
Grid Service Architecture for Videoconferencing 
Wenjun Wu1, Ahmet Uyar1,2, Hasan Bulut1, Sangyoon Oh1, Geoffrey Fox1

1 Community Grids Computing Laboratory, Indiana University, USA 
2 Department of Electrical Engineering and Computer Science, Syracuse University, USA 

{wewu, hbulut,, ohsangy ,gcf  }@indiana.edu, auyar@syr.edu 
Indiana University Research Park, 501 N Morton St. 222, Bloomington, IN, 47408, USA 

 
Abstract 

In this paper we present a scalable, integrated and service-oriented collaboration system, namely Global 
Multimedia Collaboration System, based on the XGSP collaboration framework and NaradaBrokering 
messaging middleware. This system can provide videoconferencing services to heterogeneous endpoints 
such as H.323, SIP, Access Grid, RealPlayer as well as cellular phone. This paper discusses the design 
principle, system architecture and implementation in detail. The extensive performance measurement has 
been made to evaluate the scalability of the system.  
Keywords 

Collaboration, Multimedia, Global-MMCS, XGSP, NaradaBrokering, Web-Services, 
 

1. Introduction 
Collaboration and videoconferencing systems have become a very important application in the Internet. 

There are various solutions to such multimedia communication applications, among which H.323 [1], SIP 
[2], and Access Grid [3] are well-known. It will bring substantial benefits to Internet users if we can build 
an integrated collaboration environment, which combines these systems into a single easy-to-use, intuitive 
environment. However, at present they have features that sometimes can be compared but often they make 
implicit architecture and implementation assumptions that hamper interoperability and functionality.  

XGSP (XML based General Session Protocol) [4] is a common, interoperable framework based on Web 
services technology for creating and controlling multipoint collaborations. XGSP uses a unified, scalable, 
robust “overlay” network to support audiovisual and data group communication over heterogeneous 
networking environments. XGSP offers a distributed, flexible conference management mechanism for 
integration of various collaborations and communities. Furthermore, XGSP specifies a common 
audiovisual signaling protocol for interactions between different audiovisual collaboration endpoints. Just 
like the text messages in SIP, XML should be used to describe the XGSP protocol because it makes the 
protocol easier to be understood and to interact with other Web based components. 

Based on this framework, we have developed a system called Global-MMCS (Global Multimedia 
Collaboration System) [5] to support scalable web-service based interoperable collaborations. Global-
MMCS integrates various services including videoconferencing, instant messaging and streaming, and is 
interoperable with multiple videoconferencing technologies. In terms of multipoint audio video 
collaboration, Global-MMCS can be regarded as scalable, integrated and service-oriented MCU 
(Multipoint Control Unit) in H.323 systems. Unlike typical H.323 MCU solution which usually puts 
everything in a hardware box, Global-MMCS are a pure software service system. It separates the MCU 
package into media delivery service, media processing service and session management service. On top of 
these core services, richer multimedia collaborations can be built to meet the demands in different 
application scenarios. Also several Gateways are developed to enable numerous multimedia clients to 
interact with the core services.   

The paper is organized in the following way. Section 2 introduces related work and our design principle. 
System architecture is discussed in Section 3. The experience of building audiovisual collaboration is 
described in Section 4. Section 5 presents the implementation of the system and performance evaluation. 
Section 6 gives the conclusion. 

 
2. Related Work 

The multimedia collaboration framework has been studied over years. The well-known solutions have 
H.323, SIP and IETF MMUSIC [6]. The IETF's Multi-Party Multimedia (MMUSIC) working group 
proposed its own solution SCCP (Simple Conference Control Protocol) [7].  However, its main target was 
lightweight conference management for multicast instead of tightly controlled models. Because multicast 



can’t be deployed widely in the Internet in near future, in the year 2000 MMUSIC WG gave up and 
removed conference control from the WG charter. The project Access Grid started from the MBONE tools: 
VIC and RAT, and is also trying to define its own conference control framework rather than SCCP.  
     2.1 H.323 

H.323 is a communication standard produced by the ITU, initiated in late 1996, and aimed at the 
emerging area of multimedia communication over LANs. It is widely supported by many commercial 
vendors and used throughout the world in commercial and educational markets. H.323 is defined as an 
umbrella standard specifying the components to be used within an H.323-based environment. It provides 
conference management functionality for audio/video conferences using the call signaling functionality of 
H.225 [8], H.245 [9]. These protocols provide call set-up and call transfer of real-time connections to 
support small-scale multipoint conferences. The protocol H.243 [10] defines some commands between the 
MCU and H.323 terminals to implement audio mixing, video switch and cascading MCU. H.243 
commands have been included in H.245. For the data part of a conference, the conference management of 
the T.120 recommendation [11] is used. This standard contains a series of communication and application 
protocols and services that provide support for real-time, multi-point data collaborative applications 
including desktop data conferencing, multi-user applications, and multi-player gaming.  

An H.323 conference system for packet switched networks can include one or more of the following 
functional components: terminals, gatekeeper (GK), multipoint controller (MC), multipoint processor (MP) 
and multipoint control unit (MCU). The H.323 control messages and procedures define how these 
components communicate.  Figure 1 shows the structure of a typical H.323 system. 

GatekeeperMC  MP
MCU

H.323 Terminal 1 H.323 Terminal 2 H.323 Terminal N
....

Packet Switch Network

 
Figure 1. H.323 architecture  

 
The H.323 MC and each H.323 participant in the conference establish an H.245 control connection to 

negotiate media communication types. The MP provides media switching and mixing functionality, e.g. the 
MP decides which of the media streams generated by the clients will be forwarded or mixed as a single 
stream. The H.323 Gatekeeper provides services such as address translation, RAS control, call redirection 
and zone management to H.323 clients. The gatekeeper may also provide other optional functions such as 
call authorization and call accounting information.  
 
     2.2 SIP 

The Session Initiation Protocol (SIP) defines how to establish, maintain and terminate Internet 
sessions including multimedia conferences. Initially SIP was designed to solve problems for IP telephony. 
To this end, SIP provides basic functions including: user location resolution, capability negotiation, and call 
management. All the capabilities are basically equivalent to the service H.225 and H.245 in H.323 protocol. 
The major difference is that SIP was designed in a text format and took request-response protocol style like 
HTTP. But H.225 and H.245 were defined in a binary format and kept a style of OSI (Open System 



Interconnection). Therefore SIP has some advantages of interaction with web protocols like HTTP in VoIP 
industry. More importantly, SIP doesn’t define the conference control procedure like H.243 and T.120. 
Additional conference control mechanisms have to be implemented on the base of SIP to support the AV 
and data collaboration. Recently SIP research group begun to develop their framework and produced a few 
drafts [12,13]. But SIP work is still in the beginning phase and has not been widely accepted. 

 
 

 
Figure 2 SIP System Architecture 

 
The architecture of SIP based systems is showed in Figure 2. A SIP system usually includes SIP clients, 

a SIP Proxy Server, a Registrar Server, a Location Server, and a Redirect Server as well as a SIP Multipoint 
Control Unit (MCU). The SIP Proxy Server primarily plays the role of routing, enforcing policy of call 
admission. The proxy interprets and if necessary, rewrites specific parts of a request message before 
forwarding it. The SIP registrar accepts REGISTER requests and places the received information  in those 
requests into the location service for the domain it handles. In addition, the SIP Proxy provides instant 
messaging service, forwarding SIP Presence Event messages and SIP text messages to SIP clients. 
 
    2.3 Access Grid and VRVS 

Access Grid is a derivation from MMUSIC conference, which uses MBONE tools and can support a 
large scale audio/videoconference based on a multicast network. Access Grid provides the group-to-group 
collaborations among 150 nodes connected to Internet 2 world wide. Access Grid improved MBONE 
audiovisual tools VIC and RAT. Permanent virtual meeting rooms were also introduced in Access Grid as 
“virtual venue” for the purpose of collaboration services management.  Users are allowed to establish their 
own venue server which hosts the information about the user registration and venue addressing and offers 
rendezvous service to all the users. Users have to log into the venues server and start the multimedia clients 
in their nodes for communication through multicast and unicast bridges. 

VRVS [14] is a project that extends the service of Access Grid. VRVS builds its collaboration service 
on top of pure software reflector infrastructure which is a kind of software multicast. It is capable of 
supporting MBONE tools, H.323 terminal as well as QuickTime player. It also supports some data sharing 
collaborations, like shared web browsing and shared desktop (VNC). But VRVS is not an open project 
having few documents for their architecture and conference control framework.  
      
 2.4 Kazaa and Skype 

Kazaa [15] is one of the most popular and widely used p2p system, with over 85 million downloads 
worldwide and an average of 2 million users online at any given time. In the beginning, Kazaa only 
provided file sharing service. Kazaa nodes dynamically elect ‘super-nodes’ that form an unstructured 
overlay network and use query flooding to locate content. Regular nodes connect to one or more super-
nodes to query the network content and use HTTP protocol to directly download the selected content from 



the provider. In 2003, Kazaa extended its service to VoIP world by launching Skype [16] p2p VoIP 
solution and gained a big success. Skype was trying to address the problems of legacy VoIP solutions by 
improving sound quality, achieving firewall and NAT transversal and using p2p overlay rather than 
expensive, centralized infrastructure. It also provided supplemental features like instant messaging service.  

 
Although all of these systems have advantages, they are not sufficient for building more advanced and 

integrated collaboration systems: 
(1) SIP has very limited supported for conference control. 
(2) In H.323 framework, AV collaboration and T.120 are not well integrated. Moreover, the AV 

communication services and T.120 overlay networks don’t have very good scalability. 
(3) H.323 and T.120 are designed in a relative complicated OSI model. It is not easy to understand 

and develop in their APIs. 
(4) Access Grid heavily depends on multicast service and limited number of unicast bridge servers in 

the Internet 2. Since it doesn’t have overlay substrate to support further deployment in 
heterogeneous Internet users, most users of Access Grid are institutions connected with Internet 2. 

(5)  All these frameworks only deal with homogenous video conferencing and can’t connect to other 
collaboration systems.  

(6) Kazaa and Skype use their own propriety protocols and can’t interoperate with other legacy VoIP 
clients such as H.323 and SIP. They can only support audio conferencing and have no video 
service. In our design principle 

 
2.5 Our design principles 

Recently, many new technologies in the Internet such as XML, SOAP, Web-Service, Publish 
/Subscribe messaging as well as peer-to-peer computing have emerged and started to change the Internet 
applications. These new technologies enable the new architecture for collaboration systems:  

(1) A unified, scalable, robust “overlay” network is needed to support AV and data group 
communication over heterogeneous networking environments. Such an overlay network should be able to 
go through firewall and NAT, provide group communication service in whatever unicast and multicast 
networks and offer reliable data delivery in whatever loss network. It also can to be configured as P2P or 
distributed server-based overlay to provide differential services for VIP and regular users. 

 (2) A common AV signaling protocol has to be designed to support interactions between different 
AV collaboration endpoints. For example, in order to get the H.323, SIP and MBONE endpoints to work in 
the same AV session, we have to translate their signaling procedures into our common procedure and build 
the collaboration session.  

(3) A core conference control mechanism is required for establishing and managing the multi-point 
conference. The service of this part is quite like T.124 [17] (Generic Conference Control) in T.120 
framework. However this mechanism will provide more flexible facilities to describe application sessions 
and entities. And it can be designed in a more scalable approach based on the powerful publish/subscribe 
messaging services. All description information for the applications and sessions can be kept in XML 
format rather than binary format, which will lead to easier development. Furthermore most control 
messages can be transferred through messaging middleware rather than central servers and the most session 
information can be distributed in all the participating nodes.  

(4) Finally, we’d like to use web-services to integrate collaboration communities in different 
technologies. Various collaboration systems including Access Grid, H.323 and SIP should be regarded as 
Web-services components and provide Web-services interface of their conference control protocols to the 
core conference control components. They can invoke these services to build an integrated community-to-
community conference across the communities. 

The following table gives a comparison between Global-MMCS and other systems. Although the SIP 
and Access Grid are trying to add the conference control mechanism, their frameworks haven’t been well 
defined.  So we make this comparison according to the current capabilities of their systems.  
 

