

OGC Compatible

Geographical Information Systems

Web Services

Ahmet Sayar

Indiana University - 2005

 2

CONTENT

1 INTRODUCTION ...5

2 GIS TECHNOLOGY AND RELATED WORK6

2.1 Technology and Terms and Definitions...6

2.2 Related Works ...7
2.2.1 GIS software implementation efforts..7

2.2.1.1 Server Efforts ..7
2.2.1.2 Client Efforts...10

2.2.2 Academic GIS application efforts and centers..11
2.2.3 Other non-OGC efforts ...12

3 OGC OPENGIS SPECIFICATIONS ..14

3.1 OGC OpenGIS Specifications we have been using in our GIS project...............16
3.1.1 WMS Specifications ...16
3.1.2 WMS Client..17
3.1.3 Other OGC Specifications ..20

3.1.3.1 Geographic Markup Language (GML) Specification20
3.1.3.2 Web Feature Service (WFS) Specifications ..20
3.1.3.3 Catalog Services (CAT) Specifications...21

4 APPLICABILITY OF WEB SERVICE ARCHITECTURE ON TO
OGC GIS SERVICES ...22

4.1 OGC Compatibility with the Web Services...23

4.2 How to create valid requests to WMS in case of using Web Services24

5 DEVELOPING WEB SERVICE COMPATIBLE VERSIONS OF
OGC SERVICES...27

5.1 Implementation of OGC Specs...27
5.1.1 WMS Implementation ..28

5.1.1.1 Cascading WMS..31
5.1.2 WMS Client Implementation..33
5.1.3 WMS Interactions in a Comprehensive GIS System ..35

5.1.3.1 WFS ..35
5.1.3.2 IS (Information-Discovery Services)
corresponds to OGC Catalog Services (CAT)..36

 3

6 CURRENT STATUS AND FUTURE WORK37

6.1 Current Status ...37

6.2 Near Term Work ...37

6.3 Longer Term Research and Development...39

7 CONCLUSION...41

APPENDIXES...42

APPENDIX -1 Web Service Description File (WMSServices.wsdl)42

APPENDIX-2 Sld:StyledLayerDescriptor Element used in getMap request.43

APPENDIX-3 Sample WMS requests created according to valid schema files44

APPENDIX-4 Project page deployed on Portal as a portlet ...47

APPENDIX-5 Sample WMS Capabilities file used in project48

APPENDIX-6 geometry.xsd, Geometry schema for GML encoding of feature data..51

APPENDIX-7 Summary of the CrisisGrid related OGC Specifications......................52

APPENDIX-8 Open Source / Free GIS related software projects................................56

APPENDIX-9 Workload So far...65

REFERENCES ...66

 4

FIGURES:

Figure 1 : Approved OpenGIS Specifications. Figure is created from the
specification definitions at
http://www.opengeospatial.org/specs/?page=specs.................................... 15

Figure 2 : GetCapabilities Request Schema (GetCapabilities.xsd).............. 24

Figure 3 : GetMap Request Schema (GetMap.xsd)...................................... 25

Figure 4 : GetFeatureInfo Request Schema (GetFeatureInfo.xsd) 26

Figure 5 : OGC Compatible GIS Web Services Architecture. Some of the
WFSs are service oriented some are not. Instead of OGC’s CAT, we have
used service oriented IS-Discovery implemented by CGL. 27

Figure 6 : The concept of Cascading Web Map Server................................ 32

Figure 7 : Sample GetFeature request from WMS to WFS. 36

Figure 8 : Progress picture for OGC compatible data retrieval operations.
Architecture details are given in Figure 5. ... 38

TABLES:

Table-1: The Parameters of the GetCapabilities Request ………………18

Table-2: The Parameters of the GetMap Request ………………………18

Table-3: The Parameters of the GetFeatureInfo Request ………………19

Table-4: Project Research Stack ………………………………………….40

 5

1 Introduction

Geographical Information Systems (GIS) introduce methods and environments to visualize,
manipulate, analyze and display geographic data. These methods and environments have
some interoperability problems. Different organizations and commercial vendors develop
their own data models and storage structures. If GIS services are not interoperable, GIS
services can not interact with each other even though they are in the same organization or they
belong to same commercial vendor. The nature of the geographical applications requires
seamless integration and sharing of spatial data from a variety of providers. Interoperability is
a main goal for GIS. [12]

To solve the interoperability problems, the Open Geospatial Consortium (OGC) has
introduced some standards by publishing specifications for the GIS services. OGC is a non-
profit, international standards organization that is leading the development of standards for
geographic data related operations and services. OGC has variety of contributors from
different areas such as private industry and academia to create open and extensible software
application programming interfaces for GIS [1]. OGC formed Open Geographic Information
Systems (OpenGIS) to lead the development of geoprocessing interoperability.

This document gives the details about the design and architecture of our Web Service oriented
OGC compatible GIS project [2]. Originally OGC specifications are not designed to be Web
Service compatible. In this document we will first give brief explanation about the GIS
technology and related work on this area. Under this title, we will give the definitions of some
commonly used terms in the GIS. Related work will be grouped into three categories. These
are GIS software implementation efforts, academic GIS application efforts and centers, and
other non-OGC efforts. In the next chapter we will describe the compatibility requirements of
the OGC’s OpenGIS Specifications for the Web Map Services (WMS) and other GIS services
(Web Feature Services and Catalog Services) that WMS depend upon to fulfill its
requirements. In the next chapter we will mention about the Web Services and how to apply it
to the OGC compatible WMS. We will be mentioning about the conflicts encountered during
the implementation between OGC compatibility and Web Services. We will also mention how
Web Service technologies can be applied to the area of geospatial information systems (GIS)
while maintaining the OGC compatibility. We will also mention about how to create valid
requests to WMS in case of using Web Services. The next chapter will give the architecture
and design details. In this chapter we will explain the implementations of services according
to specifications defined in Chapter 3.1 with the Web services approach. After that the
document is going to give information about the future work. Future work is grouped into
three subsections. These are the current status, near future and future sections. Tasks in the
near future section have higher priority than those in the future section. The last chapter will
be conclusion

Since I have been implementing OGC compatible WMS and WMS client, this document will
be focusing on them. WMS has some connections with some other GIS services such as the
Web Feature Service (WFS) and the Catalog Services (CAT). These OGC compatible
services also have specifications and we also will be mentioning from their specifications and
implementation details in separate sections from the WMS point of view.

 6

2 GIS Technology and Related Work

2.1 Technology and Terms and Definitions

Geographic Information System (GIS) is a collection of methods to visualize, manipulate,
analyze, and display geographically referenced data or geospatial data. The sources of
geospatial data are digitized maps, aerial photographs, satellite images, statistical tables and
other related documents. GIS visualization services enable maps, these maps links databases
to the maps. These databases keep geospatial data in the predefined form such as binary, xml,
string etc. Explaining geographic data by pictures (maps) is much more powerful than
explaining same thing by numbers.

GIS relates different information represented in spatial context. For example state boundary
lines data can be analyzed and produce a map. By the same way, fault data can be analyzed
and produce a map. GIS relates these two data sets by overlaying these two maps produced
from the corresponding data and reach a conclusion about this relationship.

Below we list and give the definitions of some commonly used terms in the GIS. We will be
using these terms often in the following chapters.

SPATIAL DATA:
Spatial data are a kind of data that pertains to the space occupied by objects. Example spatial
data from the real world are cities, rivers, roads, states, crop coverage, mountain ranges etc.
In the implementation these are represented by points, lines, rectangles, surfaces, volumes and
etc. Spatial data have some common characteristics. These type of data are geometric data and
in high dimensions. These data can be either discrete (vector) or continuous (raster). GIS
applications are applied on these types of data.

GEOSPATIAL DATA:
Geospatial data are spatial data associated with a location relative to the Earth.

FEATURE:
A feature is an abstraction of a real world phenomenon. A digital representation of the real
world can be thought of as a set of features.

GEOGRAPHIC FEATURE:
A geographic feature is a feature associated with a location relative to the Earth. Geographic
features are those that may have at least one property that is geometry-valued. [7]

VECTOR DATA:
Vector data deals with discrete phenomena, each of which is conceived of as a feature. The
spatial characteristics of a discrete real world phenomenon are represented by a set of one or
more geometric primitives (points, curves, surfaces, or solids). Other characteristics of the
phenomenon are recorded as feature attributes. [27] Usually, a single feature is associated
with a single set of attribute values.

RASTER DATA:
Raster data deals with real world phenomena that vary continuously over space. It contains a
set of values, each associated with one of the elements in a regular array of points or cells. It

 7

is usually associated with a method for interpolating values at spatial positions between the
points or within the cells. [27]

COVERAGE – COVERAGE DATA:
OGC uses the term “coverage” to refer to any data representation that assigns values directly
to spatial position. A coverage is a feature that associates positions within a bounded space
(its spatiotemporal domain) to feature attribute values (its range). Examples include a raster
image, a polygon overlay, or a digital elevation matrix. [27]
The spatio-temporal domain of a coverage is a set of geometric objects described in terms of
direct positions. Commonly used spatio-temporal domains include point sets, grids,
collections of closed rectangles, and other collections of geometric objects.

SPATIAL REFERENCE SYSTEM:
A spatial reference system is a function which associates locations in space to geometries of
coordinate tuples in a mathematical space, usually a real valued coordinate vector space, and
conversely associates coordinate values and geometries to locations in the real world. [28]

TEMPORAL REFERENCE SYSTEM:
A temporal reference system is a function that associates time to a coordinate (usually one
dimensional points and intervals) and conversely associates coordinate geometries to real
world time. [28]

SPATIAL-TEMPORAL REFERENCE SYSTEM:
A spatial temporal reference system is an aggregation of a spatial system and a temporal
system that it uses to associate coordinate geometries to locations in space and time.
Normally, the aggregation uses orthogonal coordinates to represent space and time, but this is
not necessarily the case in more complex, relativistic environments. [28]

2.2 Related Works

2.2.1 GIS software implementation efforts

2.2.1.1 Server Efforts
(Service providers for the OGC compatible GIS services)

This chapter lists some OGC Compatible servers that they implemented OGC Approved
Specifications [37]. Some of the specifications are abstract some of them are just discussion
papers. We have not mentioned from them in this chapter.

Here you will see some application efforts implementing OGC approved GIS specifications
shown in Figure 1 as red lined boxes.

AskTheSpider: AskTheSpider is the OGC Catalog, where you can submit new server
URL and discover OGC Services by box, keywords, taxonomies and more. More than 1500
layers are already discoverable. Available at http://www.askthespider.com
Client: AskTheSpider integrates a client that allows dynamic search in an OGC WRS
Catalog, a client to register new services and a client to navigate and access to remote

 8

compliant OGC resources (WMS, WFS, Context). AskTheSpider is build with IONIC
RedSpider Studio on top of IONIC RedSpider Catalog. Available at
http://www.askthespider.com/?

Cadcorp GeognoSIS.NET: MassGIS data (www.state.ma.us/mgis) served using
Cadcorp GeognoSIS.NET Web Feature Service. MassGIS data (www.state.ma.us/mgis)
served using Cadcorp GeognoSIS.NET Web Map Service. Available at
http://www.cadcorp.com

CCRS GeoGratis Warehouse: The Canada Centre for Remote Sensing (CCRS) Web
Map Service (WMS) provides an OpenGIS Consortium (OGC) compliant Web Map Service
interface as an online web mapping service of various projects, such as GeoGratis, GeoBase,
and other CCRS information holdings. The CCRS WMS also allows for custom cartographic
styling through the OGC Styled Layer Descriptor (SLD) Specification. Available at
http://demo.cubewerx.com/demo/cubeserv/cubeserv.cgi

CubeWerx CubeSERV WMS: CubeWerx Cascading Map Server with world-wide
VMap Level 0 and other data stores. CubeWerx Cascading Map Server (CubeSERV) supports
all versions of OGC WMS specifications (1.0.0, 1.0.8, 1.1.0, 1.1.1, 1.1.2 and 1.1.3) and can
chain map requests to WMSs from other vendors using any or all of these specifications.
CubeSERV also supports the SLD specification version 1.0.0 and 1.0.20. Available at
 http://demo.cubewerx.com/demo/cubeserv/cubeserv.cgi
Client: CubeWerx CubeXPLOR WMS viewer client accessing CubeWerx cascading map
server. Available at http://demo.cubewerx.com/demo/cubexplor/cubexplor.cgi

Deegree: Deegree is a Java framework for geospatially-enabled solutions. It is based on
common GI standards and allows building applications with spatially referenced content.
Deegree components can be used to either develop a standalone desktop mapping solution to
be locally installed on a user's machine, or to set up a highly distributed and service-based
infrastructure. As the whole architecture of deegree is based on OGC specifications and
concepts, there are no problems to integrate standardized products of other vendors (e.g.
ArcIMS by ESRI(c)). Available at http://deegree.sourceforge.net/
Client: Available at http://demo.deegree.org/

FEMA Q3 Flood Data: This WMS service provides the nation-wide FEMA Q3 Flood
Map. The Q3 Flood Data are derived from the Flood Insurance Rate Maps (FIRMs) published
by the Federal Emergency Management Agency (FEMA). The file is georeferenced to the
earth surface using the EPSG:4326 (latitude/longitude coordinate system). Specifications for
the horizontal control of Q3 Flood Data files are consistent with those required for mapping at
a scale of 1:24000. The map service is for advisory purposes only. Available at
http://www.hazardmaps.gov/wmsRequest.php

GeoServer: The GeoServer project is a Java implementation of the OpenGIS
Consortium's Web Feature Server specification. It is free software. Available at
http://geoserver.sourceforge.net/html/index.php

IGeoPortal: This is the first release of the deegree iGeoPortal. The new client/portal
component of deegree is a modular client which configuration is based on OGC Web Map
Context specification/document. Different modules can offer web map client functionality as

 9

well as functions for gazetteer clients, catalog clients or WFS clients. Available at
http://deegree.sourceforge.net/src/demos.html#client

