
Grid Computing Environments
Geoffrey Fox

Computer Science, Informatics and Physics
Indiana University

Community Grid Computing Laboratory,
501 N Morton Suite 224, Bloomington IN 47404

gcf@indiana.edu

Introduction
The Grid is rapidly evolving in both concept and implementation and there is a
corresponding excitement and confusion as to the “right” way to think about Grid
systems. One area of interest is called Grid Computing Environments (GCE) and roughly
this describes the “user side” of a computing system where users interact via which
controls a set of distributed back end resources. This is illustrated in figure 1 where there
is a fuzzy division between GCE’s and what is called “Core” Grid in the figure. The latter
would include access to the resources, management of and interaction between them,
security and other such capabilities. The new Open Grid Services Architecture (OGSA)
http://www.gridforum.org/ogsi-wg/drafts/ogsa_draft2.9_2002-06-22.pdf (which is itself
evolving) describes or perhaps will describe these “Core” capabilities and the Globus
project http://www.globus.org/ is the best known “Core” software. In this article, we will
elaborate GCE’s and discuss their relationship to portals and Grid programming

environments.
 We will base our analysis on a recent collection by Fox, Gannon and Thomas of
28 articles on various approaches to GCE’s – these are published in

Raw (HPC)
Resources

Middleware

Database

Portal
Services

System
Services

System
Services

System
Services

Application
Service(s)

System
Services

System
Services

Grid
Computing

Environments

User
Services

“Core”
Grid

Fig 1: A Grid Architecture showing Portal Services and Grid Computing Environments

http://www3.interscience.wiley.com/cgi-bin/issuetoc?ID=102522447. This collection
stemmed from work of the GCE research group of the Global Grid Forum, which can be
found at http://www.gridforum.org/7_APM/GCE.htm. Although there appears to be quite
a bit of confusion in the field, analysis of these (and other) papers shows some common
general features which we will discuss here. Further details can be found in chapters 20-
34 of Grid Computing: Making the Global Infrastructure a Reality (Berman, Fox and
Hey editors, to be published by Wiley: Chichester, 2003) with Chapter 21 by Craig and
Talia having a broad discussion of programming the Grid. The classification of GCE
approaches is discussed by Fox, Gannon and Thomas in Chapter 20 of this book. The
different papers all imply a diagram similar to figure 1 and differ in technology used (Perl
versus Python for example), capability discussed and the emphasis on user versus
program (back end resource) view.

GCE’s fulfill (at least) two functions –

• “Programming the User Side of the Grid”
• Controlling user interaction – rendering any output and allowing user input in

some (web) page. This includes aggregation of multiple data sources in a single
portal page.

We have already discussed Web Services and we will implicitly assume that our Grid is
built in term of Services and implemented in terms of XML specified Web Services. This
may seem unreasonable, as most of the references given above do not use Web Services.
However Web Services are “just a distributed Object Model” and it has proven
straightforward to convert other object models to this approach. Thus the general
approach of essentially all modern GCE work can be thought of in terms of Web
Services.

Programming the User View of the Grid
We will here think of application software in a simple two level hierarchy. There is
“microscopic” software controlling individual CPU’s and written in familiar languages
like Fortran, C++ and Python. We assume that these languages generate “nuggets” or
code modules and it is making these nuggets associated with a single resource that
“traditional” programming addresses. To give examples, the nugget could be the SQL
interface to a database, a parallel image processing algorithm or a finite element solver.
This well understood (but of course still unsolved) “nugget programming” must be
augmented for the Grid by the integration of the distributed nuggets together into a
complete “executable”. Programming the nugget internals is currently viewed as outside
the Grid although projects like GrADS (Grid Application Development Software
http://www.hipersoft.rice.edu/grads/) are looking at integration of individual resource
(nugget) and Grid programming. Here we will assume that each nugget has been
programmed and we “just” need to look at their integration. This integration is actually
quite familiar and generalizes “Shell/Perl…” scripts used in single resources for UNIX
operating systems and the Microsoft Com/ActiveX/…. interfaces in PC Case.

There are several other examples of this style of Grid Programming. One broad
class is called Problem Solving Environments that feature a Portal Interface to a set of
carefully chosen tool and application services usually customized to a particular problem

domain. This has both a graphical user interface described in following section and some
sort of “software bus” to link the different parts of the PSE together.

