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ABSTRACT
We present a study of three important kernels that occur fre-
quently in iterative statistical applications: K-Means, Multi-
Dimensional Scaling (MDS), and PageRank. We imple-
mented each kernel using OpenCL and evaluated their per-
formance on an NVIDIA Tesla GPGPU card. By exam-
ining the underlying algorithms and empirically measuring
the performance of various components of the kernel we ex-
plored the optimization of these kernels by three techniques:
1. selectively placing data in different memory levels, 2. re-
arranging data in memory. and 3. dividing the work be-
tween the GPU and the CPU. The optimizations resulted in
performance improvements of up to 5X, compared to näıve
OpenCL implementations. We believe that these categories
of optimizations are also applicable to other similar kernels.
Finally, we draw several lessons that would be useful in not
only implementing other similar kernels with OpenCL, but
also in devising code generation strategies in compilers that
target GPGPUs through OpenCL.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Concurrent
Programming

General Terms
Algorithms, Performance

Keywords
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1. INTRODUCTION
Iterative algorithms are at the core of the vast major-

ity of scientific applications, which have traditionally been
parallelized and optimized for large multi-processors, either
based on shared memory or clusters of interconnected nodes.
As GPUs have gained popularity for scientific applications,
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computational kernels used in those applications need to be
performance-tuned for GPUs in order to utilize the hardware
as effectively as possible.

Often, when iterative scientific applications are parallelized
they are naturally expressed in a bulk synchronous parallel
(BSP) style, where local computation steps alternate with
collective communication steps [26]. An important class of
such iterative applications are statistical applications that
process large amounts of data. A crucial aspect of large
data processing applications is that they can often be fruit-
fully run in large-scale distributed computing environments,
such as clouds.

In this paper, we study three algorithms, which we re-
fer to as kernels, that find use in such iterative statistical
applications. The intended environment to run these ap-
plications is loosely-connected and distributed, which could
be leveraged using a cloud computing framework, such as
MapReduce. In this paper, we focus on characterizing and
optimizing the kernel performance on a single GPU node.
The three kernels are:
1. K-Means, which is a clustering algorithm used in many

machine learning applications;
2. MDS, which is a set of statistical techniques to visualize

higher dimensional data in three dimensions; and
3. PageRank, which is an iterative link analysis algorithm

relying on sparse matrix-vector multiplication.
These kernels are characterized by high ratio of memory

accesses to floating point operations, thus necessitating care-
ful latency hiding and memory hierarchy optimizations to
achieve high performance. We conducted our study in the
context of OpenCL, which would let us extend our results
across hardware platforms. We studied each kernel for its
potential for optimization by:
1. Utilizing OpenCL local memory, by software-controlled

caching of selected data;
2. Reorganizing data in memory, to encourage hardware-

driven memory access coalescing or to avoid bank con-
flicts; and

3. Dividing the computation between CPUs and GPUs, to
establish a software pipeline across iterations.

We present detailed experimental evaluation for each ker-
nel by varying different algorithmic parameters. Finally, we
draw some lessons linking algorithm characteristics to the
optimizations that are most likely to result in performance
improvements. This has important implications not only for
kernel developers, but also for compiler developers who wish
to leverage GPUs within a higher level language by compil-
ing it to OpenCL.
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Figure 1: OpenCL memory hierarchy. In the
current NVIDIA OpenCL implementation, private
memory is physically located in global memory.

2. BACKGROUND
Boosted by the growing demand for gaming power, the

traditional fixed function graphics pipeline of GPUs have
evolved into a full-fledged programmable hardware chain [14].

In this paper we use NVIDIA Tesla C1060 GPGPU card
for our experiments. Tesla C1060 consists of 240 proces-
sor cores and 4 GB global memory with 102 GB/sec peak
memory bandwidth. It has a theoretical peak performance
of 933 GFLOPS for single precision and 78 GFLOPS for
double precision.