 H.323 SIP IETF  
Access Grid VRVS Global-MMCS 

Conference 
Management supported 

 
 
 

supported supported supported 



No 
 
 

Overlay 
Network 

Environment 

Internet / ISDN 
Firewall 
transversal 
under the 
support of VPN 

 

No 

Need multicast 
support , 
No firewall 
tunneling 
 

Reflector 
Infrastructure 
Software 
Multicast 

Publish/Subscribe  
Firewall & NAT 
transversal 
(VPN optional) 

 

Data 
Collaboration 

Limited: T.120  
whiteboard, File 

FTP  
No 

Limited to 
( PowerPoint, 

Chat ) 

Limited to  
( Shared 
browsing and 
VNC ) 

allows full 
integration of all 
tools 

 
Floor  

Control  
Mechanism 

H.243 
T.120 

No 
Under 

development 
No No 

Chairman based  
Flexible role 
setting 

Scalability Not good Not good Good  Good Good 

Support 
heterogeneous 

clients 
No No No H.323, 

MBONE 

H.323, SIP, 
MBONE, 
RealPlayer, PDA, 
Cell Phone 

Community- 
To-

Community 
Collaboration 

No No No No Yes 

Table 1 Comparison of XGSP with Competitive Framework 
 
 

3. Global-MMCS 
 

Media Delivery, Storage Services
( QoS : Reliable and Secure Delivery,Transport Mechanism,

Massive Dependable Storage )

Media Processing Service
( Adaptation, Mixing,

Transcoding ... )

Session Management Service
( Membership, Role

Management,  Floor control)

Audiovisual
Collaboration

Shared Data
Application

Instant
Messaging

 
Figure 3 Global Multimedia Collaboration System Architecture 

 
The figure 3 shows a general architecture of Global Multimedia Collaboration System. The top layer 

lists different kinds of collaborations, like videoconferencing, shared data applications. They have to be 



built upon the services provided by the two layers below them. The bottom layer offers the media delivery 
and storage services to all the collaborations. Media delivery usually involves quality of service of data 
transmission, reliable and secure group communication and different transport mechanisms. In the middle 
layer, there are two application oriented services: media processing service and session management 
service. Media processing service defines the specific data processes necessary for collaborations such as 
media adaptation, media mixing. Session management service can maintain the membership in the 
collaboration session, and enforce floor control and role management.  Note that if a collaboration session 
has different clients, there should be some gateway components in the middle layer to adapt heterogeneous 
clients. 

Global-MMCS uses NaradaBrokering [18], a powerful “overlay” network for scalable, reliable and 
robust media delivery and storage. It is a general event brokering middleware, which supports publish-
subscribe messaging model with a dynamic collection of brokers. NaradaBrokering is used be for 
multipoint data delivery and Web-Services communication substrate. Global-MMCS uses XGSP, a 
common, interoperable framework based on Web services technology for its session management service. 
XGSP offers a distributed, flexible conference management mechanism for integration of various 
collaboration communities. Using the XGSP API, it is easy for developer to create application specific 
session management.  

In terms of multipoint audiovisual collaboration, Global-MMCS can be regarded as a scalable and 
service-oriented virtual MCU (Multipoint Control Unit) for bridging XGSP native clients, H.323 terminals, 
Access Grid clients, Real Players as well as cellular phones capable of image uploading. Global-MMCS 
also provides a general and scalable service platform (Media Servers) that can execute various media 
processing including video mixing, audio mixing and snapshot generation. Other real-time collaborations 
like whiteboard, text chat, shared document can also be integrated to this general and web-services based 
system. The following sections describe NaradaBrokering messaging service and XGSP framework in 
detail. 

 
3.1 Narada Brokering Grid Messaging System 

NaradaBrokering from the Community Grid Labs is adapted as a general event brokering middleware 
and substrate for deploying Web-Services. It is a distributed publish/subscribe messaging system that 
provides a scalable architecture and an efficient routing mechanism. It organizes brokers in a hierarchical 
cluster-based architecture. The smallest unit of the messaging infrastructure is the broker. Each broker is 
responsible for routing messages to their next stops and also handling subscriptions. In this architecture, a 
broker is part of a base cluster that is part of a super-cluster, which in turn part of a super-super-cluster and 
so on. Clusters comprise strongly connected brokers with multiple links to brokers in other clusters, 
ensuring alternate communication routes. This organization scheme results in the average communication 
“pathlengths” between brokers that increase logarithmically with geometric increases in network size, as 
opposed to exponential increases in uncontrolled settings.

NaradaBrokering supports dynamic broker and link additions and removals. While adding new brokers 
and links, it implements a broker organization protocol to avoid an unstructured broker network which 
hampers the development of efficient routing strategies. This lets broker network to grow or shrink 
dynamically. 

NaradaBrokering has a flexible transport mechanism. Its layered architecture supports addition of new 
protocols easily. In addition, when a message traverses through broker network, it can go through different 
transport links in different parts of the system. A message can be transported over HTTP while traversing a 
firewall but later TCP or UDP can be used to deliver it to its final destinations. Therefore, it provides a 
convenient framework to go through firewalls. 

JMS API [19] is very good for developing scalable collaboration applications. The publish/subscribe 
interaction paradigm make it possible to build a peer-to-peer and loosely coupled distributed system. And 
publish/subscribe topics, which represent keywords for publisher and subscriber, can be used to describe 
hierarchy and complicated collaboration groups. Fault tolerance in JMF style communication is also 
introduced by using WSRM [20] semantic between replicated publishers or subscribers.  

 
3.2 XML-based General Session Protocol 

Figure 5 shows the important components in XGSP framework:  



         
Figure 5.   XGSP Conference Control Architecture 

 
The conference manager is the server keeping the important information for all the conferences. 

Through the manager, users can create a new conference or terminate an old one. The meta-data 
repositories in the conference manager includes: a conference description set, application registry set as 
well as user accounts. The conference description set contains the registries of all the scheduled 
conferences and is organized as conference calendars. Each conference registry includes the fields: 
Conference ID, Conference Name, Conference Mode, Conference Time, and Available Application Session 
Templates.  The application registry set has all the registries of the collaboration application such as 
audio/video, chat and whiteboard. An application registry usually contains the entries like application 
identification, role systems definition as well as specific attributes.  

A node manager is the user interface for the XGSP conference management service in each user. An 
application instance refers to a client of the collaborative applications. Because a node manager has the 
factories for all kinds of applications, it can create new application instances, and invoke start, stop, and 
set-role methods in them.  

The XGSP conference control includes three services: conference management, application session 
management and floor control. The conference management supports user sign-in, user 
create/terminate/join/leave/invite-into XGSP conferences. The application session management provides 
users with the service for creating/terminating application sessions. And the floor control manages the 
access to shared collaboration resources in different application sessions.  
 
3.3 Build Collaboration Web-Services using XGSP and NaradaBrokering 

Developers should follow the following approach to build their own collaborative applications based on 
NaradaBrokering and XGSP. 
(1) Use NaradaBrokering for control communication and data distribution 

NaradaBrokering provides JMS-style publish/subscribe API for group communication. Developers who 
are familiar with JMS can use the API for all the communication in the application. There are also more 
advanced data transmission services in NaradaBrokering like reliable delivery and ordered delivery.  Some 
collaboration may need them for maintaining complicated consistency in distributed sharing. 

To distinguish different sessions in the collaboration, developers have to specify the topic scheme. Each 
application session should have its own topic name space inside NaradaBrokering. We can define the 
naming schema: /xgsp/conferenceID/Application-Session-ID. The conferenceID field is generated by the 
conference manager and determined when the conference is activated. The Application-Session-ID field is 
generated when the application session is created. This field can have three kinds of forms: the default 
public session can use the application type identification like av, chat, whiteboard. The public application 
sessions take the format of < application type, sequence number >. The sequence number represents the last 



number of the application sessions. The private application sessions can be < application type, initiator-ID, 
sequence number>. In the following, we give a few examples: suppose the conference named ourtestroom 
is created. And it has two default application sessions with the topic names: /xgsp/ourtestroom/av and 
/xgsp/ourtestroom/chat. If the chairman in the conference creates two whiteboard sessions, their topic 
names should be: /xgsp/ourtestroom/whiteboard-0, /xgsp/ourtestroom/whiteboard-1. For a private 
whiteboard session initiated by the user with the user ID: “testuser”, its topic name should be 
/xgsp/ourtestroom/whiteboard-testuser-0.  
 
 (2) Define roles and its capability in XGSP 

Each collaborative application defines its role system in a XML registry. A role description includes the 
role name and the role capability. The conference manager keeps the database of all these definition 
registries. It copies the database to a user node manager when the user joins the conference.  

The conference chairman has the right of setting the roles. It can send a “SetApplicationRole” message 
to the application instance running in other users.  A “SetApplicationRole” message tells the conference 
participants which user should be changed to this role. All the application instances have to parse the 
message and take appropriate actions. For example, in the chess application, the conference manager has its 
application registry defining three different roles: black, white and observer.  

< ApplicationRegistry> 
< ApplicationID>  chess </ApplicationID> 
<roles> 
   <role> 
        <roleName> black </roleName> 
        <capabilities> player-first </capabilities> 
        <roleName> white </roleName> 
        <capabilities> player-second </capabilities> 
        <roleName> observer </roleName> 
        <capabilities> non-player </capabilities> 
   </role> 
</roles> 
….  
</ApplicationRegistry>  

 
(3) Define application specific processing services and hooked it into NaradaBrokering 

Collaborations usually need media processing services. For example, conferencing needs audio mixing 
and video mixing.  These services can be regarded as collaboration web-services, and described in WSDL. 
Collaboration clients can communicate with the services through SOAP and JMS messages.  

NaradaBrokering Grid messaging system can work as a substrate of SOAP transport and SOAP routing 
so that Web-Services can be deployed on top of it. By using handler chain approach and service 
advertisement mechanism, it enables clients to discover, invoke services and interact with them. SOAP 
handlers of Web-services can automatically generate service advertisements on service startup. And then 
Web-services connect directly to NaradaBrokering and expose their capability through advertisements. 
Clients use XPath or Regular expressions-like query to search for this advertisement. 

XGSP framework provides session control mechanism for creating and managing the instances of the 
Web-Services. It can work as service factory where session related media services can be created and 
attached to the active application session.  
 
(4) Implement the interface between the XGSP NodeManager and application clients 

Collaboration client instances have to be created by the XGSP Node Manager. XGSP specifies the 
interface between the Node Manager and application clients. The application client must implement the 
following interface at first to be hooked with the NodeManager and report the heart-beat information to it. 

public interface Application{ 
void setServiceMgr(NodeManager provider); 
boolean isAlive(); 
} 



Through the node manager, the application client can obtain a session handler which allows the client to 
join/leave the session and listen to the events in the session. XGSP interface defines two listeners: Session 
EventListener and Role EventListener.  

public interface SessionListener extends EventListener{ 
  public void sessionJoined(SessionEvent evt); 
  public void sessionLeft(SessionEvent evt); 
  public void sessionInvited(SessionEvent evt); 
  public void sessionExpelled(SessionEvent evt); 
  public void sessionDestoryed(SessionEvent evt); 
} 
public interface RoleEventListener extends EventListener{ 
  public void RoleChanged(RoleEvent evt); 
} 
The above code segment shows the interface of the listeners. The application client must implement the 

listener interface to handle the events. Also Application Registry has to be defined to load the main class of 
the application. For the chess application, the conference manager has its application registry defining three 
different roles: black, white and observer. And the MainClass field tells the NodeManager which java class 
it should load. 

< ApplicationRegistry> 
< ApplicationID>  chess </ApplicationID> 
<MainClass>games.SVGGame</MainClass> 
<roles> 
   <role> 
        <roleName> black </roleName> 
        <capabilities> player-first </capabilities> 
        <roleName> white </roleName> 
        <capabilities> player-second </capabilities> 
        <roleName> observer </roleName> 
        <capabilities> non-player </capabilities> 
   </role> 
</roles> 
….  
</ApplicationRegistry>  

 
4. Audiovisual Collaboration in Global-MMCS 

In this section, we discuss the experience of building an audiovisual collaboration system using XGSP 
framework and NaradaBrokering messaging system. This system can connect numerous audiovisual 
endpoints including H.323, SIP, Access Grid and cellular phones. 

Although different AV endpoints have quite different implementation and capabilities, they share a 
common AV collaboration pattern. Assume in an AV session, there are video streams (VS) and audio 
streams (AS):     VS {v1, v2, … vm } , AS  { a1, a2, … an }.  And we also have AV endpoints: E1, E2, … En. 
Each endpoint may send a single or multiple video streams, but only send an audio stream. In this AV 
collaboration session, each endpoint adds new AV streams into VS and AS by sending audio and video 
RTP packets, or removes streams by sending RTCP “BYE” packets to leave the session. At the same time, 
each endpoint gets a subset from VS and AS by receiving RTP streams and rendering them.  
     Different types of AV endpoints have different collaboration capabilities. Multicast endpoints are able to 
receive multiple video and audio streams, display all the video streams in their screens, and mix all the 
audio streams by themselves. For example, Access Grid endpoints receive all the streams in VS and AS to 
create the duplications of VS and AS, and allow users to make selection of rending video and mixing audio. 
On the other hand, unicast endpoints like Polycom ViaVideo can only receive and play a single video and 
audio stream. So they can’t attend the collaboration with Access Grid endpoints. This issue may be 
addressed by introducing some middleware, which offers the description data of the streams to the users of 
these endpoints, allows them to switch among the video streams, and mix audio streams for them.  