JUMP: The Java Unified Mapping Platform (JUMP) is a GUI-based application for viewing
and processing spatial data. It includes many common spatial and GIS functions. It is also
designed to be a highly extensible framework for developing and running custom spatial data
processing applications. JUMP supports important industry standards such as GML and the
OpenGIS Consortium spatial object model. Available at http://www.vividsolutions.com/jump/

MassGIS Shared Services Geocoder: MassGIS Shared Services Geocoder
provides statewide address geolocation through a WFS 1.0.0 GetFeature interface. Available
at http://www.mass.gov/mgis/
Client: Oliver - Java Web Start application for browsing maps and metadata from the
MassGIS holdings. Also provides access to gazetteer of place names, geocoding services, and
custom extraction of geodata. Available at http://www.mass.gov/mgis/mapping.htm

MySQL Spatial: "MySQL implements spatial extensions following the specification of
the Open GIS Consortium (OGC). Available at
http://dev.mysql.com/doc/mysql/en/Spatial_extensions_in_MySQL.html

National Atlas of The United States – WMS: Over 400 data layers covering
geological, hydrological, biological, geographical, demographic, and agricultural geospatial
information. Available at http://nationalatlas.gov/natlas/wmsprocess.asp
Client: Available at http://nationalatlas.gov/natlas/natlasstart.asp

OpenMap: BBN Technologies' OpenMap package is a JavaBeans based programmer's
toolkit. Using OpenMap, you can quickly build applications and applets that access data from
legacy databases and applications. OpenMap provides the means to allow users to see and
manipulate geospatial information. This is OGC WMS compatible project. Available at
http://openmap.bbn.com/

PyOGCLib: PyOGCLib aims to develop and distribute a Python based library for the
implementation of the OpenGIS® specifications, notably Web Map Server (WMS) and Web
Feature Server (WFS). By basing the project on Sourceforge, we hope to attract user and
developers who are interested in improving and expanding implementation of the OpenGIS®
specifications in a lightweight, purely Python fashion, prioritizing conformance, simplicity,
portability and ease of use and maintenance. Available at http://pyogclib.sourceforge.net/

USGS_WMS_XXX: (XXX: WMS services listed below)
BTS_Roads() : Bureau of Transportation Statistics, transportation dataset. Served by the
USGS EROS Data Center.
http://gisdata.usgs.net/servlet/com.esri.wms.Esrimap?servicename=USGS_WMS_BTS_Road
s&
LANDSAT7: USGS LandSAT7 imagery
http://gisdata.usgs.net/servlet/com.esri.wms.Esrimap?WMTVER=1.1.0&ServiceName=USG
S_WMS_LANDSAT7
NED: USGS National Elevation Dataset - Shaded Relief
http://gisdata.usgs.net/servlet/com.esri.wms.Esrimap?servicename=USGS_WMS_NED&

 10

NHD : USGS National Hydrography Dataset (NHD) including NHD Waterbodies, NHD
Waterbody Reaches, NHD Transport Reaches and NHD Networks
http://gisdata.usgs.net/servlet/com.esri.wms.Esrimap?servicename=USGS_WMS_NHD&
NLCD : USGS NATIONAL LandCover Database
http://gisdata.usgs.net/servlet/com.esri.wms.Esrimap?servicename=USGS_WMS_NLCD&
REF : Series of layers from USGS that can be used as basemaps
http://gisdata.usgs.net/servlet/com.esri.wms.Esrimap?servicename=USGS_WMS_REF&

2.2.1.2 Client Efforts
(Service requestor for the OGC compatible GIS services)

By the Clients we mean Catalog Client, Map Client, and Data Client. Please see the Figure 1.

Chameleon: Chameleon is a distributed, highly configurable, environment for developing
Web Mapping applications. It is built on OGC standards for Web Mapping Services (WMS)
and WMT Viewer Contexts. Available at http://www.maptools.org/chameleon/

Fulcrum: Fulcrum is a free Java library that includes user interface components, data
models, and utilities useful to Java developers building distributed mapping applications.
While the Fulcrum libraries may be useful for other purposes, it is currently targeted at
creating applications that need to consume map data over a network. The source of the data
can come from stand-alone open source or commercial map servers or from something more
complex such as the OpenGIS Consortium (OGC) Web Services. Available at
http://fulcrum.traversetechnologies.com/

GIServer: The GIServer is an initiative from the inovaGIS project that gives free access to
GIS functions through the Internet. GIServer is compliant with the OGC WMS
specs 1.0 to 1.1. Available at http://www.inovagis.org/giserver/index.asp

Intergraph WMS Viewer: Geospatial Intelligence portal with WRS search and Context
capability. Can use Intergraph WRS or OGC Geospatial portal WRS implemented by
Compusult. Available at http://ogc.intergraph.com/webmapviewer/main.asp

J2ME OGC WMS Client: J2ME OGC WMS Client is a program for accessing OGC
Web map services from Java enabled mobile phone or PDAs. It accesses the OGC WMS
according to WMS 1.1.0 and 1.1.1 specifications and supports zooming and panning in the
Map, WMS sublayers, and a bookmark management system for quick access. Available at
http://www.boege.net/wmsclient_en.html

Mapbender: The Mapbender Client Suite software package provides user interfaces for
displaying, navigating and querying OGC WMS compliant map services. The Mapbender
Client Suite software furthermore contains interfaces for user and group administration and
provides management functionality for accessing maps rendered by Web Map Services.
Available at http://www.mapbender.org/

NASA Web Map Viewer: Basic HTML-only WMS client. Available at
http://viewer.digitalearth.gov/

 11

Owsview Viewer Client Generator : Owsview is a web-based thin client which
supports discovery, access and visualization of supported specifications of the OpenGIS
Consortium (OGC) and Canadian Geospatial Data Infrastructure (CGDI) endorsed
specifications, such as Web Map Service (WMS), Web Feature Service (WFS), Web
Coverage Service (WCS), Styled Layer Descriptor (SLD), Web Registry Service (WRS),
Web Map Context Documents, Catalog Service, Gazetteer Service, Sensor Collection Service
(SCS) and the GeoConnections Discovery Portal API (searching for products and services).
owsview also exemplifies the benefits of a standards based services for chaining between
services for discovery, access and visualization of information holdings. Available at
http://cgdi-dev.geoconnections.org/prototypes/owsview/index.html

QuickWMS: JavaScript classes for creating Web Map clients and interfacing WMS servers
according to OpenGIS Web Mapping Specification (versions 0.7 to 1.1). The goal of this
project is to enable the fast creation of web mapping clients using javascript. The target
browsers are Internet Explorer (version 5.5 and up) and Netscape (7.00 and up) both for
Windows, Mac and Linux. Available at http://www.inovagis.org/quickwms/

2.2.2 Academic GIS application efforts and centers

Indiana University - GIS at Indiana University: Aerial photos and data for
counties, cities, and localities. Miscellaneous vector data are provided. Interactive state maps
to download data and topographic maps. Available at http://www.indiana.edu/~gis/ and
http://www.indiana.edu/%7Egisdata/

MIT - MITOrthoServer: The MIT OrthoServer is a set of components that serve large
collections of geo-image libraries online, in a seamless, multi-resolution fashion. OGC
OpenGIS compatible. Available at http://tull.mit.edu/orthoserver/

Ohio State University - Center for Mapping: The Center for Mapping's mission
includes research in the following topic areas: theoretical frameworks for GIS and spatial
information, automated cartography, GIS representation, multi-media visualization, quality
control, sensor integration/orientation, GPS/IMSU-based navigation, mobile mapping,
photogrammetry, data fusion, experimental instrumentation, image processing, and image
understanding. Available at http://www.cfm.ohio-state.edu/

Penn State University: The geospatial Information System Councils. GIS council
facilitate GIS-related educational and research activities, provides state’s spatial data.
Available at http://www.gis.psu.edu/

Purdue University - CAAGIS: CAAGIS (Center for Advanced Applications in
Geographic Information Systems). Provides Indiana state’s topographic maps, aerial photos,
digital elevation maps (DEMs) and provides interactive maps for the States spatial data.
Available at http://danpatch.ecn.purdue.edu/~caagis/

University of Alabama in Huntsville – SST: Space Time Toolkit (STT) is a Java-
based toolkit that provides advanced capabilities for integrating spatially and temporally-
disparate data within a highly interactive 3D display environment. This is basically Web
Mapping project. Available at http://vast.uah.edu/SpaceTimeToolkit/index.html

 12

University of California at Berkeley - GISViewer: GIS Viewer is a web-based
Java tool for displaying and manipulating layers of geographical points and vectors, and raster
data such as maps and images. Available at http://elib.cs.berkeley.edu/gis/

University of California at Santa Barbara – Alexandria Digital Library:
The Alexandria Digital Library (ADL) is a distributed digital library with collections of
georeferenced materials. ADL includes the operational library, with various nodes and
collections, and the research program through which digital library architectures, gazetteer
applications, educational applications, and software components are modeled, prototyped, and
evaluated. ADL provides HTML clients to access its collections and gazetteer, and provides
specific information management tools, such as the Feature Type Thesaurus for classing types
of geographic features, as well as downloadable software code.

University of Minnesota - Mapserver: MapServer is a CGI-based application for
delivering dynamic GIS and image processing content via the World-Wide Web (WWW).
The package also contains a number of stand alone applications for building maps, scale bars
and legends offline. Access to the development environment of MapServer is possible with a
number of different programming languages. MapServer supports several Open Geospatial
Consortium web specifications: WMS (client/server), non-transactional WFS (client/server),
WCS (server only), WMC, SLD, GML and Filter Encoding. OGC OpenGIS compatible.
Available at http://mapserver.gis.umn.edu/

University of Wisconsin-Madison - Paradise: A Parallel Database System for
GIS Applications. The objective of the Paradise project is to design, implement, and evaluate
a scalable, parallel geographic information system that is capable of storing and manipulating
massive data sets. Available at http://www.cs.wisc.edu/paradise/

York University - OGC 3D Client: Developed by GeoICT Lab at York University,
OGC 3D Client has been successfully applied in OGC CIPI-1 initiative. As an server- and
platform- independent client, its key features include: Pure Java Client, Compliance with
OGC WMS and WCS, Accessing and operating DEM, Image and vector data through OGC
WMS, WCS and XML, 2D zoom, pan, query, overlap, 3D zoom, rotation, query, profile,
flood, etc. Available at http://www.geoict.net/GSN_main_ogc.htm

2.2.3 Other non-OGC efforts

ESRI: ESRI produces tools and software packages that enable you to build intelligent
geographic information systems. Some of them are for GIS Clients such as ArcReader,
ArcView, ArcEditor, ArcInfo, and some of them for GIS servers such as ArcIMS, ArcGIS,
ArcSDE, GIS Portal Toolkit. Available at http://www.esri.com/

GDAL: GDAL is a translator library for raster geospatial data formats that is released under
an Open Source license. As a library, it presents a single abstract data model to the calling
application for all supported formats. This service is related to file format conversion services.
Available at http://www.remotesensing.org/gdal/

 13

Geographic information / Geomatics: This is standardization in the field of digital
geographic information. This work aims to establish a structured set of standards for
information concerning objects or phenomena that are directly or indirectly associated with a
location relative to the Earth. These standards may specify, for geographic information,
methods, tools and services for data management (including definition and description),
acquiring, processing, analyzing, accessing, presenting and transferring such data in
digital/electronic form between different users, systems and locations.
Available at http://www.isotc211.org/

GRASS: GRASS GIS (Geographic Resources Analysis Support System) is an Open Source
Geographical Information System (GIs) with raster, topological vector, image processing, and
graphics production functionality that operates on various platforms through a graphical user
interface and shell in X-Windows. This is related to Base GIS Visualization, Remote Sensing,
Flights, File-format conversion, Projection conversion, Customizable with Add-ons.
Available at http://grass.itc.it/index.php

GeoTools: Geo Tools is a free Java based mapping toolkit that allows maps to be viewed
interactively on web browsers without the need for dedicated server side support. Available at
http://www.geotools.org/

GISToolKit: The GISToolkit software is a java toolkit for building spatially enabled
applications. It has some ability to read data from a variety of data sources, and to display
that data. It can directly edit geographic features stored in databases to which it has access.
Available at http://gistoolkit.sourceforge.net/

GML4J: GML4J is a Java API for facilitating work with the Geography Markup Language
(http://www.gmlcentral.com). GML is an XML-based framework for encoding geography
information adopted as a recommendation paper by OGC. Currently only support read access.
This service is related to file format conversion services. Available at
http://gml4j.sourceforge.net/

KDEM: kdem is a program for displaying United States Geological Survey (USGS) Digital
Elevation Models (DEMs). This is related to Visualization, Interactive Viewing. Available at
http://www.mindspring.com/%7Ejamoyers/kdem/

Mapyrus: Mapyrus is software for creating plots of points, lines, polygons and labels to
PostScript, PDF and web image output formats. The software combines the following three
components: A Logo or turtle graphics language, reading of GIS datasets and RDBMS tables,
running as a stand-alone program or as a web-server. Available at
http://mapyrus.sourceforge.net/

NetMaps: NetMaps is a Java applet that allows one to view vectorial maps in any Java
enabled browser. NetMaps can load and display ArcInfo shapefiles (SHP/DBF) and MapInfo
MIF/MID files. This is basically web mapping project. Available at
http://www.sitex.ro/netmaps/

OpenSVG Mapserver: An open source solution for publishing ArcView shapefiles
with attributes to the web based on html, SVG, javascript, php and mysql database. It supports
interactivity and filtering. Available at http://www.carto.net/projects/open_svg_mapserver/

 14

Thuban: Thuban is an Interactive Geographic Data Viewer with the following features: 1)
Navigation Zoom In/Out, Pan 2) Identify Attributes by object selection, objects by record
selection. 3) Layer Management Layer types: Line, Polygon, Point, Georeferenced Image 4)
Legend Editor Visual appearance of objects can be controlled. 5) Table Management Query
and join tables. 6) Printing Print and export maps for further processing. Available at
http://thuban.intevation.org/

Terralib: TerraLib is a GIS classes and functions library, allowing a collaborative
environment and its use for the development of multiple GIS tools. TerraLib aims to provide a
large set of data structures and algorithms for GIS developers. Available at
http://www.terralib.org/

USGS (US GEOLOGICAL SURVEY): is responsible for building, maintaining,
and applying The National Map. USGS provides scientific information to describe and
interpret America's landscape by mapping the terrain, monitoring changes over time, and
analyzing how and why these changes have occurred. USGS behaves as a geographic data
provider for the other GIS projects and applications. Available at http://store.usgs.gov/

WinDisp: Windisp is software package for the display and analysis of satellite images,
maps and associated databases, with an emphasis on early warning for food security. WinDisp
was originally developed for the FAO Global Information and Early Warning
System. Available at http://www.fao.org/giews/english/windisp/windisp.htm

3 OGC OpenGIS Specifications

OpenGIS is the activity pursued by the OGC to form bases of the interoperability between
GIS services such as mapping services, data services, and portrayal services. OpenGIS tries to
achieve its interoperability aims by providing a rich suite of open interface and
implementation specifications. Some of these specifications are used in our GIS project and
explained in Chapter 3.1 in detail but the other approved specifications will be mentioned in
this chapter roughly. These interface specifications will enable GIS developers to create
interoperable components.