It is the general purpose relatively higher level program-
ming interfaces, such as OpenCL, that have paved the way
for leveraging GPUs for general purpose computing. OpenCL
is a cross-platform, vendor-neutral, open programming stan-
dard that supports parallel programming in heterogeneous
computational environments, including multi-core CPUs and
GPUs [10]. It provides efficient parallel programming capa-
bilities on both data parallel and task parallel architectures.

A compute kernel is the basic execution unit in OpenCL.
Kernels are queued up for execution and OpenCL API pro-
vides a set of events to handle the queued up kernels. The
data parallel execution of a kernel is defined by a multi-
dimensional domain and each individual execution unit of
the domain is referred to as a work item, which may be
grouped together into several work-groups, executing in par-
allel. Work items in a group can communicate with each
other and synchronize execution. The task parallel compute
kernels are executed as single work items.

OpenCL defines a multi level memory model with four
memory spaces: private, local, constant. and global as de-
picted in Figure 1. Private memory can only be used by
single compute units, while global memory can be used by
all the compute units on the device. Local memory (called
shared memory in CUDA) is accessible in all the work items
in a work group. Constant memory may be used by all the
compute units to store read-only data.

3. ITERATIVE STATISTICAL APPS
Many important scientific applications and algorithms can

be implemented as iterative computation and communica-
tion steps, where computations inside an iteration are inde-
pendent and are synchronized at the end of each iteration
through reduce and communication steps. Often, each iter-

ation is also amenable to parallelization. Many statistical
applications fall in this category. Examples include cluster-
ing algorithms, data mining applications, machine learning
algorithms, data visualization algorithms, and most of the
expectation maximization algorithms. The growth of such
iterative statistical applications, in importance and number,
is driven partly by the need to process massive amounts of
data, for which scientists rely on clustering, mining, and
dimension-reduction to interpret the data. Emergence of
computational fields, such as bioinformatics, and machine
learning, have also contributed to an increased interest in
this class of applications.

Advanced frameworks, such as Twister [9], can support
optimized execution of iterative MapReduce applications,
making them well-suited to support iterative applications
in a large scale distributed environment, such as clouds.
Within such frameworks, GPGPUs can be utilized for ex-
ecution of single steps or single computational components.
This gives the applications the best of both worlds by uti-
lizing the GPGPU computing power and supporting large
amounts of data. One goal of our current study is to evaluate
the feasibility of GPGPUs for this class of applications and
to determine the potential of combining GPGPU comput-
ing together with distributed cloud-computing frameworks.
Some cloud-computing providers, such as Amazon EC2, are
already moving to provide GPGPU resources for their users.
Frameworks that combine GPGPU computing with the dis-
tributed cloud programming would be good candidates for
implementing such environments. To this end, we restrict
ourselves to scenarios where the computational data fit within
the GPU or CPU memory, which are likely to be common
in large-scale distributed execution environments consisting
of a large number of GPU nodes.

A characteristic feature of data processing iterative statis-
tical applications is their high ratio of memory accesses to
floating point operations, making them memory-bound. As
a result, achieving high performance, measured in GFLOPS,
is challenging. However, software-controlled memory hierar-
chy and the relatively high memory bandwidth of GPGPUs
also offer an opportunity to optimize such applications. In
the rest of the paper, we describe and study the optimiza-
tion on GPUs of three representative kernels that are heavily
used in iterative statistical applications.

4. K-MEANS CLUSTERING
Clustering is the process of partitioning a given data set

into disjoint clusters. Use of clustering and other data min-
ing techniques to interpret very large data sets has become
increasingly popular with petabytes of data becoming com-
monplace. Each partitioned cluster includes a set of data
points that are similar by some clustering metric and dif-
fer from the set of data points in another cluster. K-Means
clustering algorithm has been widely used in many scientific
as well as industrial application areas due to its simplicity
and the applicability to large data sets [20].

K-Means clustering algorithm works by defining k cen-
troids, i.e., cluster means, one for each cluster, and associ-
ating the data points to the nearest centroid. It is often
implemented using an iterative refinement technique, where
each iteration performs two main steps:
1. In the cluster assignment step, each data point is assigned

to the nearest centroid. The distance to the centroid is
often calculated as Euclidean distance.
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Figure 2: K-Mean performance with the different
optimizations steps, using 2D data points and 300
centroids.