NaradaBrokering publish/subscribe messaging middleware is a perfect candidate for this purpose. An 
AV RTP stream is regarded as a “topic” and each RTP packet from this stream as an “event” for this topic. 
Only the sender of this stream can “publish” AV events to this topic. Other endpoints need to subscribe to 



this topic in order to receive the stream data.  In this way, the Publish/subscribe middleware provides a 
group communication service for those unicast endpoints. Besides of the RTP events for the stream topic, 
some major events for each stream topic have to be defined to describe the change in this stream. They 
include five major events: NewStreamEvent, ByeEvent, TimeOutEvent, Active-to-Passive, Passive-to-Active.  

Event Name The change in the status of the 
stream 

NewStreamEvent This stream has been created 

ByeEvent 
The stream gives a BYE RTCP 
packet, indicating it has left the 
session 

TimeOutEvent 

This stream has not send any 
RTCP packet for a long time, 
indicating it may have left the 
session 

Active-to-Passive The stream has stopped sending 
RTP packet 

Passive-to-Active The stream resumed sending 
RTP packet 

Table 2 major events of an AV stream  
 

Based on these events, Unicast endpoints can maintain the duplications of VS and AS list just like 
multicast endpoints. Furthermore Active-to-Passive and Passive-to-Active events notify the endpoints 
whether the streams have new data at that moment, which sometimes are very important to AV 
collaboration. For example, since the endpoints only get a mixed audio for all the audio streams, it is very 
useful for the endpoints to know who is speaking in this mixed audio. These events help the users to get the 
“focus” of the AV collaboration.  

Figure 6 shows the architecture of implementing audiovisual collaboration mentioned above. The 
following sections give the detailed description of the components in the figure. Section 4.1 discusses the 
media delivery of NaradaBrokering. Section 4.2 and 4.3 describe media processing.  Section 4.4 illustrates 
the audiovisual session management in XGSP. The topic on how to adapt other multimedia clients to 
Global-MMCS is covered from Section 4.5 to Section 4.7. 

 

SIP
Gateway

H.323
Gateway

H.323
Client

SIP
Client

Access Grid
Multicast

XGSP Web Portal
Conference Server

RLM Broker BRLM Broker A

RLM Broker C

RTP Link Manager
NaradaBrokering Network

Media Processing Unit

Video Mixer
Servers

Image Grabber
Servers

Audio Mixer
Servers

MediaServers

XGSP
AV Session

ServerSession
Managers

Video Session

Audio Session

MediaServer
Manager

Real
Streaming
Gateway

XGSP AV Portlet

Helix
Streaming

Server

Mobile
Gateway

Figure 6. Audiovisual Collaboration in Global-MMCS 



4.1 Media Delivery 
An efficient audio/video distribution system should have a number of characteristics. First of all, the 

best possible routes must be chosen from sources to destinations when delivering the content. This is 
important both not to load extra traffic on the network and not to add extra transit delays to packages. 
Secondly, audio and video streams need to be replicated only when it is needed along the path from sources 
to destinations. This saves significant bandwidth. Usually there are multiple participants in a 
videoconferencing session, when the sender of a stream sends one copy and distribution network replicates 
it when necessary, that user is removed from the burden of sending many copies. Thirdly, since audio and 
video streams are composed of many small sized packages, it is important to add minimum headers to each 
of these packages. Otherwise, there can be substantial increase in the amount of data transferred. Lastly, 
unreliable transport means should be used whenever possible. Contrary to many data applications, audio 
and video transfer can tolerate some package loss to some extend. These protocols usually provide lower 
transit delays, since they do not have the extra cost associated with error correction and package 
retransmission. 

Traditionally, multicast is used to deliver audio and video streams for videoconferencing sessions. But 
the lack of widespread use and the problems with firewalls/NATs discouraged many people from using it.  
Publish/subscribe systems provide a messaging middleware that decouples producers and consumers on 
time, space and synchronization. Since publish/subscribe messaging systems provide reliable group 
communication services, in addition to audio and video delivery, they can also be used to deliver the 
control messages exchanged among the distributed components in the system. On the other hand, since 
publish-subscribe systems are not designed to serve real-time multimedia traffic. They are usually used to 
deliver guaranteed messages by employing reliable transport protocols. In addition, they do not focus on 
delivering high bandwidth traffic or reducing the sizes of the messages they transfer. It is more important 
for them to provide more services than saving bandwidth. Each message tends to have many headers 
related to the content description, reliable delivery, priority, ordering, distribution traces, etc. Many of these 
services are not important for audio and video delivery. Therefore some additions need to be made to 
deliver multimedia traffic. 

 
4.1.1 Implementing a distributed topic number generation mechanism 

NaradaBrokering implemented a string based topic mechanism. Although this was very useful for other 
applications, it was not adequate for media delivery. Since media streams are composed of many small 
sized packages and they are bandwidth intensive, it is very important to add minimum headers to each 
message. When strings are used as topic names and a topic name is added to each media package, this may 
result in significant increase in the required bandwidth and it adds more load on the brokers and links. 
When strings are serialized, each character takes at least one byte, depending on the size of the string topic 
name; tens of bytes can be added to each message. Since media packages can be as low as 20 bytes, it 
would not be efficient to add tens of bytes to each message as the topic name.  

One way of solving this problem is to impose a limit on the size of the topic string. We can require each 
topic to have at most 8 characters, but this would limit the number of possible topic names significantly. In 
addition, the collision of topic names would increase. On the other hand, increasing the maximum size of 
the topics would result in more bandwidth and load, though it would provide more options. Therefore, we 
have decided to implement a topic mechanism which can provide more options and take less space. 

Although one aspect of the topics is their size, another aspect is the way they are created and their 
uniqueness is insured in a distributed setting. Here we outline three conditions to meet for a distributed 
topic management system: 

1. A topic generator must be able to create topics without interacting with other topic generators in 
the system. We avoid centralized solutions for fault tolerance and speedy execution. 

2. A topic generator should be able to fail and start over without requiring saving its state to a stable 
storage. Namely, topic generators must be stateless. 

3. Each topic should have a predetermined size and their size should be as small as possible. 
 

The first condition requires the spatial independence of a topic generator. This can be achieved by 
assigning a unique topic generator id to each topic generator in the system. Then this unique id can be 
added to every topic constructed by that generator to provide system wide uniqueness. In NaradaBrokering 
network, each broker is assigned a unique id. We can utilize this mechanism to provide unique ids for each 



topic generator. We require that a topic generator runs in each broker. Clients ask this topic generator to 
construct a new topic for them. The broker id in NaradaBrokering system is 16 bytes. This is obviously too 
long to add to each topic. On the other hand, this broker id is not designed to use the minimum space, it is 
designed to provide the best performance. Therefore, it does not utilize the 16 bytes range efficiently. 
Instead, it is possible to generate a 20 bit id from this 16 bytes broker id with a simple conversion. This 20 
bit is small enough to add to each topic. In this way each topic generator in brokers will be able to generate 
topics independent of other brokers in the system. 

The second condition requires the temporal independence of a topic generator. This can be achieved by 
adding a timestamp value to each topic. Since NaradaBrokering brokers are synchronized [15] with high 
accuracy clocks using Network Time Protocol, it simplifies the problem considerably. This eliminates the 
conditions where the clock of a computer can be changed backward. With this synchronization mechanism 
in use, we can assume that the time always flows forward, though it may stall for short periods of time 
when synchronizing. Therefore, we can add a timestamp to each topic to provide temporal independence of 
topics without requiring state savings to file system when restarting a broker. 

The third condition requires that topics should have minimum size. We can construct a topic number by 
combining the topic generator id with a timestamp. Since topic generator id is 20 bits, we need to determine 
the size of the timestamp. If we set the total topic number size as 32 bits (4 bytes), remaining 12 bits would 
provide 212=4096 different options for the timestamp. Therefore, it is too small. When we set the total topic 
number size as 64 bits (8 bytes), 44 bits are left for the timestamp. This would provide 
244=17592186044416 distinct timestamp values. If we increment timestamp value by one in every 
millisecond, this would be enough for 557 years. Therefore 64 bits topic number (Figure) is a good choice. 
It is small enough to add to each audio and video package.  
 

20 bits 44 bits

Topic Number
Generator ID Timestamp

 
 

Figure 7: 8 bytes topic number for RTPEvent 
 

In conclusion, this mechanism provides a fast and scalable solution to generate unique topic numbers 
with 8 bytes. Since a broker does not interact with other brokers, or keeps track of the unused topic 
numbers, it can generate topic numbers very quickly. In addition, this mechanism lets brokers fail and start 
over without interacting with other brokers or using a stable storage device. Moreover, it guarantees to 
generate unique topic numbers.  
 
4.1.2 Designing a New Event 

In publish/subscribe messaging systems, messages tend to have many headers, most of which are 
related to the quality of services provided. Since audio and video streams do not require quality of services 
such as persistence and reliability, many of these headers are unnecessary. For example, a message in JMS 
API has at least 10 headers. Many of them are redundant in the context of audio and video delivery. These 
headers take around 200 bytes when they are serialized to transfer over the network. If these 200 bytes are 
added to each audio and video package, it results in substantial increase in the bandwidth of the audio or 
video streams. For example, a ULAW audio package for 20 ms has a size of 172 bytes including the RTP 
header and entails 64 kbps network bandwidth. Padding an extra 200 bytes of header to each audio package 
results in the bandwidth requirement of up to 148 kbps. Then, there is the cost associated with serializing 
and de-serializing the multimedia content. Therefore, we need to design a new event type with minimum 
headers and minimum computational overhead. 



Used to route messages
intelligenty in system Eliminates echo problem

Identifies the media
type of the Event

Event
Header

Media
Header Topic Name Source Info RTP Payload

Identifies
Event as

RTPEvent RTP Payload

RTP Header
(12 bytes) Audio or Video Data

 
Figure 8.  Serialized RTPEvent 

RTPEvent encapsulates media content that comprises of 4 elements. There are two headers identifying 
the event type. Both headers are 1 byte. Event header identifies the event as RTPEvent among other event 
types in NaradaBrokering system. Media header identifies the type of the RTPEvent such as audio, video, 
RTCP, etc. To eliminate echo problems arising from the system routing content back to the originator of 
the content, information pertaining to the source is also included. This information can be represented in an 
integer, which amounts to 4 bytes. Finally, there is the media content itself as the payload in the event. 
Although, in Error! Reference source not found.8 an RTP package is seen as the payload, it can be any 
data type. Therefore, the total length of the headers in an RTPEvent is 14 bytes. 14 bytes is small enough to 
add to each audio and video package transferred in the system. 

We should also note the fact that when an RTPEvent package is traveling through multiple brokers, a 
16 bytes dissemination trace value is added in the first broker and it is removed again in the last broker 
before sending it out to the destination client. Although, this adds extra load on the links among brokers, it 
should not affect the quality of the communications seriously, since these links are supposed to be high 
bandwidth. On the other hand, the links between clients and brokers will not have this extra load. These 
links are usually the most vulnerable links in the communication path from sources to destinations. 
Therefore, the addition of the dissemination trace value should be tolerable.  
 
4.1.3 Adding support for legacy RTP clients 

Although, we have developed a XGSP AV native client which can join a videoconferencing session and 
send/receive audio/video streams using RTPEvent messages, a lot of other RTP based clients from H.323, 
SIP and Access Grid, also need to be supported. These clients exchange RTP packages and use UDP or 
multicast as the transport mechanism. Therefore, we have developed a specialized implementation of the 
NaradaBrokering transport framework called RTPLink for both UDP and Multicast. This process entailed 
an implementation of the Link interface which abstracts the communication link between two entities. The 
RTPLink can receive raw RTP packages over UDP or multicast from legacy systems, wrap them in 
RTPEvents and propagate through the protocol layer in the broker node. Once it reaches the protocol layer, 
the event is routed within the distributed broker network. 

An RTP media stream is composed of two different kinds of packages: RTP and RTCP packages. RTP 
packages carry the audio or video data along with the RTP headers which are used to provide a host of 
services such as payload type identification, sequence numbering, timestamp, source identification, etc. 
RTCP packages carry the control messages to monitor the timely delivery of real-time data. RTP and RTCP 
packages are exchanged on different ports. RTCP packages are exchanged on the port number following 
the RTP port number. Therefore, the RTPLink implementation starts two sockets on these two ports. In 
addition, it publishes the RTP and RTCP messages on different topic numbers. Similar to RTP protocol, 
RTCP packages are published on the topic number following the RTP topic number. Therefore, a pair of 
topic numbers is used to publish an RTP stream. 

