
Messaging Systems: Parallel Computing
the Internet and the Grid

Geoffrey Fox

Indiana University
Computer Science, Informatics and Physics
Community Grids Computing Laboratory,

501 N Morton Suite 224, Bloomington IN 47404
gcf@indiana.edu

Abstract. We contrast the requirements and performance of messaging systems
in parallel and distributed systems emphasizing the importance of the five or-
ders of magnitude difference in network hardware latencies in the two cases.
We note the importance of messaging in Grid and Web service applications in
building the integrated system and the architectural advantages of a message
based compared to a connection based approach. We illustrate these points us-
ing the NaradaBrokering system and its application to Audio-Video conferenc-
ing.

1: Message Passing in Parallel Computing

Parallel Computing has always understood the importance of message passing and
PVM and MPI (the topics of this meeting) have dominated this field with other ap-
proaches readily mapped into these two systems. The appropriate programming
model for parallel systems is of course a very active area with continued research on
different architectures (openMP) and different high level approaches involving both
domain specific systems and degrees of compiler generated parallelism. The issue has
been further invigorated by the successes of the Japanese Earth Simulator system.
However even when we use a high level model for parallel programming, message
passing is typically essential as the low level primitive (“machine language”) for
parallelism between distributed memories. In understanding the requirements of mes-
sage passing, it is useful to divide multi-processor (distributed memory) systems into
three classes.
1) Classic massively parallel processor systems (MPP) with low latency high band-

width specialized networks. One aims at message latencies of one to a few mi-
croseconds and scalable bisection bandwidth. Ignoring latency, the time to com-
municate a word between two nodes should be a modest multiple (perhaps 20) of
time taken to calculate a floating point result. This communication performance
should be independent of number of nodes in system.

2) Commodity clusters with high performance but non optimized communication
networks. Latencies can be in the 100-1000 microsecond range typical of simple
socket based communication interfaces.

3) Distributed or Grid systems with possibly very high internode bandwidth but the
latency is typically 100 milliseconds or more as familiar from internet travel
times.

Of course there is really a spectrum of systems with cost-performance increasing by a
factor of 4 or so as one goes from 1) to 3). Here we will focus on the endpoints 1) and
3) – MPP’s and the Grid and not worry about intermediate cases like 2). MPI espe-
cially is aimed at the class 1) with optimized “native” implementations exploiting
particular features of the network hardware. Generic versions of PVM and MPI using
socket based communication on a localized network illustrate 2) as do many other
specialized programming environments (such as agent-based approaches). The latter
typically cannot afford the development effort to optimize communication and as
illustrated by our latter discussion of Grid messaging requires substantially more
functionality than MPI and PVM. Grid systems are very diverse and there is little
understanding at this stage as to critical performance and architecture (topology)
characteristics. As we discuss in sections 2 and 3, they need a rich messaging envi-
ronment very different from MPI and PVM. Note this doesn’t mean that we shouldn’t
port systems like MPI to the Grid as in MPICH-G2 [1] and PACX-MPI [2]; there is
clearly a need to run all messaging environments on all classes of machine.

The overriding “idea” of this paper is that messaging for an application with
intrinsic (hardware) latency L, mustn’t have software and routing overheads greater
than this but certainly can afford extra software overheads of size around 0.1L with-
out “noticing it”. This implies that it should be expected that the application classes 1)
2) 3) have very different messaging semantics. MPI and PVM are not totally “bare-
bones” but they are optimized for fast message processing and little communication
overhead due to headers in the message packets.
 Parallel computing can usually use very lean messaging as one is sending
between different parts of the “same” computation; thus the messages can usually just
contain data and assume that the recipient process understands the context in which
the data should be interpreted.

2: Messaging in Grids and Peer-to-Peer Networks

Now let us consider messaging for the Grid and peer-to-peer (P2P) networks
which we view as essentially identical concepts [3]. Here we are not given a single
large scale simulation – the archetypical parallel computing application, Rather ab
initio we start with a set of distributed entities – sensors, people, codes, computers,
data archives – and the task is to integrate them together. For parallel computing one
is decomposing applications into parts and messaging reflects that the parts are from
the same whole. In distributed computing, the initial entities are often quite distinct
and it is the messaging that links them together. Correspondingly the messaging for
the Grid must carry the integration context and not just data; thus one has both the

time (typically the 100 millisecond network latency) and the need for a much richer
messaging system on the Grid than for parallel computing.