2. In the update step, new cluster centroids are calculated
based on the data points assigned to the clusters in the
previous step.

At the end of iteration n, the new centroids are compared
with the centroids in iteration n− 1. The algorithm iterates
until the difference, called the error, falls below a predeter-
mined threshold. Figure 8 shows an outline of our OpenCL
implementation of the K-Means algorithm.

The number of floating-point operations, F , in OpenCL
K-Means per iteration per thread is given by F = (3DM +
M), resulting in a total of F ∗N ∗I floating-point operations
per calculation, where I is the number of iterations, N is the
number of data points, M is the number of centers, and D
is the dimensionality of the data points.

Figure 2 summarizes the performance of our K-Means im-
plementation using OpenCL, showing successive improve-
ments with optimizations. We describe these optimizations
in detail in the remainder of this section.

4.1 Leveraging Local Memory
In the näıve implementation, both the centroid values as

well as the data points are accessed directly from the GPU
global memory, resulting in a global memory read for each
data and centroid data point access. With this approach, we
were able to achieve performance in the range of 20 GFLOPs
and speedups in the range of 13 compared to single core
CPU1.

The distance from a data point to each cluster centroid
gets calculated in the assignment step of K-Means, resulting
in reuse of the data point many times within a single thread.
This observation motivated us to modify the kernel to copy
the data points belonging to a local work group to the local
memory, at the beginning of the computation. This resulted
in approximately 75% performance increase over the näıve
implementation, as the next line, marked “B”, shows.

Each thread iterates through the centroids to calculate
the distance to the data point assigned to that particular
thread. This results in several accesses (equal to the local
work group size) to each centroid per local work group. To
avoid that, we copied the centroid point to the local mem-
ory before the computation. Caching of centroids values in
local memory resulted in about 160% further performance
increase, illustrated in the line marked “C” in Figure 2.

1We use a 3 GHz Intel Core 2 Duo Xeon processor, with
4 MB L2 cache and 8 GB RAM, in all our experiments.
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(a) K-Means: varying number of centers.
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Figure 3: K-Means with varying algorithmic param-
eters.



4.2 Optimizing Memory Access
As the next step, we stored the multi-dimensional data

points in column-major format in global memory to take
advantage of the hardware coalescing of memory accesses.
However this did not result in any measurable performance
improvement as the completely overlapped lines“C”and“D”
show, in Figure 2.

However, storing the data points in local memory in column-
major format resulted in about 140% performance improve-
ment, relative to the näıve implementation, represented by
the line marked “D + shared data points . . . ” in Figure 2.
We believe that this is because of reduced bank conflicts
when accessing local memory concurrently by different threads
in a local work group. Performing the same transformation
for centroids in local memory did not result in any signifi-
cant change to the performance (not shown in the figure).
We believe this is due to all the threads in a local work
group accessing the same centroid point at a given step of
the computation, resulting in a bank-conflict free broadcast
from the local memory. All experiments for these results
were obtained on a two-dimensional data set with 300 cen-
troids.

Next, we characterized our most optimized K-Means algo-
rithm by varying the different algorithmic parameters. Fig-
ure 3(a) presents the performance variation with different
number of centroids, as the number of data points increases.
Figure 3(b) shows the performance variation with 2D and 4D
data sets, each plotted for 100 and 300 centroids. The mea-
surements indicate that K-Means is able to achieve higher
performance with higher dimensional data. Finally, Fig-
ures 3(c) and 3(d) show that there is no measurable change
in performance with the number of iterations.

4.3 Sharing Work between CPU and GPU
In the OpenCL K-Means implementation, we follow a hy-

brid approach where cluster assignment step is performed in
the GPU and the centroid update step is performed in the
CPU. A single kernel thread calculates the centroid assign-
ment for one data point. These assignments are then trans-
fered back to the CPU to calculate the new centroid values.
While some recent efforts have found that performing all the
computation on the GPU can be beneficial, especially, when
data sets are large [8], that approach forgoes the opportunity
to make use of the powerful CPU cores that might also be
available in a distributed environment. Performing partial
computation on the CPU allows our approach to implement
software pipelining across several iterations.