The RTPLink deals with the initialization, registration and data processing on the communication link. 
During the initialization process, the RTPLink is provided a port number to listen for packages from the 
legacy client at the other end, and also the IP address and the port number of the legacy client to be able to 
send packages. For registration purposes, the RTPLink is assigned a NaradaBrokering-ID and the RTPLink 
subscribes to the topic corresponding to its meeting. In the data processing part, the RTPLink constructs the 
RTPEvents for processing within the broker network when it receives media packages. On the other hand, 
when an RTPEvent is ready to be sent to the legacy application, the RTPLink retrieves the RTP payload 



from the RTPEvent and sends it to the legacy application based on the parameters specified during 
initializations. 

Different RTP sessions lead to different implementation of the RTPLinks. On unicast sessions, usually 
a user is in direct communication with another user and only one audio/video stream is exchanged through 
one unicast RTPLink. On the other hand, in multicast sessions which have many audio or video streams 
from many participants, the Multicast RTPLinks should handle the communication with a group of users.  

A multicast RTPLink has two options: either it can publish all these streams to the same topic pair or it 
can publish each RTP stream on a different topic pair. When all streams are published on the same topic 
pair, all participants who subscribe to this topic receive all the streams. Namely, they do not have any 
choice to select any specific stream in the group. On the other hand, if every stream is published on a 
different topic, then each user can select any stream of its choice. In practice, usually it makes sense to 
publish all audio streams on the same topic, since a user usually wants to hear all speakers in a session. 
However, it might be better for video streams to be published on different topics, since some users might 
only want to receive some video streams in a session. A multicast RTPLink can examine the headers of the 
received RTP and RTCP packages and determine the packages that belong to the same RTP stream. Each 
RTP stream in a real-time session has a unique SSRC number. Then, it can publish all packages belonging 
to the same stream to the same topic number. Since many streams require many topics, the multicast 
RTPLink should either be given a list of topic numbers to use when it is started, or it should ask for a new 
pair of topics whenever it receives a new RTP stream. It can also examine the content of RTCP packages to 
garbage collect the RTP streams when the session is ended by sending a bye message. In addition, it can 
generate events to mark the arrival and departure of RTP streams. 
 
4.2 Media Processing Service 

Global-MMCS supports multiple copies of the same service providers in a distributed fashion. Since 
there are a number of different service providers in our system, it would be better to have a unified 
framework for distributing the service providers. We assume that distributed copies should be able to run 
both in a local network and in geographically distant locations with different network connections. Each 
media service provider and the consumer is assigned a unique id. This id is used both to identify an 
instance of this component from others and to generate its unique topic name to communicate with others 
in the system. A service provider listens on two topics: a public topic for all the service providers and a 
private topic for itself.  

4.2.1. Service Discovery 
Instead of using a centralized service registry for announcing and discovering services, we use a 

distributed dynamic mechanism. One problem with centralized registry is the failure susceptibility of this 
approach. Another difficulty is that since in our system the status of the service providers changes 
dynamically, it is not reasonable to update a centralized registry frequently.  

In our approach, a consumer sends an Inquiry message to the service provider group address. In this 
message, it includes its own topic name, so that service providers can send the response message back to it 
only. When service providers receive this message, they respond by sending a ServiceDescription message, 
in which they include the current status of that service provider. The information provided in this 
ServiceDescription message depends on the nature of the service being provided. But it must be helpful for 
the consumer to decide from which service provider to ask for the service. The consumer waits for a period 
of time for responses to arrive, and evaluates the received messages. Since a consumer does not know the 
current number of the service providers in the system, after waiting for a while it assumes that it received 
responses from all the service providers. 

4.2.2 Service Selection 
When a consumer receives the ServiceDescription messages from service providers, it compares the 

service providers according to the service selection criteria set by users. This criteria can be as simple as 
checking the CPU loads on host machines and choosing the least loaded one or it can take into account 
more information and complicated logic. For example, users can be given an option to set the preferences 
over the geographical location of the service providers. This can be particularly useful for systems that are 
deployed worldwide. This policy can be set by a configuration file to provide more flexibility. 



4.2.3. Service Execution 
When the consumer selects the service provider on which it intends to run its service, it sends a request 

message to the service provider for the execution of the service. If the service provider can handle this 
request, it sends an Ok message. Otherwise, it sends a Fail message. In the case of failure, the consumer 
either starts this process from the beginning or tries the second best option. A service can be terminated by 
the consumer by sending a Stop message. 

A service is usually provided for a period of time, such as during a meeting. Therefore, the consumer 
and the service provider should be aware of each others continues existence during this time. Each of them 
sends periodic KeepAlive messages to the other. If either of them fails to receive a number of KeepAlive 
messages from the other, it assumes that the other party is dead. If the consumer is assumed dead, then the 
service provider deletes that service. If the service provider is assumed dead, then consumer looks for 
another alternative. 

Each service provider is totally independent of other service providers. Namely, service providers do 
not share any resources. Therefore, there is no need to coordinate the service providers among themselves. 
This simplifies the distribution and management of service providers significantly.  

4.2.4. Advantages of this service distribution model: 
• Fault tolerance: There is no single point of failure in the system. Even though some components may 

fail, others continue to provide services. 
• Scalability: This model provides a scalable solution. There is no limit on the number of consumers to 

support as long as we have services to provide them. The fact that initially a consumer sends a message 
to all service providers, and they all respond back to the consumer, limits the number of the supported 
service providers. However, this can be eliminated by limiting the number of service providers who 
respond to specific inquiry messages. This selection can be based on the location of the service 
providers or some other criteria depending on the nature of the services provided. For example, already 
fully loaded service providers might ignore these inquiry messages. 

• Location independence: All service providers are totally independent of other service providers and 
all consumers are also independent of other consumers. Therefore, a service provider or a consumer 
can run anywhere as long as they are connected to a broker. 

4.3. Media Processing Units 
We provide media processing services at server side to support a diverse set of clients. Some clients 

have high network bandwidth and advanced processing and display capacity. They can receive process and 
display multiple concurrent audio and video streams. Therefore, they can receive all audio and video 
streams in a meeting. Some other clients have limited network bandwidth, processing and display capacity. 
Either they can not receive multiple audio and video streams or they can not process and display them. 
Therefore, server side components should generate combined streams for them. The services which we 
have implemented include audio mixing, video mixing and image grabbing. We also have a RTP stream 
monitoring service. All these services require real-time processing and usually high computing resources.  
 



NaradaBrokering
Broker Network

MediaServer
Manager N

JMS Messages

SP: ServiceProvider

MediaServer
Manager 2

MediaServer
Manager 1 JMS Messages

SP 1 SP 2

SP N

MediaServer 2

SP 1 SP 2

SP N

MediaServer 1

SP 1 SP 2

SP N

MediaServer N

 
 Figure 9 Media Processing Framework

 
Media processing framework (Figure 9) is designed to support addition and removal of new computing 

resources dynamically. A server container, MediaServer, runs in every machine that is dedicated for media 
processing. It acts as a factory for the service providers. It starts and stops them. In addition, it advertises 
these service providers and reports the status information regarding the load on that machine. All service 
providers implement the interface required by the server container to be able to run inside. Each 
MediaServer is independent of other MediaServers and new ones can be added dynamically.  

Currently, there are three types of media processing service providers: AudioMixerServer, 
VideoMixerServer, and ImageGrabberServer. More service providers can be added by following the 
guidelines and implementing the relevant interfaces. These service providers can either be started from 
command line when starting the service container, or they can be started by using the 
MediaServerManagers. MediaServerManagers implement the semantics to talk to MediaServers.  
4.3.1 Audio Mixing 

Audio mixing is very important to those clients which can’t receive multiple RTP audio streams and 
mix them. An AudioMixerServer creates an audio mixer for the clients in a XGSP audio session. Any 
number of audio mixers can be created in the AudioMixerServer as long as the host machine can handle. 
Each speaker is added to the mixer as they join the session, and special mixed streams are constructed for 
them. Audio mixer receives the streams from the broker network and publishes back the mixed streams on 
the broker network. Clients receive the mixed streams by subscribing to the mixed stream topics.  

While some audio codecs are computing intensive, some others are not. Therefore the computing 
resources needed for audio mixing change accordingly. Audio mixing units need to have prompt access to 
CPU when they need to process received packages. Otherwise, some audio packages will be dropped and 
result in the breaks in audio communications. Therefore, the load on audio mixing machines should be kept 
as low as possible.  

4.3.2 Video Mixing 
Video mixing service improves the visual collaboration especially for those limited clients which can 

only handle a single video stream. There are a number of ways to mix multiple video streams into one 
video stream. One option is to implement a picture-in-picture mechanism. One stream is dedicated as the 
main stream and it is placed in the background of the full picture. Other streams are imposed over this 
stream in relatively small sizes. Another option is to place the main stream in a relatively larger area than 
other streams. For example, if the picture area is divided into 9 equal regions, main one can take 4 
consecutive regions and remaining regions can be filled with other streams. In our case, we choose a 
simpler way of video mixing. We divide the picture area into four equal regions and place a video stream 
into each region. This lets a low end client to display four different video streams by receiving only one 
stream. VideoMixerServer can start any number of VideoMixers. Each video mixer can mix up to 4 video 
streams. Therefore, in large meetings more than one video mixing can be performed.  



4.3.3 Image Grabbing 
The purpose of image grabbing is to provide users with a meaningful video stream list in a session. 

Without the snapshots of the video streams, users are often confused to choose the right video stream for 
them. Snapshots provide a user friendly environment by helping them to make informed decisions about 
the video streams they want to receive. Therefore, it saves a lot of frustration and time by eliminating the 
need for trying multiple video streams before finding the right one.  

An image grabber is started for each video stream in a meeting. This image grabber subscribes to a 
video stream and gets the snapshots of this stream regularly. It first decodes the stream, and then reduces its 
size to save CPU time when encoding and transferring the image. Then it encodes the picture in JPEG 
format. Either the newly constructed image can be saved in a file and served by a web server, or published 
on the broker network and accessed by subscribing to relevant topics. 

4.3.4 RTP Stream Monitoring 
Stream monitoring service monitors the status of audio and video streams in a meeting, and publishes 

the events happening on dedicated topics. The entities interested in these events subscribe to these topics 
and receive them as the monitoring service publishes them. For example, all participants in a meeting 
subscribe to audio and video stream events to receive them. As mentioned above, there are five types of 
events in the status of a stream: NewStreamEvent, ByeEvent, TimeOutEvent, ActiveToPassiveEvent and 
PassiveToActiveEvent. Each of these events gives information regarding a particular steam. These events 
also provide information about the identity of senders of these streams. 

Contrary to other media processing services, stream monitoring is not implemented as a stand alone 
application. Instead, audio stream monitoring is implemented along with audio mixing service and video 
stream monitoring is implemented along with image grabbing service. Since all audio streams in a meeting 
are received by the audio mixer, and all video streams are received by image grabbers, we embedded the 
stream monitoring services into them to avoid extra audio and video stream delivery.  

4.3.5 Media Processing Service Distribution 
We use the previously explained service distribution model to distribute the media processing tasks. A 

Media Server Manager usually running inside the XGSP AV session server implements the logic to talk to 
server containers and also for selecting the best available service providers. Currently, we use simple 
distribution logic for small settings. But we are working on more complete scalable algorithms. We plan to 
include prediction of necessary resources for a meeting and schedule accordingly. Users can be asked to 
provide more information about the meeting when they are scheduling. For example, they can provide the 
expected number of participants. This can be very helpful when scheduling audio mixers and image 
grabbers.  
 
4.4. Session Management 

XGSP framework divides the session advertisement information actually into two levels: one is the 
collaborative conference calendar, the other is the detailed information for audiovisual clients to join the 
conference, for example the session identification in the system and transport addresses associated with the 
session.  

XGSP audiovisual sessions have five states: created, canceled, activated, deactivated and finished. The 
states are managed by the XGSP conference server and the XGSP AV session server. Public XGSP 
audiovisual sessions are initially created when a XGSP meeting is created.  Based on the meeting schedules 
specified by users, the XGSP conference manager will activate/deactivate XGSP meetings and ask the AV 
session server to activate/deactivate the associated audiovisual sessions. Users are only allowed to 
join/leave an activated XGSP AV session. The XGSP conference manager also provides administration 
web pages through which an administrator or conference chairs could ask the AV session server to manage 
the media processing services like adding some new streams into video mixers.  

 



 
Figure 10 the state transition of XGSP audiovisual sessions 

The XGSP AV session server implements the session management logics specified by the XGSP 
framework including: how to activate/deactivate XGSP audiovisual sessions, how to join/leave sessions, 
how to subscribe/unsubscribe AV streams and how to control multimedia service elements.  

The AV Session Server has two important components: Session Manager and Media Server Manager. 
Session Manager handles starting/stopping/modifying XGSP AV sessions, and Media Server Manager can 
locate and start/stop media processing servers. Session Manager has AudioSession and VideoSession 
objects respectively for audio and video sessions. The objects keep the membership list of AV participants, 
the NaradaBrokering AV topic sets for publishing and the list of AV streams generated by these endpoints. 
They also handle the XGSP Join/Leave-AV-Session requests from the endpoints. To handling these 
requests, they usually talk to other system components to create the associated resources in media 
processing units and RTPLinks.  