OGC OpenGIS Specifications enables you to get, mix and match your GIS services from
multiple sources over the web. [29] These sources might be from different vendors and
different geographic areas but they must be implemented according to approved OGC
OpenGIS specifications. The approved OGC specifications are displayed in the Figure 1.

 15

Figure 1 : Approved OpenGIS Specifications. Figure is created from the specification
definitions at http://www.opengeospatial.org/specs/?page=specs

Web Catalog Server: Defines a common interface that enables diverse but conformant
applications to perform discovery, browse and query operations against distributed and
potentially heterogeneous catalog servers. Please see the Chapter 3.1.3.3 for more information
[16].

Coordinate Transformation Server: Provides interfaces for general positioning, coordinate
systems, and coordinate transformations. [34]

Geography Markup Language: The Geography Markup Language (GML) is an XML
encoding for the transport and storage of geographic information, including both the geometry
and properties of geographic features. Please see the Chapter 3.1.3.1 for more information.
[10]

Simple Features - CORBA : The Simple Feature Specification application programming
interfaces (APIs) provide for publishing, storage, access, and simple operations on Simple
Features (point, line, polygon, multi-point, etc). [32]

Simple Features – SQL: The Simple Feature Specification application programming
interfaces (APIs) provide for publishing, storage, access, and simple operations on Simple
Features (point, line, polygon, multi-point, etc). [30]

 16

Simple Features – OLE/COM: The Simple Feature Specification application programming
interfaces (APIs) provide for publishing, storage, access, and simple operations on Simple
Features (point, line, polygon, multi-point, etc). [31]

Styled Layer Descriptor : The SLD is an encoding for how the Web Map Server (WMS 1.0 &
1.1) specification can be extended to allow user-defined symbolization of feature data. [6]

Web Coverage Server: Extends the Web Map Server (WMS) interface to allow access to
geospatial "coverages" that represent values or properties of geographic locations, rather than
WMS generated maps (pictures). [13]

Web Feature Server: The purpose of the Web Feature Server Interface Specification (WFS) is
to describe data manipulation operations on OpenGIS® Simple Features (feature instances)
such that servers and clients can “communicate” at the feature level. Please see the Chapter
3.1.3.2 for more information. [7]

Web Map Context: Create, store, and use "state" information from a WMS based client
application. [33]

Web Map Server: Provides three operations protocols (GetCapabilities, GetMap, and
GetFeatureInfo) in support of the creation and display of registered and superimposed map-
like views of information that come simultaneously from multiple sources that are both
remote and heterogeneous. Please see the Chapter 3.1.1 for more information. [4]

Filter Encoding: A filter is a construct used to describe constraints on properties of a feature
class for the purpose of identifying a subset of feature instances to be operated upon in some
way. [35]

In addition to these Approved Specifications [37] there are other Abstract Specifications [38],
Recommendation Papers [39], and Discussions Papers [40].

3.1 OGC OpenGIS Specifications we have been using
in our GIS project

In Chapter 3 we give general information about the OGC OpenGIS specifications. Here in this
chapter there will be more detailed information about the specifications which we have been
using in our GIS project.

3.1.1 WMS Specifications

Web Map Service produces maps from geographic data. A map is not the data itself. Maps
create information from raw geographic data. Maps are generally rendered in pictorial formats
such as jpeg, GIF, png. WMS also produce maps from vector-based graphical elements in
Scalable Vector Graphics (SVG) [26].

 17

Basically there are two types of WMS defined in the specifications. These are basic WMS and
SLD-enabled WMS. For the basic WMS, there are three operations defined. These are
getCapabilities, getMap, GetFeatureInfo. For the detailed explanations about the descriptions
and compatibility requirements for these requests please see Chapter 3.1.2. If the WMS is
SLD-enabled then there will be four more operations supported, describeLayer,
getLegendGraphics, getStyles and putStyles. DescribeLayer is used for asking an XML
description of a map layer [5]. GetLegendGraphics is used for acquiring the legend symbols.
GetStyles is used for retrieving user-defined styles from WMS. PutStyles is used for storing
user-defined styles into WMS. In this document, from now on, we will be just mentioning
about the basic WMS. Unless we say SLD-enabled all the word WMS used in this document
represent for basic WMSs.

The distributed computing platform supported by the OGC WMSs is HTTP. HTTP supports
two request methods, GET and POST. One or both can be supported by the WMS and at each
case URL format changes. Support for the GET method is mandatory but support for the
POST method is optional. WMS operations are invoked by submitting requests in the form of
Uniform Resource Locators (URLs). The content of these URLs depends on the operations
and the parameters of the requests. Detailed parameter lists, parameter types and sample
parameters are given in Chapter 3.1.2.

WMS publishes its ability and data holdings in its capabilities document. This document is
encoded in XML. WMS classifies its geographic data holdings in the “Layers” and gives
information about the styles available for these Layers. Each layer can have sub layers and the
sub layers can have different styling defined for them. [4]

3.1.2 WMS Client

There is no official specification defined for the Web Map Client. Clients are thin clients and
just invoke WMS operations by submitting requests in the form of Uniform Resource
Locators (URLs). Users can set the required parameters by getting the values from the users
by using user interface created for them. User interfaces can be created using jsp, JavaScript
etc.

There are three operations defined by WMS specifications. GetCapabilities and GetMap are
required and GetFeatureInfo is optional. For the detailed information about WMS and its
operations please see Chapter 3.1.1 and/or OGC WMS specifications [4]. WMS clients
interact with the existing WMSs by using these interfaces which are implemented as Java
Servlets. Interfaces, operations and requests for these operations are well defined in the OGC
specifications. Requests should have some parameters in defined formats and numbers. Below
we will explain the requests for these three operations briefly in tabular fashion.

GetCapabilities Request:
GetCapabilities request is for obtaining service metadata, which is machine readable
description of the information of the servers.

 18

OGC Required Parameters Description Example Value
VERSION Requested Version 1.1.1
SERVICE Service Type WMS
REQUEST Request Name getCapabilities
FORMAT Output format of service metadata text/plain
UPDATESEQUENCE* Sequence Number or string for

cache control
Any string value

Table-1: The Parameters of the GetCapabilities Request.
 (*) values are not implemented in our project

Sample GetCapabilities request:
http://toro.ucs.indiana.edu:8080/deegreewms/wms?REQUEST=GetCapabilitie
s&VERSION=1.1.1&SERVICE=WMS

Please see Chapter 4.2 and Figure 2 to see how to invoke getCapabilities operations when
WMSs are implemented as Web Services.

GetMap Request
It basically returns a map in specified format. Format is specified in getMap request by the
WMS Client. Upon receiving getMap request WMS either sends a map or an exception.

OGC Required
Parameters

Description Example Value

VERSION Request version 1.3.0
REQUEST Request name getMap
LAYERS Comma-separated list of one or more map layers layer_list (Indiana:rivers)
STYLES Comma-separated list of one rendering style per

requested layer.
Style_list(user-defined)
(ex:Blue-broken)

CRS Coordinate reference system namespace:identifier
(ex:EPSG:4326)

BBOX Bounding box corners (lower left, upper right) in
CRS units

minx,miny,maxx,maxy
(ex:3,4,78,45)

WIDTH Width in pixels of map picture 300
HEIGHT Height in pixels of map picture 400
FORMAT Output format of map Image/jpeg
TRANSPARENT Background transparency of map

(default=FALSE).
true

BGCOLOR Hexadecimal red-green-blue color value for the
background color (default=0xFFFFFF)

0xfff8ff

EXCEPTIONS* The format in which exceptions are to be
reported by the WMS (default=XML).

application/vnd.ogc.se_inima
ge

TIME* Time value of layer desired 20030409
ELEVATION* Elevation of layer desired 1000
Other sample
 dimension(s)

Value of other dimensions as appropriate

Table-2: The Parameters of the GetMap Request
(*) values are not implemented in our project

 19

Sample GetMap request:
http://toro.ucs.indiana.edu:8080/deegreewms/wms?service=WMS&VERSION=1.1.1&REQUES
T=GetMap&LAYERS=Indiana:county83,Indiana:railroad83&STYLES=default&SRS=EPSG:432
6&BBOX=528343.087726371,4434873.868501969,564476.4342992618,4478218.803239176
&WIDTH=400&HEIGHT=300&FORMAT=image/jpg&BGCOLOR=0xfff8ff&TRANSPARENT=tru
e&EXCEPTIONS=application/vnd.ogc.se_inimage

Please see Chapter 4.2 and Figure 3 to see how to invoke getMap operations when WMSs are
implemented as Web Services.

GetFeatureInfo Request
GetFeatureInfo is an optional operation. This operation is supported for only the layers whose
attribute ‘queryable’ set to 1. A client can not make GetFeatureInfo request for the other
layers. Clients need this operation to get more information about the feature displayed as a
map on the screen. Returned format is defined in WMS capabilities document. Table-3 gives
you more information about the getFeatureInfo request and its parameters.

OGC Required
 Parameters

Description Example Value

VERSION Request version 1.3.0
REQUEST Request name GetFeatureInfo
map request part Partial copy of the Map request parameters

that generated the map for which information
is desired

From getMap request

QUERY_LAYERS Comma-separated list of one or more layers to
be queried

layer_list
(ex: Indiana:county83

INFO_FORMAT Return format of feature information (MIME
type).

text/xml

FEATURE_COUN
T

Number of features about which to return
information (default=1).

1

I coordinate in pixels of feature in Map CS 34
J coordinate in pixels of feature in Map CS 67
EXCEPTIONS* The format in which exceptions are to be

reported by the WMS (default= XML).
application/vnd.ogc.se_inimage

Table-3: The Parameters of the GetFeatureInfo Request
(*) values are not implemented in our project. The others are not completed totally.

Sample GetFeatureInfo request:
http://toro.ucs.indiana.edu:8080/deegreewms/wms?REQUEST=GetFeatureInfo
&WIDTH=640&HEIGHT= 480&BBOX=-110.,40.,-80.,30.&VERSION=1.1.1&SRS=EPSG:
4326&QUERY_LAYERS=Indiana:county83&X=12&Y=165

Please see Chapter 4.2 and Figure 4 to see how to invoke getFeatureInfo operations when
WMSs are implemented as Web Services.

 20

3.1.3 Other OGC Specifications

In this chapter, there will be brief explanations about three different specifications defined by
the OGC. These are Geographic Markup Language (GML) Specifications, Web Feature
Service (WFS) specifications, and Catalog Services (CAT) specifications. The reason that we
are explaining these three specifications in a WMS related document is that they have some
interconnections with WMS. In this section we will mention about the OGC requirements for
these services. Interactions of these services with the WMS will be explained in the section
5.1.3.

3.1.3.1 Geographic Markup Language (GML) Specification
GML is an XML encoding for the transport and storage of geographic information, including
both the spatial (attributes) and non-spatial (geometric) properties of geographic features.
XML feature instances which are compliant to this specification shall validate against a
conforming application schema. A conforming application schema shall import the Geometry
schema (geometry.xsd) the Feature Schema (feature.xsd) and the XLinks schema (xlinks.xsd)
as base schemas. [10]

A feature is an abstraction of a real world phenomenon; it is a geographic feature if it is
associated with location relatives to the earth such as faults, rivers, roads, lakes. All the
feature instances should be created according to these schema files and encoded in GML.

 WMS requests feature data from the WFS in the form of GML. WFS store and serve the
geospatial data encoded in GML. Since these schema files are too long we did not put them in
this document. To give an idea about how to visualize a simple feature we just documented
geometry.xsd to some degree of detail in APPENDIX-6

For the schema files please see the GML specification document. [10]

3.1.3.2 Web Feature Service (WFS) Specifications
WFS store and serve the geospatial data encoded in GML. The WFS operations support
INSERT, UPDATE, DELETE, QUERY and DISCOVERY operations on geographic features
using HTTP as the distributed computing platform. You can create, delete or update a feature
instance, get or query features based on spatial and non-spatial constraints.

WFS services are grouped into two categories, Basic WFSs and Transaction WFSs.

Basic WFSs provide GetCapabilities, DescribeFeatureType and GetFeature operations. These
operations are explained below.

GetCapabilities: A web feature service must be able to describe its capabilities.
Specifically, it must indicate which feature types it can service and what operations
are supported on each feature type.

DescribeFeatureType: A web feature service must be able, upon request, to describe
the structure of any feature type it can service.