4.4 Overhead Estimation
In order to isolate the data communication and kernel

scheduling overheads we used a simple performance model.
Suppose that cs is the time to perform K-Means computa-
tion and os is the total overheads, for s data points. Then,
the total running time of the algorithm, Ts is given by:

Ts = cs + os (1)

Suppose that we double the computation that each kernel
thread performs. Since the overheads remain more or less
unchanged, the total running time, T ′

s, with double the com-
putation is given by:

T ′
s = 2·cs + os (2)

By empirically measuring Ts and T ′
s and using Equations 1

and 2, we can estimate the overheads. Figure 4 shows T ′
s

(“double compute”), Ts (“regular”), c (“compute only”) and o
(“overhead”). The running times are in seconds (left vertical
axis) and overhead is plotted as a percentage of the compute
time, c (right vertical axis). Clearly, for small data sets the
overheads are prohibitively high. This indicates that, in
general, a viable strategy to get the best performance would
be to offload the computation on the GPU only when data
sets are sufficiently large. Empirically measured parameters
can guide the decision process at run time.
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Figure 4: Overheads in OpenCL KMeans.

5. MDS
The objective of multi-dimensional scaling (MDS) is to

map a data set in high-dimensional space to a user-defined
lower dimensional space with respect to pairwise proximity
of the data points [16, 5]. Dimensional scaling is used mainly
in visualization of high-dimensional data by mapping them
to two or three dimensional space. MDS has been used to
visualize data in diverse domains, including, but not lim-
ited to, bio-informatics, geology, information sciences, and
marketing.

One of the popular algorithms to perform MDS is Scal-
ing by MAjorizing a COmplicated Function (SMACOF) [7].
SMACOF is an iterative majorization algorithm to solve
MDS problem with STRESS criterion, which is similar to
expectation-maximization. In this paper, we implement the
parallel SMACOF algorithm described by Bae et al [1].

The input for MDS is an N×N matrix of pairwise prox-
imity values, where N is the number of data points in the
high-dimensional space. The resultant lower dimensional
mapping in D dimensions, called the X values, is an N×D
matrix. For the purposes of this paper, we performed an
unweighted mapping resulting in two main steps in the al-
gorithm: (a) calculating new X values, and (b) calculating
the stress of the new X values. There needs to be a global
barrier between the two steps as stress value calculation re-
quires all of the new X values. However the reduction step
for X values in MDS is much simpler than in K-Means. Since
each data point, k, independently produces the value X[k],
the reduction step reduces to simple aggregation in memory.
Figure 9 outlines our OpenCL implementation of MDS.

The number of floating pointer operations, F , per iter-
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Figure 5: MDS with varying algorithmic parame-
ters.

ation per thread is given by F = (8DN + 7N + 3D + 1),
resulting in a total of F×N×I floating point operations per
calculation, where I is the number of iterations, N is the
number of data points, and D is the dimensionality of the
lower dimensional space.

5.1 Leveraging Local Memory
In a näıve implementation all the data points, X values,

and result (new X values) are stored in global memory. SMA-
COF MDS algorithm uses a significant number of temporary
runtime matrices for intermediate data storage. We restruc-
tured the algorithm to eliminate the larger temporary run
time matrices, as they proved to be very costly in terms of
space as well as performance. The kernel was redesigned to
process a single row at a time.

After eliminating the run time data structures, X’[k][]
matrix points were used in several locations of the algo-
rithm to store intermediate results, which were stored in
local memory and copied to global memory only at barrier
synchronization. As an added advantage, we were able to

reuse the intermediate values in local memory when calcu-
lating the stress values. This resulted in a large performance
improvement (up to about 45%) for intermediate size inputs.
X[k] values for each thread k were copied to local memory

before the computation. X values belonging to the row that
is being processed by the thread gets accessed many more
times compared to the other X values. Hence, copying these
X values to local memory turns out to be worthwhile.