 
4.4.1 Activate and deactivate XGSP AV sessions 

The Conference Scheduler in the XGSP Web Server sends an activation command to the AV Session 
Server to activate an AV session. The Session Manager in the Session Server creates the associated audio 
and video session objects. Then it uses a Media Server Manager to locate an AudioMixerServer and an 
ImageGrabberServer to start the AudioMixerSession and the ImageGrabberSession, respectively. Then, it 
starts an AudioSession instance while providing the selected AudioMixerServer. This AudioSession object 
asks the given AudioMixerServer to start an AudioMixerSession to be used during this meeting. The 
Session Manager also initiate a VideoSession instance while providing the identified ImageGrabberServer. 
This VideoSession also asks the given ImageGrabberServer to start an ImageGrabberSession to be used 
during this meeting. This completes the initialization of the session and pushes the state of the session from 
“Created” into “Activated”. If the administrator makes a request for creating a video mixing stream, a video 
mixer can also be added by exchanging messages with the VideoSession object. 
4.4.2 Allow users to join and leave XGSP AV Sessions 

After the session becomes activated, users can join the session by sending Join messages to the Session 
Manager. The manager handles join request by calling services in the audio and video objects separately.  

When a speaker joins an audio session, a topic number is assigned for this user to publish its audio 
stream. Another topic number is also assigned to publish the mixed audio stream for this user by the audio 
mixer component. This user is also added to the AudioMixerSession. The mixer constructs a new stream 
for this user and publishes it in the given topic number. The interaction between the AudioSession and 
AudioMixerSession components are transparent to the user. If the joining user is a listener, in that case it is 
only given the mixed stream topic number to receive the audio of all speakers in the session. Since it will 
not publish any audio, it is neither assigned a topic number, nor added to the mixer. 

When a speaker joins a video session, it is assigned a topic number to publish its video stream. At the 
same time an image grabber is started to construct the snapshots of its video stream. This user is given the 
list of available video streams in the meeting. He/she can subscribe to these streams by sending 
subscribe/unsubscribe messages to the VideoSession object.  
4.4.3 Provide XGSP AV sessions to different gateway servers 



The AV Session Server also involves the management of XGSP sessions for other legacy clients like 
H.323, SIP and RealPlayer. Global-MMCS has H.323, SIP, RealStreaming Gateways for adapting H.323, 
SIP terminals and RealPlayers.  The XGSP AV Session Server needs to collaborate with these Gateway 
Servers to deal with the session control layer problems in this heterogeneous collaboration system. The 
H.323 and SIP gateway transform H323 and SIP messages into XGSP signaling messages. The 
RealStreaming Gateway gets the encoding jobs from the Session Server and generates the RealMedia 
streams from the selected conferencing AV streams. The Section 4.5 and 4.6 give the description of these 
Gateway Servers.  
 
4.5 Adapting H.323, SIP Endpoints: H.323 and SIP Gateway 

To support H.323 and SIP audiovisual endpoints in XGSP AV sessions, bridging mechanism is 
necessary in both control layer and data transport layer. As discussed in Section 4.1.3, unicast RTPLinks 
are created for media transport of H.323 and SIP terminals. Some H.323 and SIP terminals like video 
phones which can only handle a single video/audio stream, need mixing services provided by MediaServers 
(Section 4.3).  In the control layer, the H.323 and SIP gateway enable H.323 and SIP terminals to interact 
with other clients, and provides them the complete H.323 / SIP conference control services. Working with 
the XGSP AV session server, two functional components in the H.323 Gateway: H.323 Gatekeeper and 
H.323 MC provide the services including session call service, session registration service, and session 
control service to bridge H.323 terminals into XGSP audiovisual sessions. SIP Gateway also has the similar 
function components. 

 
4.5.1 Session Registration Service  

The H.323 Gatekeeper keeps the registration of H.323 terminals and the alias name of active sessions.  
This session alias list keeps the calling transport address of the H.323 MC for H.323 terminals. When a new 
AV session is created and activated at any time by the conference participants using the XGSP protocol, the 
H.323 MC registers the Session ID of this activated session as the session alias in the H.323 Gatekeeper. 
Any H.323 terminal joining this XGSP AV session must call the H.323 MC with the session alias. The 
H.323 Gatekeeper translates this session alias into the calling address and route the conference call to the 
H.323 MC. 
 
4.5.2 Session Call Service 

The session connection service enables H.323 terminals to join or leave XGSP audiovisual sessions. A 
H.323 terminal first make a H.225 call to the H.323 gateway with the session ID, which is routed to the 
registered H.323 MC. Three pieces of information are needed for establishing a call between two endpoints, 
namely the signaling destination address, media capabilities and media transport addresses at which the 
endpoints of both side can receive the media packets. H.323 MC processes the call, parses the information 
and exchanges XGSP XML messages with the AV Session Server when necessary. Figure 11 illustrates the 
translation between the H.323 call and the XGSP join-session procedure, which actually has three 
important steps: H.225 call setup, H.245 capability exchange and audiovisual logical channel creation.  

 



 
Figure 11. The translation of H.323 call into XGSP procedure 

 
A H.323 call starts with a H.225.Setup message with the signaling destination address which actually is 

the SESSION ID. H.323 MC parses this message, and sends XGSP.JoinAVSession message with the 
SESSION ID to tell the XGSP AV Session Server that a H.323 terminal is connecting.  If the Session 
Server decides to permit the joining request, it fills the information of audiovisual RTPLinks of the broker 
in the XGSP.JoinAVSession-OK message. As long as the H.323 gateway gets the “OK” response, it sends 
H.225.Connect back to the terminal to complete the H.225 procedure and keeps the RTP channel 
information for the phase of audiovisual logical channel creation.  

The establishment of a H.323 conference involves the procedure of common media capability 
negotiation based on the H.245 media capability description of every connected terminal. XML is used for 
the capability description of Global-MMCS media services, which can easily be mapped into H.245 media 
capability description. The H.323 MC can keep two types of capability descriptor: a global capability 
descriptor for the whole system and specific descriptors for XGSP audiovisual sessions. In H.245 capability 
exchange procedure, H.323 MC set this common capability information in the connected terminal to force 
it uses the right media codec. 

Creating logical channels for the AV streams just follows the exchange of capabilities and master-slave 
determination. The H.323 MC retrieves the terminal’s transport address from the 
H.245.OpenLogicChannelACK, and sends XGSP.JoinAVSession (video and audio) with the address 
information to the Session Server. Since the H.323 Gateway has obtained the transport address of the 
receiving RTPLinks from XGSP.JoinSession-OK in the first phase, it can include the information into 
H.245.OpenLogicalChannelACK to notify the requesting H.323 terminal.  
4.5.3 Session Collaboration Control 



After the session call is over, a point-to-point H.245 control channel exists between this H.323 terminal 
and the H.323 Gateway. On the top of this H.245 control channel, our XGSP service allows H.323 users to 
vote for meeting chair, request floors, and make audio/video mixing and switching. The XGSP Node 
Manager can launch a H.323 Console, a basic XGSP AV control client for H.323 terminals.  The XGSP 
session control services are achieved by interaction among the node managers, the H.323 consoles and the 
XGSP AV session server. The H.323 Gateway intercepts the XGSP messages and translates the procedure 
into H.245 control procedures. 

Video switching enables a H.323 terminal with the limited render capability to display any number 
streams from the XGSP session. The H.323 console can copy a video stream list of the activated session 
from the XGSP AV session server and allows the user to make the video selection. Upon the selection, the 
H.323 console sends a XGSP.VideoSelection command to the session server to subscribe a video stream. 
The H.323 Gateway also receives the command and follows the procedure of H.243 to start video 
switching for the connected terminal.  

Each user in a XGSP AV session may have different roles for floor control, like speaker and listener in 
an audio sessions, sender and viewer in a video session. The XGSP conference chair is allowed to assign 
roles dynamically in a public AV session by sending XGSP.SetRole messages to regular users through its 
XGSP Node Manager. Whoever gets this message must check the identity and notifies the local H.323 
console of the action of role setting. At the same time, the H.323 Gateway also understands the message 
and starts a H.245 “Request Open/Close Logical Channel” procedure to open or close the AV logical 
channels of the associated H.323 terminals.  
 
4.5.4. SIP Gateway 

The services provided by the SIP Gateway are similar to the services of the H.323 Gateway. SIP 
Gateway can translate the SIP Messages including INVITE and BYE into XGSP messages in a more 
straightforward way because of the simplicity of SIP protocol. The procedure is: when the SIP gateway 
receives an INVITE request from a SIP client, it will send a Join Session message to the XGSP AV Session 
Server, and get the media description by parsing the SDP body in the INVITE message. After getting an 
admission response from the XGSP AV Session Server, the SIP gateway will reply to the SIP client with an 
OK message holding the media description of RTPLinks. And when the SIP gateway receives a BYE 
message, it will send a XGSP.Leave-AV-Session message to the AV Session Server and reply to the SIP 
client. 

 
4.6 Adapting RealPlayer: RealStreaming Gateway 

Streaming provides a framework to deliver media stream across Internet. A streaming client connects to 
a streaming server, primarily using Real Time Streaming Protocol [22] (RTSP), to establish a session and 
receive the stream. Streaming is primarily used for Media-On-Demand, receiving media that resides on a 
streaming server whenever a client wants to play. It is also possible to make a live streaming broadcast. The 
connection between the client and the server is stateful. RTSP is a client-server multimedia presentation 
control protocol. It provides VCR-like control, so that clients can pause, fast forward, reverse, and absolute 
positioning etc. Streaming media aims to improve the quality of service of the stream, by using various 
streaming codec to improve stream quality and a buffering mechanism to reduce the jitter.  

The implementation of XGSP RealStreaming Gateway is different from other gateways, i.e. H.323 and 
SIP, H.323 and SIP gateways transform H.323 or SIP communication signals into XGSP control messages 
or vice versa so that H.323 and SIP endpoints can join XGSP AV sessions. After joining the sessions, they 
can use common conferencing codecs to interact with Access Grid nodes and XGSP AV portlets through 
RTPLinks. But a RealPlayer doesn’t need to communicate with those conferencing clients directly. It 
communicates with the Real Streaming server by using RTSP control channels and establishing a RTP data 
channels to receive stream in Real native AV format. Therefore, the essential job of the Streaming Gateway 
is to work as a customized RealStreaming Producer, converting H.261 video streams and Ulaw audio 
streams from XGSP AV sessions into RealMedia streams and uploading them as live streams onto the 
Streaming Server.  

We used Helix Streaming Server, which is an open source version of the RealStreaming Server. 
Commercial and open source versions can be used interchangeably. The XGSP Streaming Gateway uses 
Helix Producer API to produce the RealMedia Stream for Helix Streaming Server. Components of XGSP 



Streaming Gateway are composed of the following logical components: stream conversion handler, stream 
engine and SMIL file generator. 

 

Stream
Engine

Stream
Conversion

Handler

SMIL File
Generator

Helix
Streaming
Server

Stream
Engine

Real Streaming Gateway

....

AV
Session
Server

 
Figure 12 RealStreaming Gateway 

 
4.6.1. Stream Conversion Handler 

Stream Conversion Handler handles the communication between the XGSP AV Session Server and the 
Streaming Gateway. It keeps an internal database for the streams being converted. This database is updated 
when the streaming jobs are started or deleted. In order to start a streaming job, it initiates a Stream Engine 
for the requested stream and passes required parameters such as conversion format, helix server address, 
stream name, etc to the Stream Engine.  
4.6.2. Stream Engine 

This component can be considered as the most fundamental component of the Streaming Gateway. 
Stream Engine is responsible for converting the received audio or video streams into a specified 
RealStreaming format and pushing the converted stream to Helix Streaming Server. Streaming Engine is 
composed of two parts, RTP Handler and HXTA Wrapper. HXTA is a conversion engine provided by 
Helix Community [23] and converts raw audio and video data into RealStreaming formats. 