The integration of application nuggets is often called “workflow”, and the user
can be offered many different paradigms for expressing this. One common model is a
graphical interface where one can choose nuggets from a palette and link “ports” or
channels of the nuggets. This is familiar from visualization and image processing where
systems like AVS (http://www.avs.com/) and Khoros (http://www.khoral.com/) are well
established. Industry has developed XML specifications for this nugget linkage with
approaches like BPEL4WS (Business Process Execution Language for Web Services
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/) and WSCL.
(Web Services Conversation Language http://www.w3.org/TR/wscl10/ where it’s the
nuggets having conversations and not the users!) Simpler and perhaps more powerful is
“just” to program the linkage with scripting (such as Python) or compiled (like Java)
languages. We can expect it to be useful to have multiple paradigms and multiple
languages and it is unlikely that any one of these is “best”. Important Grid approaches for
describing the programming of nuggets include the CCA (Common Component
Architecture http://www.cca-forum.org/) from DoE and the ICENI project
(http://www.lesc.ic.ac.uk/iceni/) of the UK e-Science Program.

The above examples indicate that “programming the user view of the Grid” has
overlaps with (distributed) object technology but in this column, we are not trying to
“push a particular programming model” but rather to illustrate the “issues to be
addressed” and to stress the commonality of the problem being addressed with however
major differences occurring in the implementations. Although related to tasks familiar
from programming PC’s or workstations, “Programming the user view of the Grid” is
significantly more complicated. As illustrated in fig. 1, the “executable” (integrated
nuggets) is a mixture of both system and application services; one uses system services
on a single workstation but the meta-OS services of the Grid are currently expected to
have programmable interfaces whereas many of the corresponding workstation
(Windows, UNIX) services are more opaque. OGSA is part of the picture as many system
services in fig. 1 will be those defined and implemented as part of the OGSA initiative. In
fact perhaps all services will be OGSA services when the dust clears – certainly all will
be Web Services (or whatever these become) and maybe the OGSA and Web service
specifications will just merge. Currently for example portal services described in the next
section come from the Web not Grid community.

Not only do we have the richness of both system and application nuggets, many Grid
systems separately maintain both “real” entities (such as a software nugget) and
separately entities representing the meta-data describing the “real” entity. We expect this
separation to continue and indeed expand in use for there is a clear need to define more
meta-data and it seems likely that this metadata will often be stored separately from the
resource it describes.

As a typical nugget programming challenge, one must take into account both needed
latency/bandwidth of application and network constraints (firewalls) to decide most
appropriate communication mechanism between nuggets. This typically runtime
specification of the implementation of a particular service-service interaction has no
agreed approach. There are of course many examples of its use with particular
implementation strategies. “Agents”, “brokers” and “profiles” are typical of the language

one often uses to describe this adaptive mechanism. In fact it seems possible that the field
of agents will merge with that of the Grid. Further in developing Grid programming one
has to study both

• The programming paradigm and within a paradigm one can choose particular
languages – this could be scripted, visual, or compiled.

• The run-time library, which could be largely shared between different paradigms
in functionality but might be expressed rather differently in each separate
approach.

The many articles mentioned above are partly differentiated by their emphasis on these
two different aspects of the problem.

One can borrow familiar ideas from UNIX with the basic Grid “programming
primitives” usefully be expressed as a “GCE Shell”. As described above, Shell primitives
will be exposed to the user in different ways using different paradigms and their
expression. One way of exposing the Shell primitives will be as a command line interface
but in many cases one will present a higher-level view. Complete domain specific high-
level systems are “just” Problem Solving Environments mentioned above. The Legion
Grid system (http://legion.virginia.edu/) illustrates the GCE Shell clearly with a Legion
shell naturally extending that familiar from UNIX. The GCE Shell has some features in
common with the UNIX shell as for instance file manipulation is critical both in UNIX
and the Grid. However there are some interesting differences. For instance the Grid (and
hence the GCE Shell) must express

• The negotiated interaction between nuggets and users
• Files and services at all levels of system – local client, middle-tier, backend

resource
• Distinction between an object and its meta-data; copying an object might be a

major high-performance task; copying the meta-data is typically a modest effort.