5.2 Optimizing Memory Access
All data points belonging to the data row that a thread is

processing are iterated through twice inside the kernel. We
encourage hardware coalescing of these accesses by storing
the data in global memory in column-major format, which
causes contiguous memory access from threads inside a lo-
cal work group. Figure 5(a) shows that data placement to
encourage hardware coalescing results in a significant per-
formance improvement.

Similarly we experimented with storing the X values in
column-major format, but it resulted in a slight performance
degradation. The access pattern for the X values is different
from that for the data points. All the threads in a local
work group access the same X value at a given step. As we
noted in Section 4.2, we observe a similar behavior with the
K-Means clustering algorithm.

Performance improvements resulting from each of the above
optimizations are summarized in Figure 5(a). Unfortunately,
we do not yet understand why the performance drops sud-
denly after a certain large number of data points and then
begins to improve again. Possible explanations could include
increased data bus contention, or memory bank conflicts.
However, we would need more investigation to determine the
exact cause. Figures 5(b) and 5(c) show performance num-
bers with varying number of iterations, which show similar
trends.

5.3 Sharing Work between CPU and GPU
In the case of MDS, there is not a good case for divid-

ing the work between CPU and GPU. In our experiments,
the entire computation was done on the GPU. On the other
hand, as the measured overheads show below, certain prob-
lem sizes might be better done on the CPU.

5.4 Overhead Estimation
Following the model that was used for K-Means in Sec-

tion 4.4, we performed similar experiments for estimating
kernel scheduling and data transfer overheads in MDS. Fig-
ure 6 shows the results. As in K-Means, we note that the
overheads change with the input data size. In the case of
MDS, however, there are two useful cutoffs, one for small
data sizes and another for large data sizes—on either ends
overheads become high and the computation might achieve
higher performance on the CPU if the data have to be trans-
ferred from the CPU memory, which is what we have as-
sumed in the overhead computations.

6. PAGERANK
PageRank algorithm, developed by Page and Brin [6], an-

alyzes linkage information of a set of linked documents to
measure the relative importance of each document whithin
the set. PageRank of a certain document depends on the
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number and the PageRank of other documents linked to it.

PR(pi) =
1− d

N
+ d

∑
pj∈M(pi)

PR(pj)

L(pj)
(3)

Equation 3 defines PageRank, where {p1, . . ., pN} is the set
of documents, M(pi) is the set of documents that link to
pi, L(pj) is the number of outbound links on pj , and N is
the total number of pages. PageRank calculation can be
performed using an iterative power method, resulting in the
multiplication of a sparse matrix and a vector. The link-
age graph for the web is very sparse and follows a power
law distribution [2], presenting unique implementation chal-
lenges for PageRank.

For our OpenCL PageRank implementation we used a
modified compressed sparse row (CSR) format and modified
ELLPACK format [4] to store the matrix representing the
link graph. Typically the sparse matrix used for PageRank
stores 1/L(pj) in an additional data array. We eliminated
the data array by storing the intermediate page rank val-
ues as PR(pj)/L(pj), significantly reducing memory usage
and accesses. We made a similar modification to ELLPACK
format. We preprocessed and used the Stanford web data
set from the Stanford Large Network Dataset [25] for our
experiments.

6.1 Leveraging Local Memory
We were not able to utilize local memory to store all the

data in the GPU kernel due to the variable sizes of matrix
rows and the large size of the PageRank vector. However, we
used local memory for data points in the ELLPACK kernel.

6.2 Optimizing Memory Access
Due to the irregular memory access pattern arising out of

indirect array accesses, sparse matrix vector computation is
not amenable to memory access optimizations. However, the
index array, especially in the ELLPACK format, is stored in
appropriate order to enable contiguous memory accesses.

6.3 Sharing Work between CPU and GPU
Due to the power law distribution of non-zero elements, a

small number of rows contains a large number of elements,
but a large number of rows are very sparse. In a prepro-
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cessing step, the rows are partitioned into two or more sets
of those containing a small number of elements and the re-
mainder containing higher number of elements. The more
dense rows could be computed either on the CPU or the
GPU using the CSR format directly. The rows with smaller
number of non-zero elements are reformatted into the ELL-
PACK format and computed on the GPU. We evaluated
several partitioning alternatives, shown in Figure 7.