RTP Handler receives audio and video packets from a local port provided by Stream Conversion 
Handler. The purpose of this unit is to transform the received packets into a format that HXTA can 
understand and be able to make the conversion to RealStreaming format. Raw audio and video data can be 
passed to HXTA Wrapper. There are several color spaces to video representation. But two of the most 
common are RGB (red/green/blue) and YCrCb (luminance/red chrominance/blue chrominance). HXTA 
accepts different formats of RGB and YCrCb. As the first conversion step, RTP Handler decodes the 
received video H.261 frames into YCrCb frames. We prefer YCrCb, because RGB requires more memory 
to represent video images compared to YCrCb. RTP Handler passes these decoded frames to HXTA 
Wrapper over a buffer. Audio ULaw packets are decoded into the raw WAV format before passed to 
HXTA Wrapper. RTP Handler also makes sure that packets are processed in a sequent order by dropping 
those late-arrival packets. RTP Handler gets the media type of the stream from the input provided by 
Stream Conversion Handler. Based on that information it either converts received packets into raw video or 
audio format. Each stream, whether it is audio or video, is converted independently from each other.  
4.6.3. SMIL File Generator 

Streaming Engine receives only one stream, whether it is audio or video, and produces one stream. In 
order to enable streaming clients to receive audio and video together, there is need for a SMIL file, which 
resides on the Helix Streaming Server side. Because of this, Stream Conversion Handler provides RTSP 
links of audio and video streams to SMIL file generator and SMIL file generator produces a SMIL file that 
includes those RTSP links. In our current implementation we have only one audio stream per session, 
which is mixed of all available audio streams in that session. So when a video stream is to be converted into 
streaming format, the RTSP link for the mixed audio stream is included to the generated SMIL file.  
4.6.4. Streaming Gateway User Interfaces 

Because the production of a RealMedia stream, especially for video streams, takes considerable CPU 
percentage, regular users should not be allowed to start and stop streaming production jobs. Two types of 
user interfaces to the XGSP Streaming Gateway are developed for administration users and regular users: 



respectively. The Streaming Admin is implemented for administrative purposes and Streaming Client is for 
normal RealPlayer users. The Streaming Admin enables the administrator to choose active video streams 
from XGSP AV sessions and ask the Streaming Gateway to produce the associated   RealMedia streams. 
The Streaming Client shows the list of available RealMedia streams and allows users to select one of them 
and play it from RealPlayer.  

The XGSP AV specifies the messages among the streaming administrator, streaming client, XGSP AV 
Session Server and Streaming Gateway. The AV Session Server keeps the list of active RealMedia streams 
and notifies the user interfaces of the change in the list. The streaming admin interface sends the request 
from the administrator to the AV Session Server, and Session Server forwards the commands to the XGSP 
Streaming Gateway.  
(1) Initialization : When streaming administrator first connects to the Session Server, it requests a list of 
the available streams and RealStream streams in the session. Streaming administrator sends 
RequestStreamList, to request all of the available audio/video streams and RealStreams, to request all of the 
available RealStream streams consecutively. In the reply, Session Server replies with 
RequestAllStreamsReply and RealStreamsReply. Streaming client only sends RealStreams message to 
receive available RealStream streams list. 
(2) Create new RealMedia Streams: streaming administrator sends “JoinStream” for one of the streams 
chosen. Session Server adds some other fields to the same message and forwards it to Streaming Gateway. 
Streaming Gateway replies with “JoinStreamReply” and as a result Session Server generates 
“RealStreamEvent” messages with NewRealStream mode and sends them to streaming administrator and 
streaming clients. 
 (3) Delete new RealMedia Streams: Only instead of sending RealStreamEvent with NewRealStream 
mode, Session Server sends RealStreamEvent with ByeRealStream mode. For the case of 
InitializeRealGateway, Session Server forwards the message to Streaming Gateway and also sends 
RealStreamEvent with ByeRealStream mode for each of the streams removed. 
 
4.7 Adapting Mobile clients 

Mobile devices have limited capabilities such as limited bandwidth, processing and memory capability, 
small size screens. Due to this reason we cannot expect them to function like an AV client on a desktop PC.  
Although 3G wireless network fully supporting multimedia application hasn’t been widely used, limited 
multimedia services for cellular users are already available such as Real Mobile Streaming and MMS. 
Appropriate gateway has to be introduced to enable cellular phone devices join a XGSP AV session to 
interact with other desktop clients. This Mobile Gateway can work with RealStreaming Gateway and Helix 
Streaming Server to provide suitable RealMedia streams for mobile clients. And it also transcodes the still 
images sent by a phone cameras into a video stream. Nokia 3650 [24], a popular GSM phone which has 
RealPlayer and Java MIDP 1.0 [25] installed, is a good candidate for our testing purpose.  
4.7.1 Streaming to Cellular Phones 

RealNetworks provides RealMedia formats for cellular phones as well. This RealMedia format is 
named as General Mobile Streaming which is 20 Kbps with 5 fps. The image size is also 160x120 pixels. 
RealPlayer on Nokia 3650 is capable of playing this streaming format.  

The administration interface of the Streaming Gateway can initiate streaming jobs for cellular phone 
clients as well. AdminUI specifies General Mobile Streaming format when he/she selects the video to be 
converted. Streaming Gateway receives the selected video stream and the session audio. Both audio and 
video are converted and combined into one RealMedia stream with General Mobile Streaming format. 
Since the generated streams sometimes have too long RTSP URLs to be understood by cellular phone users, 
the Mobile Gateway generates .ram files specific for RealPlayer and provides links to those files in a 
XHTML page. Cellular phone users can visit this page through browser and launch RealPlayers by clicking 
one of the links. If the administrator stops mobile streaming jobs, the corresponding stream URLs are 
removed from the page.            
4.7.2 Streaming from Cellular Phones 

We developed a camera application using MIDP 1.0 and deployed it on Nokia 3650. The images 
produced by that application are 160x120 pixels. In order to send them to a XGSP AV session, we need to 
present these still pictures in a temporal order as continues video streams. The transcoding module in the 
mobile gateway is developed to achieve image-to-stream conversion which also resizes the images by a 
factor of 2 to produce a video stream with 320x240 pixels in size. The images are transported to this 



gateway over an HTTP connection with a interval of 7 ~8 seconds, encoded into a H.263 stream with 2 fps 
and then pushed to the XGSP AV session. During the procedure, the conversion module reuses the same 
image until the next image is received. When the images uploading from cellular phone stops, that gateway 
simply sends an end-of-stream packet to the session and terminates.  
 
5. Implementation and Performance 
 
5.1   Software Release 

In May, 2004, we have release the initial version of Global-MMCS. It has the software components 
including:  Media Server package, Session Server package, Web Server package, H.323 Server package, 
Real Streaming package. 

The whole system uses NaradaBrokering package for communication overlay. All the audiovisual 
processing services, including the video mixer, audio mixer, the image grabber servers as well as the front 
end of RealStreaming Gateway are developed using Java Media Framework [26]. Java Media Framework 
(JMF) package, which can capture, playback, stream and transcode multiple media formats, gives 
multimedia developers a powerful toolkit to develop scalable, cross-platform technology. Based on the 
codecs provided by JMF, our system can support ULaw audio codec, H.261 and H.263 video codec for all 
the AV endpoints. In the development, we also fixed some minor bugs inside JMF, integrated H.261 
encoder and the video capture of shared display  into it.  

To implement the H.323 gateway, we use the protocol stacks from the open source projects, including 
OpenH323 [27] project. OpenH323 is an open source project providing H.323 protocol stack 
library.OpenH323 applications are built on top of the powerful network, inter-process communication and 
threading library PWLib. The source package also provides an ASN.1 parser that automatically generates 
code for parsing and generating H.323 PDUs from their standardized ASN.1 description. The handling and 
processing of signaling messages is encapsulated in an object oriented way which provides simple but 
powerful means for extension. The stack is organized using method calls and callbacks that are associated 
with the protocol and state transitions. We follow JAIN SIP [28] stack specified by Sun for SIP Gateway 
development. NIST [29] is an open source project and implements SIP JAIN library. The NIST package 
also includes the examples of Proxy-Registrar Server and Instant Messageing client. We use the NIST 
library to develop the SIP Gateway and build our own Proxy Server based on the source codes. Helix 
community open source project supported by Real Company enables the development of RealStreaming 
Gateway. We uses Streaming Server, which is an open source version of the RealStreaming Server. 
Commercial and open source versions can be used interchangeably. And we developed, RealStreaming 
Gateway based on Helix Real Producer SDK.  

The AV Session Server is built to manage real-time AV sessions, receiving messages from gateways 
and the web server through different control topics on the NaradaBrokering. The XGSP web server based 
on Apache Tomcat provides an easy-to-use web interface for users to make meeting schedules, join XGSP 
conferences and for administrators to perform the tasks of the system management. The XGSP conference 
manager is implemented as an embedded server in the web container. It can create/destroy conferences, 
activate/deactivate AV application sessions and generate the active conference directory to all the users.  
Users should log into Global-MMCS through their web browsers and select active conferences. 

The XGSP node manager is implemented in an applet running inside the Global-MMCS portal browser. 
The node manager will show up when the user joins the conference. Right now the node manager can 
report the membership in the XGSP conference. In addition, it has a few buttons for the available 
application endpoints, including: a Unicast JMF, H.323, Real Streaming and chat application portlet. The 
chat portlet provides the text chat collaboration. Depending upon XGSP AV servers, the Unicast JMF 
portlet can build up their AV stream list in a videoconference, allow the user to choose any number of 
video streams for receiving and rendering and is able to send audio and video streams.The H323 and Real 
Streaming portlets are the wrappers for H.323 terminals and RealPlayers, supporting a single video 
selection and rendering in their particular clients.  



 
Figure 13 Global-MMCS User Interface 

 
Right now, the Unicast JMF portlet is able to send AV data through NAT boundary by using 

NaradaBrokering UDP connection.  By opening some specific ports, it can also go through firewall. Further 
work like AV data transmission over HTTP tunnel is still going on.  We also tried to integrate our Global-
MMCS portal and XGSP node manager into OGCE portlet server. There are still some issues including 
unifing user authentication mechanism and applet reloading. We are planning to use Web-start mechanism 
to replace the applet launching.  
      The whole Global-MMCS package is still under extensive test and improvement. JMF framework is 
being enhanced in its performance and codec plugins and extended to other platform including Linux and 
Mac OSX. We also working hard to introduce the archiving and replay service to build a more dependable 
and robust collaboration system. P2P style needs to be applied for multimedia services to achieve more 
general scalability even without enough server-side computation resource.  
 
5.2 Performance of NaradaBrokering for Audio/Video Delivery 

We conducted extensive tests to evaluate the performance and the scalability of the NaradaBrokering 
broker network in the context of audio/video delivery. We investigated the performance of both a single 
broker and the distributed broker network.  
5.2.1 Performance Tests for One Broker 

Since the building blocks of the distributed broker network are brokers, it is essential to know 
thoroughly the capacity and the limits of a single broker. Knowing the capacity and the performance of a 
single broker helps us to predict the performance of the broker network in distributed settings. In addition, 
it helps us to identify the bottlenecks and problems in multi broker environments. We tested two cases 
thoroughly. The first one is single large scale meetings. The second one is multiple small scale meetings.  
(1) Single Meeting Tests 

We tested the performance and the scalability of a single broker for three types of single meetings: 
single audio meetings, single video meetings, and audio and video combined meetings. It supported 1500 
users on a single audio meeting with one speaker. The audio stream was 64kbps ULAW. The machine was 
a Linux machine that had Double Intel Xeon 2.4GHz CPUs, and 2GB of memory. 



It also supported 400 users in a single video meeting on the same machine. The video stream was an 
H.263 stream with 280kbps bandwidth on the average. On the other hand, when there were one audio and 
one video meeting at the broker, it supported close to 400 users in both meetings. This was due to the better 
utilization of the broker when there are two meetings. Table  shows the summary of the test results from 
the video meeting when there are one audio and one video meeting on a single broker. Each row of the 
table shows a test case. First column shows the number of users on each audio and video meeting. The 
second column shows the average latency of video packages delivered to the first user in the meeting. Since 
the broker routes packages in the first-come-first-serve manner. Therefore, the order of subscription of the 
clients is important. The broker delivers each package first to the client who joined the meeting first, and it 
delivers it last to the client who joined the meeting last. Sixth column shows the percentages of packages 
that arrive more than 100ms later to the last client. We require the broker not introduce more than 100ms of 
latency to provide good quality. When the percentages of late arriving packages go beyond 1.0%, we 
assume the quality of the communication is not good enough. Therefore, in this case, the broker supports 
300 users in both audio and video meetings with excellent quality. However, there are more than 1.0% late 
arriving packages for 400 users. This shows that the broker can support up to 400 users in audio and video 
combined meetings.  
number 
of 
clients 

first 
latency 
(ms) 

middle 
latency 
(ms) 

last 
latency 
(ms)  

Avrg. 
Latency 
(ms) 

Avrg. 
Jitter 
(ms) 

Last 
Late 
arrivals

Avrg. 
Late 
arrivals

In 
BW 
Mbps 

Out 
BW 
Mbps 

12 1.3 1.4 1.5 1.4 0.5 0 0 344 4.13
50 1.7 2.2 2.7 2.2 0.8 0 0 344 17.2

100 3.7 4.6 5.7 4.7 2.1 0 0 344 34.4
200 8 10.1 12.2 10.1 5.4 0 0 344 68.8
300 11.3 14.2 17.2 14.2 7.5 0 0 344 103.2
400 18.1 22.1 26.1 22.1 10.9 % 1.37 % 1.25 344 137.6
500 26.7 31.7 36.8 31.8 13.5 % 5.5 % 4.7 344 172.0
600 169.2 175.3 181.4 175.3 16.2 % 59.9 % 58.2 344 206.4

Table 3 Video test results for single audio and video combined meetings 
 
(2) Multiple Meeting Tests 

We also tested the performance of a single broker with multiple smaller meetings. The most important 
outcome of these tests was the fact that the broker was utilized much better for multiple smaller meetings 
than single large size meetings. It supported higher number of participants with smaller latency and jitter 
values. Figure 14 shows the average latency values of single video meeting tests and multiple video 
meeting tests for the same number of participants. In multiple video meeting cases, all video meetings had 
20 participants. As the latency values show the average latencies of multiple video meetings are much 
smaller. 

