stations and (potentially) alerts administrator if a threshold 
value is reached. For instance it can be tolerable for a GPS 
station to be down for a few minutes due to network 
problems etc. but if a station has not been publishing 
position information for over an hour a maintenance call may 
be required. Currently this filter is under development 
however we are planning to add alerting capabilities using e-
mail etc. 

Single Station Filter: As mentioned above the original 
messages imported from the RTD server contains position 
information for multiple stations. However most of our filters 
and applications analyze data for a particular station. For 
this reason we have developed this filter to strip the original 
message of unwanted parts and publish only the position 
information. 

D. Application integration Use Case: Coupling 
RDAHMM with streaming data 

RDAHMM is a data analysis program that employs 
Hidden Markov Models to identify different modes of the 
system and their probabilistic descriptions. An earlier, non-
streaming version of this application was discussed in [24]. 
RDAHMM has been used to identify mode changes in GPS 

 
Fig. 3. System Architecture diagram for coupling RDAHMM with 
real-time GPS messages. 
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time series data. With the development of our real-time GPS 
data support architecture a new version of RDAHMM has 
been under development to analyze streaming data. Current 
version operates in two phases: Training and Evaluation. In 
our case first the application is trained on a set of data for a 
particular station. Then it can be run continuously on 
accumulated data once a pre-determined time window is 
reached.  Although this version is not completely real-time 
we can run it near-real time by keeping the time window 
relatively small. 

To integrate RDAHMM with our architecture we use 
HPSearch [25], a scripting based management interface to 
manage publish-subscribe systems. HPSearch also provides 
tools to wrap existing codes as Web Services and provides 
a scripting based workflow management interface [8] to 
connect different components of the workflow. HPSearch 
uses NaradaBrokering's publish/subscribe based messaging 
architecture to stream data between various services.  Ref. 
[25] describes an initial version of RDAHMM using 
HPSearch. Figure 3 illustrates newer architecture for 
RDAHMM integration. As shown in the figure, the system 
consists of 3 Web Services, a NaradaBrokering server and 
an HPSearch node.  

The Web Services in this architecture are as follows: 
1- DataTransfer Service: This service transfers position 

messages accumulated by the RDAHMM Filter via 
NaradaBrokering to the server where RDAHMM actually 
runs.  

2- RDAHMMRunner Service: Invokes RDAHMM to run 
on the transferred data set. 

3- GraphPlotter Service: Runs Matlab to plot RDAHMM 
results as TIFF files and copies figures to a Web accessible 
folder. 

Additionally HPSearch kernel also has a WSDL interface 
which is used by RDAHMM Filter to start the flow. 

The system components are distributed over three 
servers. RDAHMM Filter and Data Transfer Service runs on 
Server-1. HPSearch kernel and NaradaBrokering server are 
installed on Server-2, whereas RDAHMM application, 
RDAHMM Runner Service and Graph Plotter Service run on 
Server-3. We also run an Apache Tomcat Web Server on 
Server-3 to present the generated TIFF images online.  

The system uses following real-time filters described 
above: ryo2nb, ryo2ascii, ascii2pos and Single Station Filter. 
Additionally the RDAHMM Filter subscribes to a single 
station topic to save that station’s position information. 

The experimental system works as follows: The 
RDAHMM Filter is a part of the architecture discussed 
previously and shown in Figure 2. It accumulates the 
position messages of a particular station in a file (data.xyz) 
for a certain amount of time (i.e. 10 minutes for 600 lines, or 
30 minutes for 3600 lines). Once the time threshold is 
reached it invokes HPSearch to start the process. HPSearch 
starts executing the script that defines the service locations 

and the order of the services to be executed. It first invokes 
the DataTransfer Service to start transferring the data.xyz 
file created by RDAHMM Filter to Server-3. Once this 
transfer is completed HPSearch engine invokes 
RDAHMMRunner Service and waits until it finishes the 
evaluation. Then it invokes GraphPlotter Service to read the 
RDAHMM outputs and plot the resulting graphic. This 
cycle is repeated every time the RDAHMM Filter reaches 
the time threshold.  

For this system we have created a simple application that 
acts as the RTD server to publish RYO messages once per 
second. We used an RYO data set collected by 13 Parkfield 
GPS Network sensors for a 24-hour period between 09-27-
2004, 06:59:47 PM and 09-28-2004, 06:59:46 PM. The latest 
major Parkfield earthquake occurred on 09-28-2004 at 
10:15:24 AM.  

The RDAHMM outputs tell us the number of different 
states detected in the input and information useful for 
plotting these states. Previous versions of RDAHMM were 
used to analyze archived GPS daily time-series and 
successfully detected state changes in the inputs which 
correspond to seismic events.  

Our tests show that the real-time filters used in this 
architecture do not introduce any overhead. Since the GPS 
messages are received every second it is expected from the 
real-time filters to complete processing under one second 
not to skip the next message. According to our timing 
measurements all of the four real-time filters finish message 
processing under 100ms.  

Currently we have successfully deployed and tested the 
system for one GPS station in the Parkfield test data. We 
tested RDAHMM using two different methods. First we 
used a sliding window method and run RDAHMM for every 
1000, 3000, 5000 etc. lines of data. Next we applied an 
increasing window method by transferring every 1000 lines 
to RDAHMM server add appending this to previous data 
file. Thus RDAHMM was run on increasing data sizes.  

  

IV. CONCLUSION AND FUTURE WORK 

In this paper we described several applications built to 
support two different layers of GIS Data Grids. Although 
most of today’s GIS applications are based on consuming 
archival data, it is clear that sensors will be generating large 
amounts of data in the near future. For this reason real-time 
processing and evaluation of the sensor measurements is 
critical. We believe that our approach is fundamental and 
can be generalized to other problem domains besides GIS 
applications. The concept of distributed filters 
communicating via a messaging broker supports natural 
scaling.  

We are currently working on to expand our system to test 
all of the stations included in the original RYO messages. 
Later we will plug-in to several real-time GPS networks. 
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We are also planning to use the sensor filter architecture 
to experiment whether we can use RDAHMM with real-time 
sensor data collected once per second and pick any patterns 
about the seismic activities. 
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