In parallel computing explicit message passing is a necessary evil as we haven’t
found a generally applicable high level expression of parallelism.. For Grids and P2P
networks, messaging is the natural universal architecture which expresses the func-
tion of the system. In the next sections we compare the requirements for a messaging
service in the two cases.

2.1: Objects and Messaging

Object-based programming models are powerful and should be very important in

scientific computing even though up to now both C++ and Java have not achieved
widespread use in the community [5]. The natural objects are items like the collection
of physical quantities at a mesh point or at a larger grain size the arrays of such mesh
points [6, 7]. There is some overhead attached with these abstractions but there are
such natural objects for most parallel computing problems. However one can also
consider the objects formed by the decomposed parts of a parallel application – it has
not been very helpful to think of the decomposed parts of parallel applications as
objects for these are not especially natural components in the system; they are what
you get by dividing the problem by the number of processors. On the other hand, the
linked parts in a distributed system (Web, Grid, P2P network) are usefully thought of
objects as here the problem creates them; in contrast they are created for parallel
computing by adapting the problem to the machine architecture. The Grid distributed
objects are nowadays typically thought of as Web services and we will assume this
below. We will also not distinguish between objects and services. Note that objects
naturally communicate by messages linking the exposed interfaces (remote procedure
calls or ports) of the distributed objects. So Grid messaging is the natural method to
integrate or compose objects (services); parallel computing messaging is the natural
representation of the hardware – not the application.

2.2 Requirements for a Grid Messaging Service

There are common features of messaging for distributed and parallel computing;
for instance messages have in each case a source and destination. In P2P networks
especially, the destination may be specified indirectly and determined dynamically
while the message is en route using properties (published meta-data) of the message
matched to subscription interest from potential recipients. Groups of potential recipi-
ents are defined in both JXTA [8] for P2P and MPI for parallel computing. Publish-
subscribe is a particularly powerful way to dynamically define groups of message
recipients. Collective communication – messages sent by hardware or software multi-
cast – is important in all cases; much of the complexity of MPI is devoted to this.
Again one needs to support in both cases, messages containing complex data struc-

tures with a mix of information of different types. One must also support various
synchronization constraints between sender and receiver; messages must be acknowl-
edged perhaps. These general characteristics are shared across messaging systems.
There are also many differences where perhaps as discussed in section 1, performance
is perhaps the most important issue.

Now consider message passing for a distributed system. Here we have elegant ob-
jects exchanging mes-
sages that are them-
selves objects. It is now
becoming very popular
to use XML for defin-
ing the objects and
messages of distributed
systems. Fig. 1 shows
our simple view of a
distributed system – a
Grid or P2P Network –
as a set of XML speci-
fied resources linked by
a set of XML specified
messages. A resource is
any entity with an elec-
tronic signature; com-

puter, database, program, user, sensor.
The web community

has introduced SOAP
[9] which is essentially
the XML message
format postulated
above and “Web ser-
vices” which are XML
specified distributed
objects. Web services
are “just” computer
programs running on
one of the computers
in our distributed set.
Web services send and
receive messages on
so-called ports – each
port is roughly equiva-
lent to a subroutine or
method call in the “old
programming model”.

The messages define the name of the subroutine and its input and if necessary output
parameters. This message interface is called WSDL (Web Service Definition Lan-

XML
Specified
Messages

Resource
Data
base

Soft
ware

Soft
ware

XML
Skin

XML
Skin

Resource

Fig. 1: XML Specified Resources linked by
XML Specified Messages

Fig. 2: A Peer-to-Peer Grid constructed from Web
Services with both user-facing and service-facing ports

to send and receive messages

Peer to Peer Grid

Database
Database

Service Facing
Web Service Interfaces

Messages

User Facing
Web Service Interfaces

guage [10]) and this standard is an important W3C consortium activity. Using Web
services for the Grid requires extensions to WSDL and the resultant OGSI [11] and
OGSA (Open Grid Service Architecture [12]) standards are major efforts in the Grid
forum [13] at the moment. OGSI is the component model and OGSA the interface
standards that Grid services and messages must respect.

As seen in the peer-to-peer Grid of fig. 2, ports are either user-facing (messages go

between user and Web Services) or service or resource-facing where messages are
exchanged between different Web services. As discussed in [14] there is a special
variant of WSDL for user-facing ports – WSRP (Web Services for Remote Portlets
[15]) which defines a component model for user interfaces. This is one example of
the context carried by Grid messages – WSRP indicates a user interface message that
can be processed by aggregation portals like Apache Jetspeed [16].