GetFeature: A web feature service must be able to service a request to retrieve
feature instances. In addition, the client should be able to specify which feature

 21

properties to fetch and should be able to constrain the query spatially and non-
spatially. [7]

Transaction WFSs support all the operations of Basic Web Feature Services and implement
transaction operations. Transaction WFSs can also implement LockFeature operation
optionally. These additional operations are described below.

Transaction: A web feature service may be able to service transaction requests. A
transaction request is composed of operations that modify features; that is create,
update, and delete operations on geographic features.

LockFeature: A web feature service may be able to process a lock request on one or
more instances of a feature type for the duration of a transaction. This ensures that
serializable transactions are supported. [7]

We have been implementing just Basic WFS. From now on by the WFS we
will mean Basic WFSs.

3.1.3.3 Catalog Services (CAT) Specifications
Catalogue services support the ability to publish and search collections of descriptive
information (metadata) for data, services, and related information objects. Metadata in
catalogues represent resource characteristics that can be queried and presented for evaluation
and further processing by both humans and software. Catalogue services are required to
support the discovery and binding to registered information resources within an information
community. [16]

According to specification WMS and WFS can make metadata update on CAT. WMS and
WMS Client can make metadata search on CAT. CAT stores and serves metadata about the
services. CAT is too complicated and need to be explained in detail. Since we have not
implemented it and used our own catalogue service (IS-Information Discovery Service) [12]
we will finish the explanation of the OGC CAT here.

 22

4 Applicability of Web Service Architecture on to
OGC GIS Services

We have implemented standard three operations of OpenGIS as Web Services. These are
getCapabilities service, getMap service and getFeatureInfo service.

Web Services give us a means of interoperability between different software applications,
running on a variety of platforms. A Web Services support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable format.
Web Service interface are described in a file called Web Service Description Language
(WSDL) [23] file. Other systems interact with the Web Service in a manner as described in
WSDL using Simple Object Access Protocol (SOAP) messages.

SOAP [22] is an access protocol for exchanging the information in distributed environment. It
is an XML based protocol and has three parts for message exchange. These are the envelope,
the encoding rules and the Remote Procedure Call (RPC) convention. SOAP can be used in
combination with some other protocols such as HTTP. OGC compatible Web Services will be
using SOAP over HTTP.

WSDL files are written as XML documents. WSDL is used for describing and locating Web
Services. Web Services are defined by four major elements of WSDL, “portType”,
“message”, “types” and “binding”. Element portType defines the operations provided by the
Web Services and the messages involved for these operations. Element message defines the
data elements of the operations. Element types are data types used by the Web Service.
Element binding defines the communication protocols.

We have used Apache Axis for creating and publishing the Web Service. Axis takes care of the
SOAP communication between server and the client. Axis 1.1 has proven itself to be a
reliable and stable base on which to implement Java Web Services.

The premise of the SOAP experiment is the belief that porting OGC services to Web Services
will offer several key benefits, including:

Distribution: It will be easier to distribute geospatial data and applications across
platforms, operating systems, computer languages, etc.

Integration: It will be easier for application developers to integrate geospatial
functionality and data into their custom applications.

Infrastructure: The GIS industry could take advantage of the huge amount of
infrastructure that is being built to enable the Web Services architecture – including
development tools, application servers, messaging protocols, security infrastructure,
workflow definitions, etc. [15]

Easy to extend: Web Services have lots of specifications. By using any configuration
of these specifications we will make our implementation more secure, more robust
and fault tolerant as Web Service specs improve themselves.

 23

4.1 OGC Compatibility with the Web Services

The WMS OpenGIS Specification specifies the implementation and use of the WMS
operations (GetCapabilities, GetMap and GetFeatureInfo) in the Hypertext Transfer Protocol
(HTTP) Distributed Computing Platform (DCP). Web Map Service operations can be invoked
using a standard web browser by submitting requests in the form of Uniform Resource
Locators (URLs). In the specification it is also said that future version may apply to other
Distributed Computing Platforms such as web-services. But they have not added this
capability into their specification documents yet.

Web Services use SOAP for messaging. SOAP is an XML protocol. SOAP provides an
envelope that encapsulates XML data for transfer through the web infrastructure (e.g. over
HTTP, through caches and proxies), with convention for Remote Procedural Calls (RPCs) and
a serialization mechanism based on XML Schema data types. SOAP is being developed by
W3C in cooperation with the Internet Engineering Task Force (IETF). [17]

In the current version of the WMS, requests are done by the user with HTTP GET and POST,
and Web Map Server has main java Servlet to respond these requests. Since our distributed
computing platform will be SOAP over HTTP we will be implementing map services as Web
Services. It seems that it is a conflict but without violating the specification we solved this
conflict and explained the architecture details in this document. This is a partial solution and
we used cascading WMS concept defined in OGC Specifications.

In addition to fundamental conflict encountered above, we had encountered some minor
technical problems.

For the efficiency we made a decision about using the castor source files to manipulate all the
XML files in the project. Data binding frameworks such as Castor [20] or XMLBeans [21]
take XML Schemas as input and produce java sources. But one major problem with these
frameworks is that sometimes it is not easy to find an object oriented correspondence of the
XML Schema constructs. In such cases either the source codes can not be generated or
generated source codes may not produce correct XML instances.

Some of the XML Schema types -such as substitutions and abstract types- used in OGC
Schemas are currently not supported by Castor. We had to make several changes to make
these schemas compatible with Castor Source Generator. Modifications are done just for the
latest versions of the schema files of the GIS services. These modifies schemas are available
at http://complexity.ucs.indiana.edu/~asayar/ogc/modified/.

In general OGC Schemas use substitution to express a group of elements can be used
interchangeably. Since Castor does not support substitution groups we had to find a way
around this problem and we have used choices to solve the problem.

 24

4.2 How to create valid requests to WMS in case of
using Web Services

Invoking WMS operations should be according to specifications. OGC compatible requests to
WMS are well defined in the WMS specifications and we mentioned from them in Chapter
3.1. Requests must have some parameters whose names, numbers, and values assigned to
them should obey the rules defined in the specifications to be OGC compatible. In this chapter
we have tried to define these requests in the schema files to use them in accordance with the
GIS services implemented as Web Services.

These schema files are created to be used during the invocation of operations implemented as
Web Services at the WMS side. [15] Requests are created at the WMS Client side. Clients
create these requests after getting required parameter from the user. When request is ready,
client sends this request to WMS. WMS has deployed Web Services for each service, getMap,
getCapabilities and getFeatureInfo. Clients use client stubs created before to invoke these
specific Web Services. All these services in WMS take one String parameter. This String
parameter is request itself. These requests are actually xml documents in String format.

Below schema files are created with the help of Altova XmlSpy.

To see the sample Requests according to Figure 2, Figure 3 and Figure 4 please see
APPENDIX-3.

Figure 2 : GetCapabilities Request Schema (GetCapabilities.xsd)

 25

Figure 3 : GetMap Request Schema (GetMap.xsd)

GetMap request is created for our WMS implementation. We have not implemented Styling
capability yet. Styling capability will be added soon, for the current status and the future
works please see the Chapter 6. WMS supporting styling are called SLD-enabled WMS. The
Open GIS Consortium (OGC) Styled Layer Descriptor (SLD) specification [6] defines a
mechanism for user-defined symbolization of feature. An SLD-enabled WMS retrieves
feature data from a Web Feature Service [7] and applies explicit styling information provided
by the user in order to render a map.

In our project since we have just implemented Basic WMS, we have not used elements related
to styling in the WMS requests. For defining styling in the getMap request we use
StyledLayerDescriptor element. StyledLayerDescriptor has other sub elements and attributes.
For more information please see APPENDIX-2.

 26

Figure 4 : GetFeatureInfo Request Schema (GetFeatureInfo.xsd)

 27

5 Developing Web Service Compatible Versions
of OGC Services

We have tried to combine our Web Services based implementation of GIS systems with the
third party GIS systems. Third party systems use HTTP as distributed computing platform.
This chapter explains the implementation details of the OGC specifications mentioned in
Chapter 3.1.

5.1 Implementation of OGC Specs

This section is a kind of explanation of Figure 5. OGC specifications are roughly described in
chapter 3.1. In this chapter we will describe all the functionalities of the elements in Figure 5.

Figure 5 : OGC Compatible GIS Web Services Architecture. Some of the WFSs are service
oriented some are not. Instead of OGC’s CAT, we have used service oriented IS-Discovery
implemented by CGL.

 28

5.1.1 WMS Implementation

WMS gets three different requests. We tried to explain what it does when it gets these
requests. We also tried to explain how, when and why it needs operations of other OGC
Services such as Web Feature Services and Catalog Services. All the functionalities of our
OGC compatible WMS applications are grouped into different categories by the questions
below.

What does WMS do when it receives
 1- getCapabilities Request?:

WMS keeps its capability document in local file system. When a
getCapability request comes, WMS reads its capability document from a
file into a String object and returns it back to WMS client. An example of a
WMS capabilities file is given in APPENDIX-5. This part of
implementation is totally completed.

2- getMap request?:
 WMS first parses the parameters and their values from getMap request

coming from WMS Client. Depending on these parameters it might need to
make some other requests to some other GIS services (see Chapter 5.1.3).
WMS first defines what layers are requested in which boundingbox in
which form etc. After defining all the request parameters, it makes
find_service and getAccess_point requests to IS to determine the WFS
providing requested feature data. These requests are IS Web Service
requests. To be able to call IS services we should first create service client
stubs. getAccess_point returns the wsdl address of the WFS that provides
the requested feature. WMS makes getFeature request to this WFS and gets
the requested feature data in GML format. If the format parameter in
getMap request is Scalable Vector Graphics (SVG), then WMS creates
SVG from returned feature data by using its geometry elements. After
creating SVG file, we can easily convert the SVG file into any other image
formats such as png, giff, jpeg etc. Apache Batik provides libraries for this
conversion. Batik is a Java(tm) technology based toolkit for applications or
applets that want to use images in the SVG format for various purposes,
such as viewing, generation or manipulation. Creating an SVG file from
geometry elements of the received feature data is a little hard. Schema files
for the geometry elements are well defined. By using these schema files we
created elements to visualize the feature data. These elements are basically
Point, Polygon, LineString, LinearRing, MultiPoint, MultiPolygon,
MultiGeometry etc.

There are basically two main ways to create an image from the simple
features. First one is to create SVG file and convert it into any image
format. Second is using java graphics2D libraries. First create graphics
object then overlay another layers created as graphics object. We have been
using both ways in different places but we saw that images drawn with
graphics2d are with higher quality then the images drawn by SVG
conversion. When first way is not necessary we will be using the second

 29

approach mostly. Below you will see a sample code for giving some idea
how to overlay two different layers from two different WMSs.

Note: This is not a real code!:

URL url = new URL(http://www.demis.nl/mapserver/request.asp?REQUEST=
map&WMTVER=1.0.0&BBOX=-124.85,32.26,113.56,42.75&SRS=EPSG:4326
&HEIGHT= 300&WIDTH=400&FORMAT=JPEG&BGCOLOR= 0xFFFFFF&
LAYERS=Bathymetry,Countries,Topography&STYLES=,,&TRANSPARENT=TR
UE);

BufferedImage im = ImageIO.read(url);
Graphics2D g = im.createGraphics();
…
 if(istherePoint)
 String[] points = getPointsFromFeatureData();
if(isthereLineString)
 String [] LineStrings = getLineStringFromFeatureData();
if(isthereLineRing)
 String [] LineRings = getLineRingFromFeatureData();
if(istherePolygon)
 String [] polygons = getPolygonsFromFeatureData();
…
…

if(polygons!=NULL){

for(int i=0; i<polygons. length; i++){
 int [][] xypoints = wm.getXYpoints(polygons[i]);
 g.setColor(Color.darkGray);
 g.drawPolygon(xypoints[0], xypoints[1], xypoints[0].length);
}

}
if(LineRings!=NULL){

for(int i=0; i< LineStrings. length; i++){
 int [][] xypoints = wm.getLinesInStr(LineStrings[i]);
 g.setColor(Color.darkGray);
 g.drawPolyline(xypoints[0], xypoints[1], xypoints[0].length);
 }

}
…
g.dispose();
…

 Sample output:

Check all the
geometry data of
the feature, Point,
LineString
Polygon etc.

If you find any
geometry data above
such as Points,
LineStrings, convert
the numbers in the
GML file for the
feature data into
appropriate format
to draw shapes for
representing these
geometry elements
and display them by
using graphics2D
object. If you use
the same
grpahics2D data the
layers will be
overlaid.

 30

This code shows how to put two layers on each other by using

cascading WMS approach defined according to OGC WMS specification.
Here we are putting state boundaries layer over California Base map.

WMS gets ‘state boundaries’ data from our implementation of WFS. WFS
provides feature data in vector format. This data is encoded in GML.
California base map is created from coverage data. Since we have not
implemented WCS (Web Coverage Service) so far, we are using third party
WMS (from demis.nl)[25] to get maps crated from coverage data. Cascaded
WMS returns image in specified format as defined in the getMap request
above. Since these two different layers from different WMSs have same
boundingbox values and same width and height, they can be overlayed.
(Please note there are lots of details not shown in this code.)

Since we have not implemented SLD-enabled WMS we have been

using hard coding whenever we needed styling for the geographic data. For
example for the river data we have used blue as color of the river data and
for the boundary-lines feature data we have used darkGrey. You can see a
simple example in the above code about how to make styling by using
graphics2D libraries. When we implemented our WMS as SLD-enabled we
will use more complex styling facilities and operations of the graphics class
and graphics2D objects.

Most of the implementation is done but as described in WMS

specification there are lots of details that should be handled. To make our
WMS 100% compatible to OGC we need to handle these implementation
details. We have finished almost 70% of the details mentioned in the
specification. As we noted at Chapter 3.1.2 and Table2, there are some
parameters in the getMap request that are not handled. Since these are not
crucial elements (and not mandatory) in the request and most of the WMSs
and WMS Clients do not use these parameters we postponed the
implementation of these parts.