Similarly, the jitter values and loss rates are also much smaller. Therefore, the broker was able to 
provide services to 700 participants in 35 video meetings with very little late arriving packages. It was able 
to support only 400 participants in the single video meeting test.  



0

20

40

60

80

100

120

0 200 400 600 800 1000 1200

Total Number of Receivers

Av
rg

. L
at

en
cy

 in
 m

s

multi-meeting
single meeting

 
Figure 14 Average latencies of single and multiple video meetings 

We also tested multiple audio and video meetings concurrently. All meetings had 20 participants and 
one transmitter. There were equal numbers of audio and video meetings for each test. Table  shows the 
summary of the results from audio meetings and Table  shows the summary of the results from video 
meetings. First columns of these tables show the total number of participants in these meetings. Half of 
these participants are audio meeting participants and the other half are video meeting participants. Similarly 
the second columns show the total number of concurrent meetings. Half of them are audio meetings and the 
other half are video meetings. The latency values of audio meetings are a little smaller than the latency 
values of video meetings, because we give priority to audio package routing at the broker. There are no late 
arriving packages until 1000 participants. These results demonstrate that 40 meetings (20 audio and 20 
video meetings) can be conducted simultaneously on this broker with excellent quality. In addition, these 
tests show that the routing of audio packages do not delay the routing of video packages significantly.  

Number 
of 
Clients 

number 
of 
meetings 

Avg. 
latency 
(ms) 

Avg. 
Jitter 
(ms) 

Avg. 
Late 
arrivals 

In  
BW 
(Mbps) 

Out  
BW 
(Mbps) 

200 10 1.7 0.5 0 1.755 35.1 
400 20 2.5 0.9 0 3.51 70.2 
600 30 3.3 2 0 5.265 105.3 
800 40 4.9 2.2 0 7.02 140.4 

1000 50 46.8 2.8 %16 8.775 175.5 
1200 60 9287 6.6 %100 10.53 210.6 

Table 4 Audio results from audio and video combined multi meeting tests 
 

Number 
of 
Clients 

number 
of 
meetings 

Avg. 
latency 
(ms) 

Avg. 
Jitter 
(ms) 

Avg. 
Late 
arrivals 

In  
BW 
Mbps 

Out  
BW 
Mbps 

200 10 2 0.7 0 1.755 35.1 
400 20 2.62 0.85 0 3.51 70.2 
600 30 5.25 1.3 0 5.265 105.3 
800 40 6.5 1.56 0 7.02 140.4 

1000 50 76.2 1.96 %23 8.775 175.5 
1200 60 9421 4.12 %100 10.53 210.6 

Table 5 Video results from audio and video combined multi meeting tests 



 
5.2.2 The Performance Tests for Distributed Brokers 

Similar to single broker tests, we evaluate the performance and the scalability of the brokering network 
for both single large size meetings and multiple smaller size meetings. We conducted these tests in 
controlled settings to measure the performance of the broker network accurately.  
(1) Single Meeting Tests 

Inter-broker package delivery is very limited in broker network when there is a single meeting. Only 
one stream is exchanged among the brokers. This simplifies the analysis greatly. The most important factor 
that affects the performance of the broker network in distributed settings is the amount of overhead put to 
packages that travel to other brokers. We minimized this overhead by giving priority to packages that travel 
to other brokers. Each broker routes packages first to other brokers and then to local clients. In addition, 
when multiple packages arrive simultaneously, later packages do not need to wait the earlier ones to be 
routed to all local clients. Instead, there are two layer queues at the broker. First queue is used to hold 
arriving packages and route them to the other brokers. Then, packages are placed into the second queue, to 
be routed to the local clients. This mechanism ensures that the broker puts minimum overhead to packages 
that travel to other brokers.  

We setup a broker network with four brokers in two Linux clusters Figure 115. We tested the 
performance of this broker network for a single video meeting. On user published the video stream through 
the first broker and equal numbers of users received that stream through each broker. The nodes of the first 
cluster had 2.4GHz Dual Intel Xeon CPU and 2 GB of memory. The nodes of the second cluster had 2.8 
GHz Dual Intel Xeon CPU and 2GB of memory. Both clusters had gigabit network bandwidth among its 
nodes. 

Machine 1

Broker 1Broker 2Broker 3Broker 4

Video
Transmitter

Video
Receivers

Video
Receivers

Video
Receivers

Video
Receivers

Measuring
Receivers

Linux Cluster 1Linux Cluster 2

 
Figure 15 Single video meeting tests with four brokers 

Table  shows the latency results of these tests. Two blocks of latency results show the average latency 
values of the first and the last receivers from each broker for the 5610 video packages exchanged. We have 
results from all four brokers. The latency values of broker1 and broker2 are very similar to each other. 
Similarly, the latency values of broker3 and broker4 are very similar. Last two brokers perform better than 
the first two brokers, because the machines in the second Linux cluster have superior CPU power. 

As the latency values show, adding new brokers increases the capacity of the broker network as much 
as the capacity of the added machines. In this case, since all brokers have very similar computing power, 
each broker increases the capacity of the broker network almost linearly. Table  shows the percentages of 
late arriving packages. For the first two brokers, the percentage of late arriving packages is %1.9 when 
there are 400 participants. Therefore, they can support up to 400 users. For the last two brokers, the rate of 
late arriving packages are less than %1.0 for the same number of participants. They support 400 users 
comfortably. In total, four brokers support close to 1600 participants in a single video meeting. 



 
Latencies of first receivers (ms) Latencies of last receivers (ms) Users per  

broker  

Users 

in total B1 B2 B3 B4 B1 B2 B3 B4 

200 800 8.06 8.44 8.58 9.03 12.57 12.93 12.39 12.79

300 1200 12.04 12.5 11.85 12.37 18.78 19.25 17.55 18.03

400 1600 16.45 16.94 15.26 15.95 25.47 26.02 22.84 23.55

500 2000 21.43 22.38 19.07 19.92 32.61 33.72 28.53 29.38

900 3600 665.2 798.4 86.9 72.9 685.7 818.9 104.53 90.17

Table 6 latency results for single video meeting tests with four brokers 
 

Users per  

broker 

Users in 

total 

Broker1 late 

arrivals (%) 

Broker2 late 

arrivals (%) 

Broker3 late 

arrivals (%) 

Broker4 late 

arrivals (%) 

200 800 0 0 0 0

300 1200 0.29 0.27 0 0.02

400 1600 1.87 1.92 0.73 0.73

500 2000 4.01 4.43 2.41 2.4

900 3600 93.54 93.85 37.84 31.31

Table 7 Percentages of the late arriving packages for the last users in single video meetings 
 

In summary, these tests demonstrate that NaradaBrokering broker network scales well in distributed 
settings when delivering audio and video streams to high number of participants in large scale meetings. 
The scalability of the broker network increases almost linearly by the number of brokers. The overhead of 
going through multiple brokers for a stream is not significant, since inter-broker routing has priority over 
local client routings. 
 
(2) Multiple Meeting Tests 

The behavior of the broker network is more complex when there are multiple concurrent meetings 
compared to having a single meeting. Having multiple meetings provide both opportunities and challenges. 
As we have seen in the single broker tests with multiple video meetings in the previous section, conducting 
multiple concurrent meetings on a broker can increase both the quality of the service and the number of 
supported users. This can also be achieved in multi broker setting as long as the size of these meetings and 
the distribution of clients among brokers are managed properly. If the sizes of meetings are very small and 
the clients in meetings are scattered around the brokers, then the broker network can be utilized poorly. 
Inter-broker stream delivery can reduce the number of supported users significantly. The best broker 
utilization is achieved when there are multiple streams coming to a broker and each incoming stream is 
delivered to many receivers. If all brokers are utilized fully in this fashion, multi broker network provides 
better services to higher number of participants. To investigate this, we conducted multiple video meeting 
tests with two different meeting sizes.  

We used the same broker organization scheme as the single video meeting tests in the previous section. 
There were four brokers connected as a chain. In this case, all brokers were running in the same Linux 
cluster that has 8 identical nodes with 2.8 GHz Dual Intel Xeon CPU and 2GB of memory.  

We tested with multiple video meetings each having 20 receivers. One client was publishing the video 
stream on a broker and 20 clients were receiving it. We distributed the clients of each meeting among 
brokers evenly. 5 clients joined each meeting through each broker. We also distributed the video 
transmitters of all meetings evenly among the brokers. There were equal numbers of transmitters publishing 
video streams to each broker. We collected the performance data from three meetings. The publishers of 
these three meetings were publishing their streams through the first broker. For each of these three 



meetings, we collected the results from 4 receivers, each one getting the stream from a different broker. 
Table  shows the average latency and jitter values of three meetings. Table  shows the percentages of lost 
packages and the percentages of late arriving packages. 
 

Latencies from 4 brokers (ms) Jitters from 4 brokers (ms) Number of 

meetings 

Total 

Users B1 B2 B3 B4 B1 B2 B3 B4 

24 480 3.30 4.24 5.32 5.87 1.39 1.44 1.65 1.72

48 960 2.98 5.04 6.90 8.20 1.84 2.53 2.82 3.00

72 1440 4.83 13.66 17.03 17.52 1.70 3.04 3.52 3.51

96 1920 5.76 25.55 52.77 47.34 1.69 3.70 5.28 5.52

Table 7 Average latency and jitter values for multiple video meeting tests. 
 

Loss rates from 4 brokers (%) Late arrivals from 4 brokers (%) Number of 

meetings 

Total 

Users B1 B2 B3 B4 B1 B2 B3 B4 

24 480 0.01 0.00 0.00 0.00 0.00 0.00 0.03 0.03

48 960 0.00 0.06 0.11 0.22 0.00 0.11 0.09 0.17

72 1440 0.02 1.20 1.60 1.63 0.00 0.01 0.03 0.04

96 1920 0.13 6.41 19.62 19.68 0.00 0.13 2.79 0.91

Table 8 Average loss rates and late arrivals for multiple video meeting tests 
 

Since the publishers are publishing the streams through the first broker, the latency values for the first 
broker are the smallest. Latency values increase when the streams travel more hops along the way from the 
first broker to the last. The broker network provides excellent quality communication when there are less 
than 72 meetings. The latency values and jitters for all brokers are very small. There are minor package 
losses and late arriving packages. For 72 meetings, the latency values and jitters are still very small. There 
is also very few late arriving packages. However, there are a little more than %1.0 lost packages. When 
there are 96 meetings, significant amount of packages are lost. Therefore, the broker network can support 
up to 72 meetings or up to 1440 participants in total. This number is slightly smaller than the single video 
meeting case, in which the broker network was able to support up to 1600 participants. 

When we compare the scalability of the broker network with the scalability of the single broker in 
multiple video meeting tests, the number of supported participants increased two times. The single broker 
supported 700 participants in 35 video meetings, each having 20 users. In this test, four brokers supported 
around 1440 participants in 72 meetings, each having 20 users. As we can see, the increase on the number 
of brokers did not result in a linear increase on the number of supported participants. There are two reasons 
for this. First one is the overhead of inter-broker stream delivery in distributed setting. Now, the brokers 
deliver streams not only to clients but also to other brokers. The second one is the smaller number of 
participants in each broker for each meeting. Each incoming package is delivered to only 5 users in the 
distributed setting, while it was delivered to 20 users in the single broker case.  

Since the small number of participants joining meetings through each broker reduced the scalability and 
the quality of the service provided, we tested with a larger meeting size to observe the difference. This time, 
10 participants joined each meeting through each broker. Therefore, the sizes of meetings were 40. All 
other aspects of the test were the same as the previous test. In this case, the number of supported clients 
increased significantly. 48 meetings with 1920 participants in total are supported with excellent quality, 
compared to 1440 participants in the previous test with meeting sizes of 20. In addition, the quality of the 
service provided by the broker network also increased considerably. The average latency and jitter values 
are much lower. The late arriving packages and losses are very small, too. The main reason for the better 
performance is the better utilization of the broker network. Now, there is less stream exchange among 
brokers and each incoming stream is delivered to more participants by every broker. 