The leftmost bars represent the running times on CPU.
The next three bars represents computing all rows with
greater than or equal to k elements on the CPU, where k
is 4, 7, and 16, respectively. The rows with fewer than k
elements are transformed into ELLPACK format and com-
puted on the GPU. Moreover, when k = 7, two distinct
GPU kernels are used, one for computing rows with up to
3 elements and another for computing rows with 4 to 7 el-
ements. Similarly, for k = 16, an additional third kernel is
used to process rows with 8 to 15 elements. Splitting the ker-
nels not only improves the GPU occupancy, but also allows
those kernels to be executed concurrently.

In Figure 7 we do not include the overheads of the lin-
ear time preprocessing step and of host-device data trans-
fers, both of which are relatively easy to estimate. How-
ever, we also do not assume any parallelism between the
multiple kernels processing the rows in ELLPACK format.
Our main observation from these experiments is that sharing
work between CPU and GPU for sparse matrix-vector mul-
tiplication is a fruitful strategy. Moreover, unlike previous
attempts recommending hybrid matrix representation that
used a single kernel for the part of the matrix in ELLPACK
format [4], our experiments indicate that it is beneficial to
use multiple kernels to handle rows with different numbers
of non-zero elements. The problem of deciding the exact
partitioning and the exact number of kernels is outside the
scope of this paper and we leave that as part of future work.

Instead of computing the matrix partition with denser
rows on the CPU, it could also be computed on the GPU. We
also implemented a sparse matrix-vector product algorithm
using CSR representation on the GPU (not shown in the fig-
ure). Our experiments indicate that GPU can take an order
of magnitude more time for that computation than CPU,
underlining the role of CPU for certain algorithm classes.

7. LESSONS
In this study we set out to determine if we could charac-

terize some core data processing statistical kernels for com-
monly used optimization techniques on GPUs. We focused
on three widely used kernels and three important optimiza-
tions. We chose to use OpenCL, since there are fewer ex-



perimental studies on OpenCL, compared to CUDA, and
the multi-platform availability of OpenCL would allow us to
extend our research to other diverse hardware platforms.

Leveraging Local Memory.
It is not surprising that making use of faster local mem-

ory turns out to be one of the most important optimiza-
tions within OpenCL kernels. In many cases, decision about
which data to keep in local memory is straightforward based
on reuse pattern and data size. For example, in K-Means
and MDS it is not possible to keep the entire data set in
local memory, since it is too big. However, the centroids
in K-Means and intermediate values in MDS can be fruit-
fully stored there. Unfortunately, in some cases, such as
portions of MDS, leveraging local memory requires making
algorithmic changes in the code, which could be a challenge
for automatic translators.

Optimizing Memory Access.
Laying out data in memory is a known useful technique

on CPUs. On GPUs, we observed mixed results. While
data layout in local memory turned out to be useful for
K-Means and not for MDS, layout in global memory had
significant impact on MDS and no observable impact on K-
Means. This behavior is likely a result of different mem-
ory access patterns. In general, contiguous global memory
accesses encourage hardware coalescing, whereas on local
memory bank conflicts play a more critical role. Thus, the
two levels of memories require different layout management
strategies. However, as long as the memory access patterns
are known the benefits are predictable, thus making this
optimization amenable to automatic translation.

Sharing work between CPU and GPU.
One major issue in sharing work between CPU and GPU

is the host-device data transfers. Clearly, this has to be
balanced against the improved parallelism across GPUs and
multi-core CPUs. Moreover, within the context of our study,
there is also the issue of how data across nodes get trans-
ferred. If the data must move through CPU memory then
in certain cases it might be beneficial to perform the compu-
tation on the CPU. Through our simple performance model
and the overhead graphs the tradeoffs are apparent. These
graphs could also help in determining the cutoffs where of-
floading computation on the GPU is worthwhile. Finally, in
iterative algorithms, where kernels are invoked repeatedly,
offloading part of the computation on the GPUs can also
enable software pipelining between CPU and GPU.