3- getFeatureInfo request?

 We have not finished implementation yet but we are still working on
it. We have finished almost 40% of the implementation. For the time being
we are just getting the feature data as it is in the form of GML and display
on the screen as a text. We are working on creating XSL (Extensible
Stylesheet Language) [19] file to convert geographic data in the form of
GML into appropriate good looking output.

When the WMS get getFeatureInfo request it makes a getFeature request to
WFS. WFS provides these OGC compatible service interface as Web
Services. getFeature operation is one of these operations that WFS provides.
Since WMS is stateless it does not keep states of each WMS Client. WMS
first find out what features are requested and then find out the WFS address
which provides this feature. To figure out the WFS address WMS makes a
search request to IS. IS defines its search criteria in its WSDL file. WMS
gets the result from IS (service address), makes another request to WFS to
get the feature in a given boundingbox. After receiving requested feature as

 31

a string encoded in GML from WFS, WMS sends it to WMS Client in a
format that is defined in the getFeatureInfo request.

When does WMS make

1- getFeature request? (TO WFS):
When WMS Client make a request for a layer which consists of vector

data or simple feature data then WMS needs this data before starting to
draw an image. To get this data it should make a getFeature request to
WFS. WFS addresses are defined in the WMS capabilities document. Or if
you use our IS implementation as catalog service, you can find WFS
addresses by making find_service and getAccess_point requests to IS. In
short, WMS makes this request to WFS when it receives getFeatureInfo and
getMap request from the WMS Client.

2- describeFeatureType request? (TO WFS):
To be able to respond getFeatureInfo requests from WMS Clients,

WMS should make a describeFeatureType requests to WFS. WMS makes
this request to WFS to get schema of the specific feature data. After getting
schema file WMS knows how to parse and get the information from the
feature data encoded in GML.

3- find_service request? (TO IS):
When WMS Clients make getFeatureInfo or getMap request to WMS,

WMS needs to find out which WFSs provide the requested geographic data.
When WMS needs to find out specific WFS service address, WMS makes
find_service request. WMS search the WFS service address by using the
geographic data name as search criteria. To do that WMS sends its search
request to IS. Search request includes search criteria. Search criteria can be
just one property or more than one property. So far we have been using just
one property. It is called as “feature_name”. By giving feature name we
search the catalog in IS and IS returns the WFS wsdl URL value providing
this feature data. For example if we set the search criteria as feature_name
and give the value as “Indiana” IS is going to return WFS address for the
this feature data. If there is more than one WFS providing any geographic
data that their feature names include “Indiana” IS is going to return them in
the String array.

5.1.1.1 Cascading WMS
To have a cascading WMS would mean that clients could ask a WMS for map layers, which
the WMS does not serve by itself, but is able to receive from other WMS. The client would
thereby not need to keep track of several WMS servers; it only has to be aware of one. The
client simply asks the WMS for map layers and the WMS delivers the map layers to the
client. If the information comes from the WMS server itself, or from a remote WMS, is not
important to the client. As you will see in our application Indiana map set and California base
map come from third party remote WMS servers. [4]

 32

Having a cascading WMS would give an abstraction level towards the client and make it easy
to change the system infrastructure behind the WMS server, through which the client has
connection. Without the knowledge of the client, WMS and WFS servers can be added or
removed. In the same way, WFS servers are possible to cascade. We have not implemented
this kind of cascading yet.

A Cascading Web Map Server is a WMS which aggregates the contents of several individual
WMSs into one service that can be accessed by clients. Cascading WMS acts like a client to
the other WMSs and as a server to the clients.

When two or more maps are produced with the same Bounding Box, Spatial Reference
System, and output size, the results can be accurately layered to produce a composite map.
The use of image formats that support transparent backgrounds allows the lower Layers to be
visible. Furthermore, individual map Layers can be requested from different Servers. The
WMS GetMap operation thus enables the creation of a network of distributed map servers
from which WMS clients can build customized maps.

A particular WMS provider in a distributed WMS network need only be the steward of its
own data collection (In our application California data). This stands in contrast to vertically-
integrated web mapping sites that gather all of the data in one place that is to be made
accessible by their own private interface.

A cascading map server reports the capabilities of other WMS server(s) as its own and
aggregates the contents of several distinct WMS servers into one service. In most cases, the
cascading map server can work on different WMS servers that cannot serve particular
projections and formats themselves. [5]

Figure 6 : The concept of Cascading Web Map Server

 33

5.1.2 WMS Client Implementation

There are two different map sets defined in the WMS capabilities document. These are
California and Indiana. When client first time opened the client interface page, these two map
sets are defined and listed in the "Select Layers for [Dropdown List]". Dropdown lists all this
general map sets that cascading WMS provides. Under these general map sets there are some
layers to be used creating maps. For the sample Capabilities file for the actual WMS please
see APPENDIX-5.

When you select California map from the dropdown list, WMS client makes a new
getCapabilities request to WMS. WMS sends all the available layers for these California map
set. These layers are listed as select options, by selecting these layers you can overlay on each
other and create different maps. Every time you add or remove a layer/ layers you should
"Redraw map!”.

Since we have been implementing thin clients for the regular users all the heavy tasks are
assigned to WMS, especially cascading WMS. Cascading is a kind of proxy; gets requests
from the users (WMS clients) interprets and handles the requests. WMS client even do not
make rendering of the images. Images are sent by WMS in the ready to display format. I mean
png, jpeg, giff or bmp. All these types are supported by the html to be shown on the screen.
WMS Client just prepares valid requests according to specifications and wrap them in the
SOAP messages (Please see Section 4.2) and waits WMS for its responses to these requests.
Return types are defined in WMS capabilities document. All the requests and responses are
over the SOAP and all the actions triggered by WMS client causes invoking a Web Service
deployed on WMS.

To be able to create requests after getting required parameters from the users, WMS client is
implemented by using jsp, JavaScript, cascading style sheets. Creating, parsing and editing
capabilities documents, we have been using DOM and SAX. Since WMS clients use SOAP as
Distribute Computing Platform, they prepare their requests as parameters for the remote
service. Remote services are deployed as Web Services. Each type of request should comply
with standards defined in specifications for these requests. To make verifying easy we have
implanted requests in xml format. By encoding requests in xml, verifying will be easy. All the
getCapabilities, getMap and getFeatureInfo requests should be created according to defined
schema. These schemas created according the OGC specifications (Please see Section 4.2).
Web Services for OGC compatible operations are deployed at
http://toro.ucs.indiana.edu:8086/deegreewmstest/services/WMSServices

To be more familiar with the user interface please go to APPENDIX-4.

When does WMS Client make

1- getCapabilities request?:
Two actions cause getCapabilities request, "Selecting Layers for [Map

set dropdown list]" and first time launching the project page. When the
project page first time opened Client makes an automatic getCapabilities
request to define list of map sets available. Client can make this request
more than one WMS or any WMS can be cascading WMS and provide
information for more than one WMS. After defining and listing all the
available map sets on the screen client makes second getCapabilities request
when user selects any map set (here in our project Indiana or California

 34

data). This request is done for defining sub layers under the parent layer
which is map set. This sub layers are listed as options on the screed. User
can select one or more than one layer to create a new map on the screen.
GetMap request is created as an xml instance complies with the getMap
request schema defined (Please see Section 4.2). To extract request
parameters WMS and WMS client uses DOM libraries.

2- getMap request?:

All the actions except "Select Map Size", "Select Layers for …." and
calculating distance between two points on the map cause a getMap request
with different parameters. For example, selecting different layers to be
overlaid causes change in LAYER parameter, selecting zoom in, zoom out
or panning map tools cause change in BBOX parameter in getMap request.
If client does not change anything else the other parameters will be same.
GetMap request is created as an xml instance complies with the getMap
request schema defined (Please see Section 4.2). To extract request
parameters WMS and WMS client uses DOM libraries.

3- getFeatureInfo request?:

This service is not mandatory. We started to implement but not finished
yet. Two actions cause getFeatureInfo, 'i' in "Select Map Tool" and 'i' at the
beginning of each name of sub layers. To understand what ‘i’ means please
see the APPENDIX-4. The boolean attribute “queryable” indicates if the
server supports getFeatureInfo operation on that layer.

GetFeatureInfo request is created as an xml instance complies with the
getMap request schema (Please see Section 4.2). To extract request
parameters WMS and WMS client uses DOM libraries.

What does WMS Client do when it receives response to its

1- getCapabilities request?:
It first makes some interoperability checking and determines if there is

a version conflict. If everything is ok then tries to get list of available layers
and sub layers of each parent layer (map set). When client gets response its
capabilities request for the layers it parses the capabilities document and
extract the layer information.

2- getMap request?:

Since getMap operation is implemented as a Web Service, client gets
map as an attachment to SOAP message returned as a response to getMap
request. When client get the response it creates a map file from the
attachment and move it to the public directory to be shown on the screen.
Client just gives the name of the map file in the html page.

3- GetFeatureInfo request?:

This service is not mandatory. We started to implement but not
finished yet. According to specification the returned value will be in the
form of GML, in other words in the form of xml. Clients can use its own
XSLT [18] machine and creates html pages to be shown on the screen.
XSLT is the most important part of the XSL [19] Standards (The Extensible
Stylesheet Language). It is the part of XSL that is used to transform an

 35

XML document into another XML document, or another type of document
that is recognized by a browser, like HTML and XHTML. For this, client
should create its own XSL file to create html page from returned xml file. If
we implement this transformation in WMS transformation might be much
easier. To be able to transform any feature into an html we also need to
figure out the schema file for this feature type. We need to make one more
request to get schema file. This request is done to WFS and it is called
“describeFeatureType”. We will thing the implementation details later.

5.1.3 WMS Interactions in a Comprehensive GIS System

WMS depends upon WFS and IS to accomplish its required tasks. These two services are
being implemented by Galip Aydin and Mehmet Aktas correspondingly. They are working in
CGL (Community Grids Lab.). This chapter will just mention what WMS requires from these
two GIS services and how WMS interconnect with them.

5.1.3.1 WFS
WFSs keep geographic data and serves on request from clients. Clients to WFSs are Web
Map Servers and other WFSs (in case of cascading WFS). WFSs provide vector data (not
picture). Vector Data are encoded in GML (Geographic Markup Language). [10]. GML is an
XML encoding for the transport and storage of geographic information, including both the
geometry and properties of geographic features.

According to OpenGIS WFS specification, basic Web Feature Services are getCapabilities,
describeFeatureType and getFeature. If Web Feature Server is transactional than this WFS
provides two more services. These are transaction and lockFeature services.

Since we have implemented basic WFS, WMS will be using basic WFS services,
getCapabilities, describeFeatureType and getFeature. WMS sends a getCapabilities requests
to learn which feature types it can service and what operations are supported on each feature
type. Since I have been using IS service, I do not need to make a getCapabilities request.
WMS makes its request to IS to get a specific WFS address that provides needed feature.
Please see 3.2.3.2 for the details about the interconnection between WMS and IS.

When any WMS client sends a getFeatureInfo request to WMS, WMS creates a getFeature
request and sends to WFS. Address of WFS is found by using IS. All the services are
implemented as Web Services. Service calls are made over SOAP. WFS make getFeature
requests to get feature data from specific WFS. Sample request is shown in Figure 7. GML
file in String will be returned as a response to this request.

 36

Figure 7 : Sample GetFeature request from WMS to WFS.

5.1.3.2 IS (Information-Discovery Services)
corresponds to OGC Catalog Services (CAT)

An OGC Catalog is a collection of descriptive information (metadata) regarding the data
stored in a geographic database (see Chapter 3.1.3.3). OGC catalog service is too specific to
OGC domain. Each GIS Service provides access to geographic data. An important factor that
characterizes GIS Services is the metadata about the data. Thus, metadata act as properties
that can be queried and requested through catalog services. A Catalog Service provides
discovery of GIS services through the metadata of the data that these services provide.
These features of OGC Catalog service is good, however it is only scalable for data services.
For instance, a registry should also allow discovery of services based on non-functional
requirements of services such as Quality of Service attributes. Also, OGC Catalog Service is
not consistent with other existing registry models such as UDDI or ebXML.

To overcome these limitations, we utilize a Registry model which is being developed in CGL
as a general Registry model for Web Services, Fault Tolerant High Performance Information
Services (FTHPIS). An Information Service (IS) is a general Service Registry & Discovery
model based on UDDI Specifications. UDDI is WS-I approved specifications, in other words,
it is inter operable with other Web Service based standards. An IS provides both publishing
and discovery services for of Web Services and (WS-Context) [36] contextual information of
GIS Services. Since ISs stores both functional metadata (metadata about GIS data) and non-
functional metadata (metadata about Quality of Services of data, such as high throughput), it
provides more complex query abilities when discovering GIS services.

A map server interacts with Information Services to dynamically discover available Web
Feature Services. We can summarize the interaction between an Information Service, Web
Feature Service and Web Map Server as following.

All GIS Web Feature Services are expected register themselves into an existing Information
Service in order to be "discoverable". Once the registry is completed, the IS starts interacting

 37

with WFSs to retrieve more information about their capabilities. So, Information Service
stores information about the functionality's of each WFS.

A Web Map Server queries an Information Service to find available WFSs. Apart from
discovery of the services, WMS can create capabilities file of a WFS on the fly, as the
Information Services provide extensive information about the capabilities of WFSs. An
Information Service provides consistent and uniform API for publishing and discovering
Open GIS Web Services. And it is defined by a WSDL. Once the WFSs are dynamically
discovered through an Information Service, a WMS can then invoke corresponding WFS to
retrieve the features that it needs.

6 Current Status and Future Work

This chapter explains first current status of the project (what we have done) without giving
any implementation details, and then gives explanations about what we plan to do in the near
term and long term.