Looking at primitives needed, the GCE Shell needs to add several features compared
to the UNIX Shell such as:

• Search
• Discovery
• Registration
• Security
• Better workflow than pipe or tee in UNIX shell
• Groups and other collaboration features as in JXTA (http://www.jxta.org)
• Meta-data handling
• Management and Scheduling
• Networks
• Negotiation primitives for service interaction

Thinking about the GCE Shell, one can simplify discussion by using a uniform

service model so that files and executables are both services and not distinct as in UNIX.
One probably needs a “virtual service” concept so that an individual file access is a
service in the Shell even though it could be implemented differently. This is an example
of possible areas for new compiler research.

The GCE shell is a catalog of the primitive functions needed to program the Grid.

Grid programming paradigms are particular ways to manipulate them to build e-Science
applications. Portal services described next are the way of interacting with the user.
Putting this all together gives you a Problem Solving Environment.

Portal Services

Portal services control and render the user interface/interaction and Fig. 2 shows a key
architectural idea emerging in this area. We assume that all material presented to the user
originates from a Web service which is called here a content provider. This content could
come from a simulation, data repository or stream from an instrument. Each such Web
Service has resource or service facing ports (RFIO in fig. 2), which are those used to
communicate with other services. Here we are more concerned with the user-facing ports
which produce content for the user and accept input from the client devices. These user-
facing ports use an extension of WSDL, which is being standardized by the OASIS
organization. This is called WSRP or Web Services for Remote Portals http://www.oasis-
open.org/committees/wsrp/. It implements the so-called portlet interface, which is being
standardized in Java as part of a JCP (Java Community Process) project.

Content Provider

WSDL

Web Service

F

I

U

O

F

I

R

O

Portal
Aggregate

WS-User Facing
Fragments

Render

Other WS
User Facing
Ports

Other WS

Fig. 2: Portal providing aggregation service for document fragments produced
by user-facing ports of a Content providing Web Service

Resource-facing
Ports User-facing

Ports

Most user-interfaces need information from more than one content provider. For
example, a computing portal could feature separate panels for job-submittal, job status,
visualization and other services. One could integrate this in a custom application-specific
Web service but it is attractive to provide a generic aggregation service. This allows the
user and/or administrator to choose which content providers to display and what portion
of the display real estate they will occupy. In this model each content provider defines its
own “user-facing document fragment” which is integrated by a portal. Such aggregating
portals are provided by the major computer vendors and also by Apache in its well
known Jetspeed project (http://jakarta.apache.org/jetspeed/). Portlets represent a
component model for user interfaces in the same way that Web Services represent a
middleware component model. Using this approach has obvious advantages of re-
usability and modularity. One then has an elegant view with workflow integrating
components (Web services representing nuggets) in the middle tier and aggregating
portals integrating them for the user interface. Figure 3 illustrates these ideas with a

portal being developed for the NCSA Alliance in a project led by Gannon and Plale. One
sees 4 separate interfaces (3 on left and one on right) to different GCE Web services.
Further capabilities are aggregated using tabs at the top. This project involves many
different institutions developing particular user interface fragments with the component
interface architecture allowing convenient integration. The aggregation of the work of the
different groups is provided by Web services (OGSA) in the middle tier and by
systematic use of portlets at the user interface.

Fig. 4 points some other portal services which correspond to the ability of
adapting rendered content to accommodate particular clients. This addresses both
differences between devices (for example immersive versus desktop versus handheld)
and issues of universal access – accommodating to possible physical limitations of the
user. The architecture of fig. 2 becomes more complex as now one needs a negotiation

Fig. 3: Example of a Jetspeed-based Portal with aggregation
of interfaces to several computing services

between client and content provider to define the rendered view. This requires a portal
selection service to process user profiles and choose appropriate content. One also can
package common filters to for example reduce resolution for a multi-media content. This
work on universal access is familiar in audio-video conferencing (protocols like H323
negotiate “best” codecs to fit client) and is being pursued by W3C as part of its
accessibility initiative.

The collection of aggregator, selector and filtering capabilities illustrate common
portal services that can be shared by multiple Grid applications.

User
Profile

Application or
Content source

WSDL

Web Service

F
I

U

O

F
I

R

O

Render

Portal
(Aggregator)

Selector

Filter

Control Channel

Customized View

Selection
View

Control Channel

Customized View

Fig. 4: Portal Services showing
User Facing Ports and
negotiated interaction between
user and Content providing Web Services.
This interaction can provide universal access