Another factor in determining the division of work is the
complexity of control flow. For instance, a reduction oper-
ation in K-Means, or a sparse matrix-vector multiply with
relatively high density of non-zero values that might involve
a reduction operation, may be better suited for computing
on the CPU. This would be especially attractive if there is
sufficient other work to overlap with GPU computations.

Finally, the differences in precision between CPU and
GPU can sometimes cause an iterative algorithm to require
different number of iterations on the two. A decision strat-
egy for scheduling an iterative algorithm between CPU and
GPU may also need to account for these differences.

Unlike the other two optimizations, the value of this one
is determined largely by the input. As a result, a dynamic
mechanism to schedule computation just-in-time based on

the category of input could be a more useful strategy than
a static one.

8. RELATED WORK
Emergence of accessible programming interfaces and in-

dustry standard languages has resulted in tremendously in-
creased interest in using GPUs for general purpose comput-
ing. CUDA, by NVIDIA, has been the most popular frame-
work for this purpose [21]. In addition to directly studying
application implementations in CUDA [11, 23], there have
been recent research projects exploring CUDA in hybrid CU-
DA/MPI environment [22], and using CUDA as a target in
automatic translation [18, 17, 3].

There have been several past attempts at implementing
the K-Means clustering algorithm on GPUs, mostly using
OpenGL or CUDA [24, 12, 27, 19, 15]. Recently, the K-
Means algorithm has also been implemented using OpenCL
by Dhanasekaran et al [8]. In contrast to the approach of
Dhanasekaran et al., who implemented the reduction step on
GPUs in order to handle very large data sets, we chose to
mirror the earlier efforts with CUDA and perform the reduc-
tion step on the CPU. Even though that involves transfer-
ring the reduction data to CPU, we found that the amount
of data that needed to be transferred was relatively small.
In optimizing K-Means, we used the device shared mem-
ory to store the map data. As a result, when dealing with
very large data sets, which motivated Dhanasekaran et al.’s
research, our optimized kernel would run out of shared mem-
ory before the reduction data becomes too large to become
a bottleneck. Further research is needed to determine the
trade-offs of giving up the optimization of device shared-
memory and performing the reduction on the GPU.

We implemented the MDS kernel based on an interpola-
tion algorithm by Bae et al. [1]. Glimmer is another multi-
level MDS implementation [13]. While Glimmer implements
multilevel MDS using OpenGL Shading Language (GLSL)
for large data sets, we used an interpolated approach to limit
the data size, which has been found to be useful in certain
contexts. This allowed us to experiment with optimizing
the algorithm for realistic contexts, without worrying about
dealing with data sets that do not fit in memory.

The computationally intensive part of PageRank is sparse
matrix-vector multiplication. We followed the guidelines
from an NVIDIA study for implementing the sparse matrix-
vector multiplication [4]. The sparse matrix in PageRank
algorithm usually results from graphs following power law.
Recent efforts to optimize PageRank include using a low-
level API to optimize sparse matrix-vector product by using
the power law characteristics of the sparse matrix [28]. More
recently, Yang et al. leveraged this property to auto-tune
sparse matrix-vector multiplication on GPUs [29]. They
built an analytical model of CUDA kernels and estimated
parameters, such as tile size, for optimal execution.

9. CONCLUSION AND FUTURE WORK
We have presented an experimental evaluation of three im-

portant kernels used in iterative statistical applications for
large scale data processing, using OpenCL. We evaluated
three optimization techniques for each, based on leveraging
fast local memory, laying out data for faster memory ac-
cess, and dividing the work between CPU and GPU. We
conclude that leveraging local memory is critical to perfor-
mance in almost all the cases. Data layout is important in



certain cases, but when it is, it has significant impact. In
contrast to other optimizations, sharing work between CPU
and GPU may be input data dependent, as in the case of
K-Means, which points to the importance of dynamic just-
in-time scheduling decisions.