 
5.3 Media Service Performance 

We investigate the performance of media services in controlled experiments. All the service providers 
running in a single server are demanded to create more service instance so that the overhead increase in the 
terms of CPU and memory usage in the server could be illustrated. Although there is some difference in the 
computation overhead generated by services, they are all computation intensive tasks. Since individual 
service instances can run independently and be attached to different XGSP AV sessions, it is quite easy to 
distribute them into hosting servers. Provided enough media service resources, the scalability of the Global-
MMCS can be guaranteed.  
5.3.1 Audio Mixing 

Number of 
audio mixers 

CPU usage % Memory usage 
MB 

Quality  

5 12 36 No loss 
10 24 55 No loss 
15 34 73 No loss 
20 46 93 Some loss, 

Negligible 
Table 9 Audio mixer performance test 

 
The performance of an AudioMixerServer has been tested for different number of mixers on it. There 

were 6 speakers in each mixer. Two of these speakers were continually talking and the rest of them were 
silent. There were also one more audio stream constructed which had the mixed stream of all speakers. 
Therefore, 6 streams were coming into the mixer and 7 streams were going out. All streams were 64kbps 
ULAW. Mixers were receiving the streams from a broker and publishing the output streams back on the 
broker. The machine that was hosting the mixer server was a Windows XP machine with 512 MB memory 
and 2.5 GHz Intel Pentium 4 CPU. The broker was running on another machine in the same subnet.  

The number of speakers in the test in a mixer is not less than the average number of speakers in 
meetings. Usually there is one active speaker in a session and there are less than 6 speakers. Therefore, we 
assume that this setting represents at least average meetings. Table 9 shows that a machine can support 
around 20 mixing sessions. But we should note that, in this test all streams are ULAW. This is not a 
computing intensive codec. When we had the same test with another more computing intensive codec, 
G.723, one machine supported only 5 mixing sessions. Therefore, on the average one machine may support 
around 10 mixing sessions. 
 
5.3.2 Video Mixing 

Video mixing is a computing intensive process. One video mixer decodes four received video streams 
and encodes one video stream as the output. In Table 10, it shows that a Linux machine with 1 GB memory 
and 1.8GHz Dual Intel Xeon CPU, can serve 3 video mixing streams comfortably and 4 at maximum. 
Therefore, video mixing is a very computing intensive process. In this test, we used the same incoming 
video stream for all mixers. The incoming video stream was an H.261 stream with an average bandwidth of 
150kbps. The mixed video stream was an H.263 stream with 18fps.  
 

Number of  
video mixers 

CPU usage % Memory usage (MB) 

1 20 42 
2 42 54 
3 68 68 
4 94 80 
Table 10 Video mixer performance test 

5.3.3 Image Grabbering 
 

Number of  
image grabbers 

CPU usage % Memory usage  
(MB) 

10 15 66 
20 35 110 
30 50 148 



 

Table 11 Image grabber performance test 

40 60 192 
50 70 232 

 
Image grabbing is also a computing intensive task. Each image grabbing includes decoding, resizing 

and encoding of a video stream. Though, resizing and encoding do not have to be done continually. They 
can only be performed when it is time to get the snapshot. Table 11 shows the performance tests for image 
grabbers. All image grabbers subscribed to the same video stream on a broker. That video stream was in 
H.261 format with an average bandwidth of 150kbps. Image grabbers saved a snapshot every 60sec to the 
disk in JPEG format. The host machine was a Linux machine with 1 GB memory and 1.8GHz Dual Intel 
Xeon CPU. Although the number of video streams and the format of the streams change, if we assume that 
meeting have 10 video streams on the average, Table 11 shows that one machine can serve 5 meetings. 
 
5.3.4 RealStreaming Conversion Performance 

Stream conversion is a CPU intensive application. In order to see the CPU and memory usage of this 
conversion we also observed the effect of number of streams converted on CPU and memory usage. 
Streaming Gateway is running on the XP machine with 512 MB memory and 2.26GHZ Intel Pentium 4 
CPU. Table 12 provides approximate CPU and memory usage for producing RealMedia streams. As the 
number of streams converted increases the CPU usage and memory usage also increases. In this specific 
machine we could successfully convert 4 streams without causing quality of services decrease. If we 
increase the number of streams, other streams are also affected and some time later the conversion 
performance reduces much. In this test we kept the number of frames per second high. This frame rate is 
normal in an Access Grid session.  

Number of 
Streams 

Frame rates of streams 
involved 

CPU Usage Range Memory Usage 
Range 

1 23 fps %10 - %25 29 MB 
2 23 fps, 25 fps %22- %40 34 MB 
3 23 fps, 25 fps, 26 fps %50 - %75 43 MB 
4 23 fps, 25 fps, 26 fps, 16 fps %65- %95 53 MB 

  Table 12 RealStreaming Gateway performance test 
 

5.4  Scalability Discussion 
On the basis of measurement in controlled experiment environment which consists of at most 4 brokers, 

we can discuss the scalability of the system in a more general way and larger scale. Consider scenarios 
where users are connected in collaborative sessions such as supported in Access Grid rooms or text chat 
sessions. All communication is performed by NaradaBrokering installed as a mixture of standalone brokers, 
handlers/plug-ins for clients or Web services.  

The software routing is performed by the handlers and the brokers. The routers fall into two groups: 
Geographical routers handle traffic in a particular region and Functional routers cope with particular 
capabilities – in this case the different rooms. Hardware multicast is one approach to geographical multicast. 
However note that we ignore the possibility of hardware multicast below and assume software multicast 
where this is needed. Note that we have very efficient communication between institutions and hardware 
multicast would only be useful internal to each organization where it could add quite a bit of value and be 
easier to implement than globally across institution. NaradaBrokering supports hybrid protocols that mix 
hardware unicast and multicast. The network architecture is designed to make communication traffic as 
reliable and low bandwidth as possible.  

Note we replicate the routers for each room at each institution so as to minimize traffic between 
institutions by using software multicast only within each institution. We give a more detailed analysis 
below ignoring any Geographical routers. These could be implemented in P2P fashion using 
NaradaBrokering handlers on the clients.  

Assume there are N Institutions, R XGSP AV sessions and M participants per "session”. Let each 
person send out one native AV stream and receive 4+X streams. Let each client mix the (first) 4 streams to 
make one composite mixed stream. The other X streams can either be other mixed streams or native 
webcam streams. Clients are also capable of generating these thumbnails of the received streams and 



publish over the NaradaBrokering. Note we are mixing and image grabbing in P2P mode as more CPU 
power on clients. One could mix on servers but currently low end Linux server can produce up to 4 mixed 
streams where each mixed stream made up of 4 native streams. Thus one needs M*R/4 servers for mixing 
to make the MR composite streams imagined here. The clients can display any of received streams and/or 
the mixed stream that it makes itself. And it can send out 2 streams including the native stream from its 
webcam and mixed one it makes.  

Assume each person can only in one room. We configure S servers at each institution each handling 
R/S rooms. So the traffic at each server is receiving 2*M streams and dispatching (N-1)* 2*M/N streams to 
remote sites.  Here we assume uniform distribution M/N people per session per site, so each session 
dispatches (4+X)*M/N streams to local clients. Thus total traffic per session for the server is 4*M 
+(2+X)*M/N streams. 

We can illustrate the result in a particular example: let R= 50, S= 25, N=2, M=20, X=4. Assume the 
bandwidth of each stream is 1/3 Mbps. Therefore each Server has 93 Mbps traffic summing input and 
output bandwidth which has basically reach the peak rate in a server with 100 Mbps network interface. 
Each client needs to handle up to 3.3 Mbps traffic. Each Institution has 50 servers and 500 clients, so we 
get totally 50 servers and 1000 clients.  

Based on the measurement result in Section 5.3, one regular server can usually run up to 20 audio 
mixers. We need other 3 or 4 audio servers for 50 sessions. Many rooms can share a server for their session 
control Web Service and we can estimate that a safe number is 500 users per session server.  Two session 
servers and two H.323/SIP gateways should be enough for 1000 users. If for each session we need to 
generate a RealMedia stream simultaneously, at least 12 servers are necessary for 50 sessions. To support 
thousands of streams and dozens of sessions, media services demands the computation resources in dozens.  
 
6. Conclusion and Future Work 

In this paper we have presented the design principle and experience of building a scalable and 
integrated Web-Services Collaboration system. This collaboration system is developed based on the XGSP 
collaboration framework and NaradaBrokering messaging middleware. Such a service-oriented 
collaboration environment greatly improves the scalability of traditional videoconferencing system, 
benefits customers using diverse multimedia terminals through different network connections and 
simplifies the further extension and interoperability.  

Further works include: enhancing the performance of media processing, extending the scalability of the 
system to 10,000 users, adding archiving and replay services, customizing the system for different 
application scenarios like collaborations in e-sports and e-science. 
7. Reference 
[1] ITU. Recommendation H.323 (1999), Packet-base multimedia communications systems.  
[2] J. Rosenberg et al. (2002) “SIP: Session Initiation Protocol”, RFC 3261, Internet Engineering Task 
Force, http://www.ietf.org/rfc/rfc3261.txt. 
[3] Access Grid (2003), http://www.accessgrid.org
[4] W. Wu, G. C. Fox, H. Bulut, A. Uyar, H.  Altay, “Design and Implementation of A Collaboration Web-
services system”, Journal of Neural, Parallel & Scientific Computations, Volume 12, 2004. 
[5] Global Multimedia Collaboration System (Global-MMCS), http://www.globalmmcs.org
[6] Handley, M., Crowcroft, J., Bormann, C. and J. Ott (2002) The Internet Multimedia Conferencing 
Architecture, Internet Draft, draft -ietf-mmusic -confarch-03.txt. 
[7] Bormann, C., Kutscher, D., Ott, J., and Trossen, D. ( 2001 ). Simple conference control protocol service 
specification. Internet Draft, Internet Engineering Task Force, Work in progress. 
[8] ITU. Recommendation H.225(2000), Calling Signaling Protocols and Media Stream Packetization for 
Packet-based Multimedia Communication Systems. 
[9] ITU. Recommendation H.245(2000), Control Protocols for Multimedia Communication. 
[10] ITU. Recommendation H.243(2000), Terminal for low bit-rate multimedia communication. 
[11] ] ITU. Recommendation T.120(1995),Multipoint Data Conferencing and Real Time Communication 
Protocols, 1995 
[12]Koskelainen P., Schulzrinne H. and Wu X.(2002), A SIP-based Conference Control Framework, 
NOSSDAV’02, May 12-14, 2002, Miami Beach, Florida, USA.  
[13] Wu, X., Koskelainen P., Schulzrinne H., Chen C (2002). Use SIP and SOAP for conference floor 
control.Internet Draft, Internet Engineering Task Force, Feb. 2002. Work in progress. 

http://www.accessgrid.org/
http://www.globalmmcs.org/


[14] Virtual Rooms Video Conferencing System (2003), www.vrvs.org
 
[15] Kazaa, http://www.kazaa.com 
[16] Skype, http://www.skype.com/ 
[17] ITU. Recommendation T.124 (1995) Generic conference control, 1995. 
[18] Geoffrey C. Fox and Shrideep Pallickara (2002). “The Narada Event Brokering System: Overview and 
Extensions”, proceedings of the 2002 International Conference on Parallel and Distributed Processing 
Techniques and Applications (PDPTA'02)  
[19] Java Message Service (JMS) , http://java.sun.com/products/jms/ 
[20] Web Services Reliable Messaging, http://www.oasis-open.org/committees/wsrm/charter.php 
[21] Hasan Bulut, Shrideep Pallickara and Geoffrey Fox Implementing a NTP-Based Time Service within a 
Distributed Brokering System ACM International Conference on the Principles and Practice of 
Programming in Java, June 16-18, Las Vegas, NV 
[22] Real Time Streaming Protocol (RTSP), http://www.ietf.org/rfc/rfc2326.txt
[23] Helix Community Project (2002), http://www.helixcommunity.org
[24] Nokia 3650 Phone, http://www.nokia.com/nokia/0,,2273,00.html
[25]  Sun Microsystems, Mobile Information Device Profile 1.0 http://java.sun.com/products/midp/  
 [26] Sun Microsystems, Java Media Framework 2.1, (2001), 
http://java.sun.com/products/javamedia/jmf/2.1.1/index.html. 
[27] OpenH323 Project (2001) , http://www.openh323.org
[28] JAIN SIP, http://jcp.org/en/jsr/detail?id=125 
[29] NIST SIP (2001), http://snad.ncsl.nist.gov/proj/iptel/. 

http://www.vrvs.org/
http://www.ietf.org/rfc/rfc2326.txt
http://www.helixcommunity.org/
http://www.nokia.com/nokia/0,,2273,00.html
http://www.openh323.org/

	4.2.1. Service Discovery
	4.2.2 Service Selection
	4.2.3. Service Execution
	Advantages of this service distribution model:
	Media Processing Units
	Audio Mixing
	Video Mixing
	Image Grabbing
	RTP Stream Monitoring
	Media Processing Service Distribution