6.1 Current Status

The current status of the project is displayed in Figure 8. Since our implementation of
Information Discovery Service (IS) is not OGC compatible we did not put it into this figure.
As we mentioned before in section 5.1.3.2, IS has interactions with WMSs and WFSs. From
the point of WMS, IS provides some useful operations such as searching for a specific feature
data. IS provides these service interfaces as Web Services. Every element in Figure 8 part B
has been implemented except for SLD [6] (shown as blur). For the implementation details
please see Chapter 5.1.

Our implementation of WMS and WMS Client has some interactions with other WMSs and
WFSs. These are third-party OGC compatible projects. For the test cases we have interacted
with WMSs from deegree[24] and demis[25] projects. Their WMS and WFS implementations
are OGC compatible. We have made a coupe of successful tests and proved that our
implementations are OGC compatible. For the demo please see the project home site [2].

So far we have been implementing Web Map Service, Web Map Service Client, and Web
Feature Service (implemented by Galip Aydin) and IS (implemented by Mehmet Aktas).

6.2 Near Term Work

The first goal in the near feature is overcoming the shortcomings in the quality of the maps
and the services. Improving the user interfaces and adding some more functionality. To
improve the quality of maps we are planning to implement Web Coverage Service (WCS),
Web Coverage Service Client, Coverage Portrayal Service (CPS) and Styled Layer Descriptor
(SLD) Service. All these services have corresponding OGC specifications and they should be
implemented according to the specifications. After finishing implementation of these services
we will deploy them into Figure 5 and Figure 8. All should have well defined user

 38

interfaces and all the operations defined in their specifications should be implemented as Web
Services. As we said before just distributed computing platform will be changed, all other
details will be totally compatible with the OGC specifications. To be able to use operations as
Web Services which are deployed on these OGC services, we should create appropriate
schema files for the request objects as we did for WMS and WMS Client interconnections in
Chapter 4.2.

We have pictured out these near future plans in Figure 8, blurred parts will be implemented
soon.

Figure 8 : Progress picture for OGC compatible data retrieval operations. Architecture
details are given in Figure 5.

Below you will see the general descriptions of the OGC compatible GIS services mentioned
in Figure 8 and will be implemented in the near feature. As we said above there are some
challenges to implement these services. Each of these services can be implemented as a
standalone application but we will be deploying them in our project step by step. First we will
finish implementation according to specifications and then handle the interoperability issues
between these and already used OGC services (Figure 8 part A).

WCS: The Web Coverage Service (WCS) supports the networked interchange of geospatial
data as "coverages" containing values or properties of geographic locations. Unlike the Web
Map Service , which filters and portrays spatial data to return static maps (server-rendered as
pictures), the Web Coverage Service provides access to intact (unrendered) geospatial
information, as needed for client-side rendering, multi-valued coverages, and input into
scientific models and other clients beyond simple viewers. The Web Coverage Service
consists of three operations: GetCapabilities, GetCoverage, and DescribeCoverageType. [13]

CPS: A Coverage Portrayal Service produces a visual picture from data returned by a Web
Coverage Service. This service will facilitate wider use of coverage data by making it
accessible to thin clients. To the client, the Coverage Portrayal Service appears as a Web Map
Service, but with additional parameters to control the retrieval and/or rendering of coverage

A

B

 39

data. The Coverage Portrayal Service may require the client to specify the targeted Coverage
Service.

SLD: (Styled Layer Descriptor) WMS describes the appearance of a map in terms of ‘styled
layers’. A styled layer can be considered as a transparent sheet with features symbolized upon
it. A map is made up of a number of these styled layers put together in a specified order. The
styled layers are said to be Z-ordered. Users can define more complex or simpler maps by
adding or removing styled layers. WMS services providing SLD capability said to be SLD-
enabled WMSs.

A styled layer itself represents a particular combination of ‘layer’ and a ‘style’ in which that
layer can be symbolized. Conceptually, the layer defines a stream of features and the style
defines how those features are symbolized. This concept is underlined by the fact that there
may be multiple styles in which a layer can be symbolized.

Deployment of the project into Portal:
We have already deployed the project into the Portal but we have some JavaScript bugs. It
will be done soon. For the web site of the demo of the project see the references. [14]. If the
web site is down see the APPENDIX-4 for the snapshots from the project portal page.

6.3 Longer Term Research and Development

Future plan about the project is based on performance issues. To improve performance we
need to handle common problems in the GIS. We are planning to make a contribution to
solution by generating new algorithms, generating new optimization techniques, using
distributed rendering and tiling, parallel rendering of images etc.

We plan to use our Web Service oriented OGC compatible WMS services for scientific
visualization. To be able to adopt WMS to scientific visualization we need to handle high
volume of data. This requires us to solve performance problems by motivating distributed
High Performance Computing and collaborative shared WMS supporting multiple
simultaneous Clients.

We will be working on optimization and performance algorithms of the system, to this end,
we need to handle image pipelining, faster rendering, caching or client rendering. We might
need to make clients thick client instead of thin that we have currently. This is a tradeoff
between performance and easy to use.

Longer term project research steps are shown in Table-4.

 40

H
ig

h
pe

rf
or

m
an

ce

C
om

pu
tin

g
(A

lg
or

ith
m

s/
O

pt
im

iz
at

io
ns

)

 C
ol

la
bo

ra
tiv

e
W

M
S

D
is

tr
ib

ut
ed

 R
en

de
ri

ng

(P
ar

al
le

l r
en

de
ri

ng
 o

f
 la

rg
e

im
ag

es
 b

y
til

in
g)

WMS for Scientific Computing

(Visualization)

Near Term Works

(Please see 6.2)

SO FAR

Table-4: Project Research Stack.

Time

 41

7 Conclusion

With the development of spatial information application and the network technique, the
spatial data between different districts and different departments need to be shared and to be
interoperated. ISO/TC211 and OGC have done lots of work to define Interface specifications
and standards to ensure sharing and interoperable capability of the spatial data.

The emergence of Web Service technique overcomes the shortcoming of traditional
Distributed Object technique and provides the interoperable capability of cross-platform and
cross-language in distributed net environment.

In this document we basically have been trying to explain the efforts spent on building OGC
compatible GIS Services by using Web Service technologies and OGC specifications.

We can extend OGC OpenGIS specifications as much as we can but we need to consider the
performance issue. This is a big problem in the GIS area. Since images can be too large,
capabilities documents can be too large and transferring these data over the internet is a
cumbersome, our first priority should be improving performance of GIS systems.
Visualization can be slow as overlays or even basic maps large. Nowadays everyone working
in this area has same problem. There are some ad-hoc solutions but not generic. To be more
specific, when WMS capabilities become very large (it is highly possible), it can be
inefficient to request and parse the full capabilities for some parts of an application. There are
some characteristics of GIS services that make it difficult to design GIS Web Services with
satisfactory performance. The most important ones

- Services provided by a GIS require heavy CPU usage due to complex
computation involved in the underlying computational geometry.

- GIS services often transmit large resulting data sets such as images.
 - The clients of the GIS Web Services are often some complex software tools.

By introducing Web Services technologies into GIS, we will take advantage of the Web
Services. As Web Services technologies evolve our proposed GIS systems evolve.

 42

APPENDIXES

APPENDIX -1

Web Service Description File (WMSServices.wsdl)

 43

APPENDIX-2

Sld:StyledLayerDescriptor Element used in getMap
request.

 44

APPENDIX-3

Sample WMS requests created according to valid
schema files

Sample GetCapabilities Request
(sampleGetCapabilities.xml) :

 45

Sample GetMap Request
(GetMap.xml) :

 46

Sample GetFeatureInfo Request
(GetFeatureInfo.xml) :

 47

APPENDIX-4

Project page deployed on Portal as a portlet

SELECTED MAP TOOLS
Tool Explanation Tool Explanation

Zoom In
-Draw a rectangle or
click on

GetFeatureInfo Request

Zoom out
-Click on a point

Calculates Differences in
km, if you select two
different points on the scrn.

Panning
-Drag and drop the
mouse on the scrn.

 Redraw Map!

Refresh the layers
displayed on the scrn. If
you want to change the
layer list displayed click on

 48

APPENDIX-5

Sample WMS Capabilities file used in project

 49

 50

 51

APPENDIX-6

geometry.xsd, Geometry schema for GML encoding of feature data.

 52

APPENDIX-7

Summary of the CrisisGrid related OGC Specifications
(Assembled by Dr. Sunghoon Ko, Community Grids Lab)

Specification
Name
(Abbreviation)

Type

Description Relationship to CrisisGrid
Framework

Status of Specification

Web Feature
Service (WFS)

Service The Web Feature Service supports the
query and discovery of geographic
features. In a typical Web-base scenario,
Web Feature Service delivers GML
(XML) representations of simple
geospatial features in response to queries
from HTTP clients. Clients (service
requestors) access geographic feature
data through a WFS by submitting a
request for just those features that are
needed for an application. The client
generates a request and posts it to a WFS
instance (a WFS server on the Web).
The WFS instance executes the request,
returning the results to the client (service
requester) as GML. A GML-enabled
client can manipulate or operate on the
returned features.

WFS will provide the means to
access geographic features
including critical infrastructure
features, incident locations
(points, paths, or areas), and
flood-related geographic features
including inundation areas,
watershed boundaries,
demographic feature, and any
other feature-based information
required for flood or impact
analysis and simulation.

Category: OpenGIS
Implementation
Specification

V1.0 : 2002-09-19
 Adopted
Specification
 HTTP post/get
 GML 2.0

V1.1 : will support GML
3.0

Geography
Markup
Language
(GML)

Encoding The Geography Markup Language
(GML) is an XML encoding for the
transport and storage of geographic
information, including both the geometry
and properties of geographic features.
GML utilizes the OpenGIS® Abstract
Specification geometry model which has
been harmonized with the ISO geospatial
geometry model. The GML
Specification includes the ability to
handle complex geometries and
properties. GML is used to represent
geographic features conforming to well-
defined application schema for purposes
of transport across computational
interfaces (e.g., WFS)

GML will be an important
element of the information
modeling effort conducted for
CrisisGrid. GML will be the
starting place for application
ontologies built under the
CrisisGrid effort.

Category: OpenGIS
Implementation
Specification

V3.0 : 2003-01-29
 Adopted
Specification

V3.1 : 2004-04-19

Web Coverage
Service (WCS)

Service The Web Coverage Service supports the
query and discovery of geographic
information that conforms to a gridded
(regularly spaced or not) data model,
termed "coverages" – that is, digital
geospatial information representing
space-varying phenomena. In a typical
Web-base scenario, Web Coverage
Service delivers arrays of data
representations (in existing image or
gridded data formats) of subsets of
geographic coverages in response to
queries from HTTP clients. Clients
(service requestors) access geographic
coverage data through a WCS by
submitting a request for a subset of a
coverage needed for an application. The

WCS will provide the means to
access geographic coverages
including digital elevation
models, imagery,
orthophotography, weather
coverages (such as predicted
rainfall, air pressure, wind speed
and direction), and any other
space-varying flood-related
phenomena.

Category: OpenGIS
Implementation
Specification

V1.0 : 2003-10-16
 Adopted
Specification
 HTTP post/get
 GML 3.0

 53

client generates a request and posts it to a
WCS instance (a WCS server on the
Web). The WCS instance executes the
request, returning the results to the client
(service requester) in one of the
following supported formats:
a) GeoTIFF
<http://www.remotesensing.org/geotiff/g
eotiff.html>
b) HDF-EOS
<http://heineken.gsfc.nasa.gov/>
c) DTED
<http://www.nima.mil/publications/specs
/printed/89020A/89020A_DTED.pdf>
d) NITF
<http://www.ismc.nima.mil/ntb/baseline/
1999.html>
e) GML
<http://www.opengis.org/techno/docume
nts/02-023r4.pdf>

Web Map
Service (WMS)

Service A Web Map Server (WMS) generates
"pictures" of georeferenced data.
Independent of whether the underlying
data are simple features (such as points,
lines and polygons) or coverages (such
as gridded fields), the WMS produces an
image of the data that can be directly
viewed in a graphical web browser or
other picture-viewing software. An
extension of the basic Web Map Server
is the Styled Layer Descriptor (SLD)
Web Map Server. The SLD enabled
WMS inherits all of the attributes from
the Web Map Server and adds support
for the use of Styled Layer Descriptor
documents to specify styling. Instead of
generating maps of particular named
layers in one or more predefined styles,
an SLD Map Server extracts features
from a data provider and renders them
using a stylistic description encoded in
XML.

WMS will provide a means to
portray geographic information
independent of the underlying
data model (feature or
coverage).

Category: OpenGIS
Implementation
Specification

V1.1 : 2001-06-21
 HTTP post/get
 GML ?

V1.2 :
 Adopted
Specification

V1.3 : 2004-01-20
 HTTP post/get
 GML ?

Styled Layer
Descriptor
(SLD)

Encoding The Styled Layer Descriptor (SLD)
encoding specifies the format of a map-
styling language for producing
georeferenced maps with user-defined
styling. This language is used to create
XML documents that control the visual
portrayal of the data with which they
work. The ability for a human or
machine client to define the styling rules
requires a styling language that the client
and server can both understand. The
SLD language can be used to portray the
output of Web Map Servers, Web
Feature Servers and Web Coverage
Servers. The SLD is defined using XML
Schema.

SLD will enable different
communities in the Emergency
Response area to develop a set
of portrayal rules that best fit
their mission requirements.

Category: OpenGIS
Implementation
Specification

V1.0 : 2002-09-19
 Adopted
Specification
 HTTP post/get
 GML ?

Coverage
Portrayal
Service (CPS)

Service The Coverage Portrayal Service (CPS)
defines a standard interface for
producing visual pictures from coverage
data. Typically coverage data are

CPS will enable the CrisisGrid-
related coverages to be
visualized.