Our planned future work includes extending the kernels
to a distributed environment, which is the context that has
motivated our study. Other possible directions include com-
paring the OpenCL performance with CUDA, studying more
kernels from, possibly, other domains, and exploring more
aggressive CPU/GPU sharing on more recent hardware that
has improved memory bandwidth.
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APPENDIX

K-Means

k e r n e l KMeans( g l o b a l matrix ,
g l o b a l c ent ro id s , g l o b a l assignment ,
l o c a l l o ca lPo in t s , l o c a l l oca lData ){

g id = g e t g l o b a l i d ( 0 ) ;
l i d = g e t l o c a l i d ( 0 ) ;
l z = g e t l o c a l s i z e ( 0 ) ;

// Copying c e n t r o i d s to shared memory
i f ( l i d < cente r sHe ight ){

f o r ( i n t i =0; i < WIDTH ; i ++){
l o c a l P o i n t s [ ( l i d ∗WIDTH)+ i ] =

c e n t r o i d s [ ( l i d ∗WIDTH)+ i ] ;
}

}

// Copying data po in t s to shared memory
f o r ( i n t i =0; i < WIDTH ; i ++){

l o ca lData [ l i d +( l z ∗ i ) ] =
matrix [ ( g id )+( i ∗ he ight ) ] ;

}
f o r ( i n t j = 0 ; j < cente r sHe ight ; j++){

f o r ( i n t i = 0 ; i < width ; i ++){
d i s t ance = ( l o c a l P o i n t s [ ( j ∗width)+ i ]

− l o ca lData [ l i d +( l z ∗ i ) ] ) ;
euDistance += d i s t ance ∗ d i s t ance ;

}
i f ( j == 0) {min = euDistance ;}
e l s e i f ( euDistance < min ) {

min = euDistance ; minCentroid = j ;
}

}
assignment [ g id ]= minCentroid ;
}

Figure 8: Outline of K-Means in OpenCL.

MDS

k e r n e l MDS( g l o b a l f l o a t ∗ data ,
g l o b a l f l o a t ∗ x , g l o b a l f l o a t ∗ newX){

g id = g e t g l o b a l i d ( 0 ) ;
f o r ( i n t j = 0 ; j < width ; j++)
{

d i s t ance = d i s t ( x [ g id ] [ ] , x [ j ] [ ] ) ;
bofZ = (−1) ∗ ( data [ g id ] [ j ] / d i s t ance ) ;
rowSum += bofZ ;
newX [ g id ] [ ] += bofz ∗ x [ j ] [ ] ;

}
newX [ g id ] [ ] += (−1)∗ rowSum ∗ x [ g id ] [ ] ;
newX [ g id ] [ ] = newX [ g id ] [ ] / width ;
b a r r i e r (CLK GLOBAL MEM FENCE) ;

l o c a l f l o a t sigma [ ] ;
f o r ( i n t j = 0 ; j < WIDTH; j++)
{

d i s t ance = d i s t (newX [ g id ] [ ] , newX [ j ] [ ] )
sigma [ l i d ] += ( data [ g id ] [ j ]− d i s t ance ) ˆ 2 ;

}
s t r e s s = h i e ra ch i ca lReduc t i on ( sigma [ ] ) ;

}

Figure 9: Outline of MDS in OpenCL.

PageRank

k e r n e l PageRankCSR( g l o b a l f l o a t ∗ po inte r s ,
g l o b a l f l o a t ∗ i n d i c e s , g l o b a l f l o a t ∗ x ,
g l o b a l f l o a t ∗ newX){

g id = g e t g l o b a l i d ( 0 ) ;

s t a r t = p o i n t e r s [ ( g id ) ] ;
end = p o i n t e r s [ ( g id )+1 ] ;

f o r ( i n t i=s t a r t ; i < end ; i++)
{

newRank += ranks [ i n d i c e s [ i ] ] ;
}

newRank = ((1−d)/ numPages ) + (d ∗ newRank ) ;
// To avoid s t o r i n g 1/L( pj ) in the matrix .
newRanks [ g id ] = newRank/numPages ;

}

Figure 10: Outline of PageRank (CSR) in OpenCL.