Category: Interoperability
Program Report

V0.02 : 2002-02-28

 54

retrieved via a WCS instance. CPS
extends the WMS interface and uses the
Styled Layer Descriptor (SLD) language
to support rendering of WCS coverages.
CPS facilitates wider use of coverage
data by making views of coverages
visible within thin-clients (e.g., Web
browsers). To a service requestor, the
CPS appears as a WMS instance, but
with additional parameters to control the
retrieval and/or rendering of coverage
data. The CPS may require the client to
specify the targeted WCS.
CPS may be used to support:
assigning multi-spectral bands in an
image to color channels in a picture,
creating chloropleth maps from coverage
data using client-specified color-bins
preset rendering mechanisms such as
hill-shaded elevation
combining multi-spectral pixel values
according to client-specified or server-
defined formulas (e.g., Normalized
Difference Vegetation Index).

Web Terrain
Service (WTS)

Service WTS is a companion specification to the
OpenGIS Web Map Service Interface
Implementation Specification. WMS
specifies how individual map servers
describe and provide their map content.
The present Web Terrain Service
specification describes a new operation,
GetView, and extended Capabilities
which allow a 3D terrain view image to
be requested, given a map composition, a
terrain model on which to drape the map,
and a 3D viewpoint from which to render
the terrain view. A simple attempt is also
made to reconcile 2D and 3D viewpoints
by allowing the requested 3D area of
view to be approximated with a WMS
bounding box

WTS will provide a means to
visualize information in a 3D
view to support the needs of
Emergency Response
professionals.

Category: Request for
Comment

V0.5 : 2003-11-07
 HTTP post/get
 GML ?

Catalog Service
– Web Profile
(CS-W)

Service Catalog-Registry Services provide a
common mechanism to classify, register,
describe, search, maintain and access
information about network resources.
Resources are network addressable
instances of typed data or services.
Registries may be differentiated by their
role such as registries for cataloging data
types (e.g., types of geographic features,
coverages, sensors, symbols), online data
instances (e.g., datasets, repositories,
symbol libraries), service types (e.g.,
portrayal, processing, data services) and
online service instances.
The metadata content published to the
registry, while conforming to the same
Registry Information Model (RIM),
describes different kinds of resources
using metadata that may be structurally
and semantically different than metadata
for resources of other types or for other
purposes or organizations. The Web

CS-W will provide a means for
cataloging the computer-based
resources that are available
within the CrisisGrid
Framework

Document N/A : OpenGIS
Membership required

 55

Registry Service (soon to become the
Web Profile of the OpenGIS Catalog
Service) defines a common information
model and the service interfaces to
access resource offers, regardless of the
type of resource and the content of the
metadata.
Type Registries contain metadata about
resource (data and service) types (e.g.,
types of images, features, feature
collections, styles, symbols, and
services) as taxonomies that are shared
and used within information
communities. The ability to publish and
share this information is an essential
requirement for distributed applications
to be able to share and exploit, with a
common semantic, these resources. Type
Registry Services provide access to these
metadata and taxonomies of types.
Support for publishing and referencing
taxonomies is explicitly supported in the
Web Registry Service (WRS) Interface
and Registry Information Model (RIM)
specification.

Sensor
Collection
Service (SCS)

Service Service to fetch observations from a
sensor or group of sensors.

SCS will provide an interface
that can be used to gather
readings from all kinds of
sensors. In Flood CrisisGrid,
SCS can be used to access
sensor relevant to the flood case
(such as, stream gauges and
weather related sensors)

Category: Interoperability
Program Report

V0.5.1 : 2002-04-19
 HTTP post/get
 GML ?

Sensor
Planning
Service (SPS)

Service Service to assist in 'collection feasibility
plans' and to process collection requests
for a sensor or group of sensors.

SPS may provide a means to
invoke pre-determined collection
plans that have been developed
to be executed in the case of an
emergency.

Document N/A : OpenGIS
Membership required

Web
Notification
Service (WNS)

Service Service to manage dialogue between a
client and Web Service(s) for long
duration asynchronous processes.

WNS will provide a means to
notify interested parties that a
particular sensor collection has
been completed.

Category: Discussion
Paper

V0.1.0 : 2003-04-21
 HTTP post, email,
SMS, Instant Message,
Fax, Phone

Sensor Markup
Language
(SensorML)

Encoding Information model and XML encodings
for discovering, querying and controlling
Web-resident sensors.

SensorML will provide the
means of describing the various
sensors that are required for
CrisisGrid.

V0.7 : 2002-12-20

Observations &
Measurements
(O&M)

Encoding Information model and encodings for
observations and measurements.

O&M will be used to defined the
observations that are returned
from various sensors that are
required for CrisisGrid.

V0.86 : 2002-05-31
 GML 3

Note: - Much of the current work in OGC involves geoprocessing via the IT industry's Web Services standards
framework. The OpenGIS Specifications that make this possible are referred to as "OGC Web Services."

 56

APPENDIX-8

Open Source / Free GIS related software projects
 (Assembled by Dr. Sunghoon Ko, Community Grids Lab)

Software Description Service OGC comparability Version/
PL/OS

License System
(Monolithic/
One/ Few
services?)

Chameleon Chameleon is a
distributed, highly
configurable,
environment for
developing Web
Mapping
applications. It is
built on OGC
standards for Web
Mapping Services
(WMS) and WMT
Viewer Contexts.

Web Mapping WMS, WMT V1.0.5
PHP
Linux,
Unix
No-windows

X11-style

Deegree

University of
Bonn

Deegree is a Java
framework for
geospatially-enabled
solutions. It is based
on common GI
standards and allows
building applications
with spatially
referenced content.
Deegree components
can be used to either
develop a standalone
desktop mapping
solution to be locally
installed on a user's
machine, or to set up
a highly distributed
and service-based
infrastructure. As the
whole architecture of
deegree is based on
OGC specifications
and concepts, there
are no problems to
integrate
standardized products
of other vendors (e.g.
ArcIMS by ESRI(c)).

Base GIS,
Visualization,
Interactive
Viewing, Web
Mapping

GML2.1.1,
Web Map Service
(WMS)1.1.1,
Web Feature Service
(WFS)1.0.0,
Web Coverage Service
(WCS)1.0.0,
Web Catalog Service
(WCAS) based on OGC
Web Services Stateless
Catalog Profile,
Web Gazetteer Service
(WFS-G), Web Terrain
Service (WTS),
Web Coordinate
Transformation Service
(WCTS).

V0.7.7/
Java/
Windows,
Linux, Unix

GNU
Lesser
General
Public
License
(LGPL)

Non-
monolithic:
Deegree
components can
be set up as
distributed and
service-based
infrastructure.

Demeter
Terrain
Engine

Demeter is a cross-
platform C++ library
that renders 3D
terrains using
OpenGL. Demeter is
designed for fast
performance and
good visual quality
and makes use of
advanced techniques

3D Map
Rendering

 V3.14
C++
Windows,
Linux, Unix,
MacOS X

GNU
Lesser
General
Public
License
(LGPL)

One service

 57

such as dynamic
tessellation (adaptive
mesh) to render vast
landscapes in real-
time, without the
need for high-end
hardware. It is
written as a stand-
alone component that
can be easily
integrated into any
kind of application.

DEMViewer DEMViewer is a
Java digital elevation
model viewer for
ArcGrid ASCII
export files. With
DEMViewer you can
visualize digital
elevation models
generated by ArcInfo
and combine it with
data (in the same
ArcGrid ASCII
export format and/or
Jpeg/Gif images).

Visualization Java
Windows,
Linux, Unix,
MacOS X

GNU
General
Public
License
(GPL)

One service

FMaps FMaps is a
Geographic
Information System
and Remote Sensing
application which
stores its data in a
PostgreSQL
database. It uses a
special GTK+ widget
which was originally
called GtkFMaps.
However current
version only supports
C and Linux
platforms.

Base GIS,
Interactive
Viewing

Not yet V0.0.2
C
Linux,
Unix
No-windows

GNU
General
Public
License
(GPL)

A few services

GDAL GDAL is a translator
library for raster
geospatial data
formats that is
released under an
Open Source license.
As a library, it
presents a single
abstract data model
to the calling
application for all
supported formats.

File-format
conversion,
Projection
conversion

 V1.2.0/
C/C++/
Windows,
Linux, Unix,
MacOS X

 GNU
General
Public
License
(GPL),
MIT

One service:
C/C++ library

GeoServer The GeoServer
project is a Java
implementation of
the OpenGIS
Consortium's Web
Feature Server
specification. It is
free software.

Web Mapping GML2.1.2,
Web Map Service
(WMS)1.1.1,
Web Feature Service
(WFS)1.0.0

V1.1.0
Java/C++
Windows,
Linux, Unix,
MacOS X

GNU
General
Public
License
(GPL)

A few services

GeoTools "Geo Tools is a free
Java based mapping
toolkit that allows

Interactive
Viewing, Web
Mapping

GML 2.*,
Grid Coverage 1.0,
Coordinate

V0.8.0
Java
Windows,

 GNU
General
Public

A few servcies

 58

maps to be viewed
interactively on web
browsers without the
need for dedicated
server side support.

Transformation Services
1.0, Styled Layer
Descriptor specification
1.0, Filter Encoding
specification 1.0

Linux, Unix,
MacOS X

License
(GPL)

GeoVRML GeoVRML is an
official Working
Group of the Web3D
Consortium. It was
formed on 27 Feb
1998 with the goal of
developing tools and
recommended
practice for the
representation of
geographical data
using the Virtual
Reality Modeling
Language (VRML).
The desire is to
enable geo-
referenced data, such
as maps and 3-D
terrain models, to be
viewed over the web
by a user with a
standard VRML
plugin for their web
browser.

File-format
conversion

 V1.1
Java
Windows,
Linux, Unix,
MacOS X

Apache
license

One service

GIServer The GIServer is an
initiative from the
inovaGIS project that
gives free access to
GIS functions
through the Internet.
The SOAP GIServer
Web Services
available for testing.

Interactive
Viewing, Web
Mapping

Web Map Service
(WMS)1.1.0

V0.9
Windows

? Non-
monolithic:
GIServer is
capable of
registering new
spatial data
process
algorithms and
defining them
as new services.
These services
can be locally
on the server or
in other remote
Internet Server.

GISToolKit The GISToolkit
software is a java
toolkit for building
spatially enabled
applications. It has
some ability to read
data from a variety of
data sources, and to
display that data. It
can directly edit
geographic features
stored in databases to
which it has access.

Visualization,
Interactive
Viewing

Not compliant but very
close to WMS

V2.0(Server)
,
2.8.1(Editor)
Java
Windows,
Linux, Unix,
MacOS X

GNU
Lesser
General
Public
License
(LGPL)]

A few services

GIS Viewer GIS Viewer is a web-
based Java tool for
displaying and
manipulating layers
of geographical
points and vectors,
and raster data such

Interactive
Viewing

 V4.0
Java
Windows,
Linux, Unix,
MacOS X

GIS
Viewer
license

One service

 59

as maps and images.
GML4J GML4J is a Java API

for facilitating work
with the Geography
Markup Language
(http://www.gmlcentr
al.com). GML is an
XML-based
framework for
encoding geography
information adopted
as a recommendation
paper by OGC
(http://www.opengis.
org). Currently only
support read access.

File-format
conversion

GML 2.0 V1.0.2beta
Java
Windows,
Linux, Unix,
MacOS X

Apache
Software
License

One service

GRASS GRASS GIS
(Geographic
Resources Analysis
Support System) is
an Open Source
Geographical
Information System
(GIs) with raster,
topological vector,
image processing,
and graphics
production
functionality that
operates on various
platforms through a
graphical user
interface and shell in
X-Windows.

Base GIS
Visualization,
Remote
Sensing,
Flights, File-
format
conversion,
Projection
conversion,
Customizable
with Add-ons

 V5.0.3
C
Linux, Unix,
MacOS X
No-
windows(onl
y
Win/Cygnus)

 GNU
General
Public
License
(GPL)

Non-
monolithic:
GRASS might
be run in
clustered
environments.

JUMP The Java Unified
Mapping Platform
(JUMP) is a GUI-
based application for
viewing and
processing spatial
data. It includes
many common
spatial and GIS
functions. It is also
designed to be a
highly extensible
framework for
developing and
running custom
spatial data
processing
applications.

Visualization,
Interactive
Viewing,
Customizable
with Add-ons

GML, WMS V1.1.1/
Java
Windows,
Linux, Unix

GNU
GPL

Non-
monolithic:
Workbench
GUI
components can
be used
independently

kdem kdem is a program
for displaying United
States Geological
Survey (USGS)
Digital Elevation
Models (DEMs).

Visualization,
Interactive
Viewing

 v1.1.1
C++
Linux, Unix
No-windows

kdem A few services

MapServer MapServer is a CGI-
based application for
delivering dynamic
GIS and image
processing content
via the World-Wide

Web Mapping GML2.*, Web Map
Context Specification
v1.0.0, Web Map
Service1.1.1, Web
Feature Service

V4.0
C
Windows,
Linux, Unix,
MacOS X

Map
Server
License

A few services

 60

Web (WWW). The
package also contains
a number of stand
alone applications for
building maps, scale
bars and legends
offline. Access to the
development
environment of
MapServer is
possible with a
number of different
programming
languages.

Mapyrus Mapyrus is software
for creating plots of
points, lines,
polygons and labels
to PostScript, PDF
and web image
output formats. The
software combines
the following three
components: A Logo
or turtle graphics
language, reading of
GIS datasets and
RDBMS tables,
running as a stand-
alone program or as a
web-server.

Visualization V0.41
Java
Windows,
Linux, Unix

 GNU
General
Public
License
(GPL)

One service

MIT
OrthoServer

The MIT
OrthoServer is a set
of components that
serve large
collections of geo-
image libraries
online, in a seamless,
multi-resolution
fashion.

Web Mapping Web Mapping Testbeds
(WMT)1.0

Perl
Windows,
Linux, Unix

GNU
General
Public
License
(GPL)

A few services

MySQL
Spatial

MySQL implements
spatial extensions
following the
specification of the
Open GIS
Consortium (OGC).

Database(SQL
RDBMS to
support spatial
data)

Simple Features
Specifications For SQL
1.1

V4.1
C
Windows,
Linux, Unix,
MacOS X

GNU
General
Public
License
(GPL)

One service

NetMaps NetMaps is a Java
applet that allows one
to view vectorial
maps in any Java
enabled browser.
NetMaps can load
and display ArcInfo
shapefiles
(SHP/DBF) and
MapInfo MIF/MID
files.

Web Mapping V2
Java

? One service

OpenMap BBN Technologies'
OpenMap package is
a JavaBeans based
programmer's toolkit.
Using OpenMap, you
can quickly build
applications and

Interactive
Viewing

Web Map Service
(WMS)

V4.6
Java
Windows,
Linux,
Unix

Open Map
License

Non-
monolithic:
Using
OpenMap
components,
you can access
data from

 61

applets that access
data from legacy
databases and
applications.
OpenMap provides
the means to allow
users to see and
manipulate geospatial
information.

legacy
applications, in-
place, in a
distributed
setting.

OpenSVG
Mapserver

An open source
solution for
publishing arcview
shapefiles with
attributes to the web
based on html, SVG,
javascript, php and
mysql database. It
supports interactivity
and filtering.

Web Mapping V1.01
Windows,
Linux, Unix

GNU
General
Public
License
(GPL)

A few services

OSSIM OSRS (Open Source
Remote Sensing)'s
OSSIM (Open
Source Software
Image Map) project.
The OSSIM project
leverages existing
open source
algorithms, tools, and
packages to construct
an integrated library
for remote
sensing, image-
processing, and
Geographical
Information Sciences
(GIs) analysis.

Interactive
Viewing,
Remote
Sensing

 V1.4.0
C++
Linux, Unix
No-windows

GNU
General
Public
License
(GPL)

A few services

PostGIS PostGIS adds support
for geographic
objects to the
PostgreSQL object-
relational database.
In effect, PostGIS
"spatially enables"
the PostgreSQL
server, allowing it to
be used as a backend
spatial database for
geographic
information systems
(GIs), much like
ESRI's SDE or
Oracle's Spatial
extension. PostGIS
Installer for
Windows

Database Simple Features
Specifications For SQL
1.1

V0.8.0
Java, C++
Linux, Unix
No-windows

GNU
General
Public
License
(GPL)

One service

PyOGCLib PyOGCLib aims to
develop and
distribute a Python
based library for the
implementation of
the OpenGIS
specifications,
notably Web Map
Server (WMS) and

Web Mapping Web Map Service
(WMS), Web Feature
Service (WFS)

V0.1
Python
Linux, Unix
No-windows

MIT One service

 62

Web Feature Server
(WFS).

QuickWMS JavaScript classes for
creating Web Map
clients and
interfacing WMS
servers according to
OpenGIS Web
Mapping
Specification
(versions 0.7 to 1.1).
The goal of this
project is to enable
the fast creation of
web mapping clients
using javascript. The
target browsers are
Internet Explorer
(version 5.5 and up)
and Netscape (7.00
and up) both for
Windows, Mac and
Linux.

Web Mapping Web Map Service
(WMS) 1.1

V0.2
Windows,
Linux, Unix,
MacOS X

GNU
Lesser
General
Public
License
(LGPL)

One service

Rez Open Source
framework and tools
for translating terrain
data and images to
different formats and
generating
multiresolution
versions optimised
for online broadband
delivery.

Visualization,
File-format
conversion

 Java
Windows,

GNU
Lesser
General
Public
License
(LGPL)

A few services

Space Time
Toolkit

Space Time Toolkit
(STT) is a Java-based
toolkit that provides
advanced capabilities
for integrating
spatially and
temporally-disparate
data within a highly
interactive 3D
display environment.

Web Mapping WCS, WMS, WMT V1.2
Java
Windows,
Linux, Unix,
MacOS X

U. of
Alabama
in
Huntsville

One service

TerraLib TerraLib is a GIS
classes and functions
library, allowing a
collaborative
environment and its
use for the
development of
multiple GIS tools.
TerraLib aims to
provide a large set of
data structures and
algorithms for GIS
developers.

Database V2.0
C++
Windows,
Linux, Unix

GNU
LGPL

 A few services

Thuban Thuban is an
Interactive
Geographic Data
Viewer with the
following features: 1)
Navigation Zoom
In/Out, Pan 2)
Identify Attributes by

 Interactive
Viewing,
Customizable
with Add-ons

 V1.0.0
Python
Windows,
Linux, Unix

GNU
General
Public
License
(GPL)

Monolithic

 63

object selection,
objects by record
selection. 3) Layer
Management Layer
types: Line, Polygon,
Point, Georeferenced
Image 4) Legend
Editor Visual
appearance of objects
can be controlled. 5)
Table Management
Query and join
tables. 6) Printing
Print and export
maps for further
processing.

TOPAZ TOPAZ
(Topographic
Parameterization) is
an automated digital
landscape analysis
tool for topographic
evaluation, drainage
identification,
watershed
segmentation and
subcatchment
parameterization.
While TOPAZ is
designed primarily to
assist with
topographic
evaluation and
watershed
parameterization in
support of hydrologic
modeling and
analysis, it also has
application to a
variety of
geomorphological,
environmental and
remote sensing
applications.

Visualization,
Remote
Sensing,
Landscape
Analysis

 V3.0
Fortran77/90
Windows,
Linux, Unix

? One service

WinDisp Windisp is software
package for the
display and analysis
of satellite images,
maps and associated
databases, with an
emphasis on early
warning for food
security. WinDisp
was originally
developed for the
FAO Global
Information and
Early Warning
System.

Visualization,
Remote
Sensing

 V5.1
Windows

? One service

ZMapServer ZMapServer is a
plug-in for Zope that
provides a framework
for web mapping
applications using

Web Mapping Web Map Service
(WMS) 1.1

V0.1
Python
Linux, Unix
No-windows

MIT One service

 64

MapServer. The
essential web
mapping components
are included: maps,
legends, scale bars,
labels, data layers
and layer styles.
These components
are managed through
Zope, helping to
maintain separation
between GIS content
and its presentation.

 65

APPENDIX-9

Workload So far

GIS Web Map Server

WFS Client stubs generated by Apache-axis 700
 IS-Discovery Services Client stubs generated by axis 2,200

 Gml handler classes – converts any gml to svg. (Generic coding)
 Interface classes 900
 Implementation classes 4,900
 Utility classes for xml documents 1,600
 7,400
 Image rendering classes . 3,600
 (To provide OGC compatibility

Configuration and Capability classes) 800

 Total: 11,800 + 2,900 = 14,700

GIS Web Map Client

 Castor generated classes

For capabilities and exceptions schema
(These OGC compatible schema files are updated
to be able to create source files by using castor). . . 29,400

WMS Client stubs generated by Apache-axis 500

 Jsp . 900
 Javascript . 1,100
 Stylesheets . 250
 JavaBeans and remote job invoking classes 900

 Total: 3,150 + 29,900 = 33,050

Total: 14,950 + 32,800 = 47,750

I also have been working on deploying application into Portal as a portlet. This work is not
included in the report.

♦ Castor and axis generated classes.
• Implemented classes.

 66

REFERENCES

[1] OGC (Open Geospatial Consortium) official web site http://www.opengeospatial.org/

[2] Project web site http://toro.ucs.indiana.edu:8089/newmap.jsp

[3] Webservices Technologies http://www.w3.org/2002/ws/

[4] Jeff De La Beaujardiere, OpenGIS Consortium Web Mapping Server Implementation

Specification 1.3, OGC Document #04-024, August 2002. Available at
http://www.opengis.org/techno/specs/

[5] Kris Kolodziej, OGC OpenGIS consortium, OpenGIS Web Map Server Cookbook 1.0.1,

OGC Document #03-050r1, August 2003. Available at
http://www.ogcnetwork.org/docs/03-050r1.pdf

[6] Lalonde, W. (ed.), Styled Layer Descriptor(SLD) Implementation Specification 1.0.0,

OGC Document #02-070, August 2002. Available at
http://www.opengis.org/techno/specs/

[7] Vretanos, P. (ed.), Web Feature Service Implementation Specification (WFS) 1.0.0,
 OGC Document #02-058, September 2003. Available at
 http://www.opengis.org/techno/specs/

[8] GIS project - Crisisgrid http://www.crisisgrid.org

[9] David Cruikshank, John Gebhardt, Lofton Henderson, Roy Platon, Dieter Weidenbrueck,

WebCGM 1.0, December 2001. Available at
http://www.w3.org/TR/REC-WebCGM/

[10] Simon Cox , Paul Daisey, Ron Lake, Clemens Portele, Arliss Whiteside, Geography

Markup Language (GML) specification 3.0, Document #02-023r4., January 2003.
Available at http://www.opengeospatial.org/docs/02-023r4.pdf

[11] Galip Aydin, Marlon Pierce, Geoffrey Fox, Mehmet Aktas and Ahmet Sayar

“Implementing GIS Grid Services for the International Solid Earth Research Virtual
Observatory”. To appear in a special issue of Pure and Applied Geophysics.

[12] Mehmet Aktas, Galip Aydin, Andrea Donnellan, Geoffrey Fox, Robert Granat, Lisa

Grant, Greg Lyzenga, Dennis McLeod, Shrideep Pallickara, Jay Parker, Marlon Pierce,
John Rundle, Ahmet Sayar, and Terry Tullis “iSERVO: Implementing the International
Solid Earth Research Virtual Observatory by Integrating Computational Grid and
Geographical Information Web Services” Technical Report December 2004, to be
published in Special Issue for Beijing ACES Meeting July 2004.

[13] John D. Evans, OGC Web Coverage Service (WCS) Specifications 1.0.0, Document #03-

065r6 August 2003. Available at http://www.opengis.org/techno/specs/

[14] WMS application deployed on Portal http://toro.ucs.indiana.edu:8092/uPortal

 67

[15] Jérôme Sonnet, Charles Savage. OGC Web Service Soap Experiment Report 0.8

Document#03-014, Jan 2003. Available at
http://www.opengeospatial.org/specs/?page=baseline

[16] Douglas Nebert, Arliss Whiteside, OpenGIS Consortium Catalogue Services

Specifications 2.0. OGC Document# 04-021r2, May 2004. Available at
 http://www.opengis.org/techno/specs/

[17] Fran Berman, Geoffrey C, Fox, Anthony J. G. Hey., Grid Computing: Making the Global

Infrastructure a Reality. John Wiley, 2003.

[18] James Clark, XSL Transformation (XSLT) Version 1.0., W3C Recommandation,

November 1999. Available at http://www.w3.org/TR/xslt

[19] Sharon Adler, Anders Berglund, Jeff Caruso, Stephen Deach, Tony Graham. Extensible

Stylesheet Langage (XSL) Version 1.0., W3C Recommandation, October 2001.
Available at http://www.w3.org/TR/xsl

[20] Castor http://castor.exolab.org

[21] XMLBeans (http://xml.apache.org/xmlbeans)

[22] Don Box, David Ehnebuske, Gobal Kakivaya, Andrew Layman, Dave Winer., Simple

Object Access Protocol (SOAP) Version 1.1, May 2000,. Available at
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[23] Erik Christiensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana, Web

Service Description Language (WSDL) Version 1.1, March 2001. Available at
http://www.w3.org/TR/wsdl

[24] deegree project (OGC Compatible GIS services) http://deegree.sourceforge.net/

[25] demis project (OGC compatible Web Map Services)

http://www.demis.nl/home/pages/home.htm

[26] Jon Ferraiolo, Dean Jackson, Scalable Vector Graphics (SVG) Sprcification 1.1.,

January 2003, Available at http://www.w3.org/TR/SVG/

[27] George Percivall, OpenGIS Consortium Reference Model 0.1.3, OGC Document #04-

040, September 2003. Available at
http://www.opengeospatial.org/specs/?page=orm

[28] Roel Nicolai, The OpenGIS® Abstract Specification, Topic 2: Spatial referencing by

coordinates 2.0.0. Document #03-073r1, October 2003. Available at
http://www.opengeospatial.org/specs/?page=abstract

[29] Sam Bacharach, OGC Consortium presentation, “Advancing Your Mission Objectives

With Open Standards Frameworks.” , July 2003. Available at
http://www.opengeospatial.org/press/?page=presentations

 68

[30] OpenGIS Simple Features Specification For SQL, Revision 1.1. May 1999. Available at
http://www.opengeospatial.org/docs

[31] OpenGIS Simple Features Specification For OLE/COM, Revision 1.1. May 1999.

Available at http://www.opengeospatial.org/docs

[32] OpenGIS Simple Features Specification For CORBA, Revision 1.8. March 1998.

Available at http://www.opengeospatial.org/docs

[33] Jean-Philippe Humblet, , OGC OpenGIS consortium, OpenGIS Web Map Context

Documents 1.0.0, OGC Document #03-036r2, June 2003. Available at
http://www.opengeospatial.org/specs/?page=specs

[34] OpenGIS Coordinate Transformation Services 1.00. OGC Document #01-009, January

2001. Available at http://www.opengeospatial.org/specs/?page=specs

[35] Panagiotis A. Vretanos, OpenGIS Filter Encoding Implementation Specification

1.0.0. OGC Document #02-059, September 2001. Available at
http://www.opengeospatial.org/specs/?page=specs

[36] Mark Little, Eric Newcomer, Greg Pavlik., OASIS Web Services Context Specifications

(WS-Context) 0.8. November 2004. Available at
http://xml.coverpages.org/WS-ContextCD-9904.pdf

[37] OGC OpenGIS Approved Specifications list. Available at

http://www.opengeospatial.org/specs/?page=specs

[38] OGC OpenGIS Abstract Specifications list. Available at

http://www.opengeospatial.org/specs/?page=abstract

[39] OGC OpenGIS Recommendation Papers list. Available at

http://www.opengeospatial.org/specs/?page=recommendation

[40] OGC OpenGIS Discussion Papers list. Available at

http://www.opengeospatial.org/specs/?page=discussion