One particularly clever idea in WSDL is the concept that one first defines not
methods themselves but their abstract specification. Then there is part of WSDL that
“binds” the abstract specification to a particular implementation. Here one can choose
to bind the message transport not to the default HTTP protocol but to a different and
perhaps higher performance protocol. For instance if one had ports linking Web ser-
vices on the same computer, then these could in principle be bound to direct subrou-
tine calls. This concept has interesting implications for building systems defined
largely in XML at the level of both data structure and methods. Further one can imag-
ine some nifty new branch of compilation which automatically converted XML calls
on high performance ports and generated the best possible implementation.

2.3: Performance of Grid Messaging Systems

Now let us discuss the performance of the Grid messaging system. As discussed in
section 1, the Grid messaging latency is very different from that for MPI as it can take
several 100 milliseconds for data to travel between two geographically distributed
Grid nodes; in fact the transit time becomes seconds if one must communicate be-
tween the nodes via a geosynchronous satellite. One deduction from this is that the
Grid is often not a good environment for traditional parallel computing. Grids are not
dealing with the fine grain synchronization needed in parallel computing that requires
the few microsecond latency seen in MPI for MPP’s. For us here, another more inter-
esting deduction is that very different messaging strategies can be used in Grid com-
pared to parallel computing. In particular we can perhaps afford to invoke an XML
parser for the message and in general invoke high level processing of the message.
Here we note that interspersing a filter in a message stream – a Web service or
CORBA broker perhaps – increases the transit time of a message by about 0.5 milli-
second; small compared to typical Internet transit times. This allows us to consider
building Grid messaging systems which have substantially higher functionality than
traditional parallel computing systems. The maximum acceptable latency is applica-
tion dependent. Perhaps one is doing relatively tightly synchronized computations
among multiple Grid nodes; the high latency is perhaps hidden by overlapping com-
munication and computation. Here one needs tight control over the latency and re-

duce it as much as possible. On the other extreme, if the computations are largely
independent or pipelined, one only needs to ensure that message latency is small
compared to total execution time on each node. Another estimate comes from audio-
video conferencing [17]. Here a typical timescale is 30 milliseconds – the time for a
single frame of video conferencing or a high quality streaming movie. This 30 ms.
scale is not really a limit on the latency but in its variation or jitter shown later in fig.
4. In most cases, a more or less constant offset (latency) can be tolerated.

Now consider, the bandwidth required for Grid messaging. Here the situation is
rather different for there are cases where large amounts of information need to be
transferred between Grid nodes and one needs the highest performance allowed by
the Network. In particular numbers often need to be transferred in efficient binary
form (say 64 bits each) and not in some XML syntax like <num-
ber>3.14159</number> with 24 characters requiring more bandwidth and substantial
processing overhead. There is a simple but important strategy here and now we note
that in fig. 1, we emphasized that the messages were specified in XML. This was to
allow one to implement the messages in a different fashion which could be the very
highest performance protocol. As explained above, this is termed binding the ports to
a particular protocol in the Web service WSDL specification. So what do we have left
if we throw away XML for the implementation? We certainly have a human readable
interoperable interface specification but there is more which we can illustrate again
by audio-video conferencing, which is straight-forward to implement as a Web ser-
vice [18]. Here A/V sessions require some tricky set-up process where the clients
interested in participating, join and negotiate the session details. This part of the proc-
ess has no significant performance issues and can be implemented with XML-based
messages. The actual audio and video traffic does have performance demands and
here one can use existing fast protocols such as RTP. This is quite general; many
applications need many control messages, which can be implemented in basic Web
service fashion and just part of the messaging needs good performance. Thus one
ends up with control ports running basic WSDL with possible high performance ports
bound to a different protocol.

3: Narada Brokering Messaging Services

Shrideep Pallickara in the Community Grids Laboratory at Indiana has developed

[19, 20] a message system for Web resources designed according to the principles
sketched above. It is designed to be deployed as a hierarchical network of brokers
that handle all aspects of Grid and Web distributed systems that can be considered as
“only connected to the message”. One critical design feature is that one considers the
message and not the connection as the key abstraction. Destinations, formats and
transport protocols are “virtualized” i.e. specified indirectly by the user at a high
level. Messages are labeled by XML topics and used to bind source and destinations
with a publish-subscribe mechanism. The transport protocol is chosen using a Net-
work Weather Service [21] like evaluation of the network to satisfy quality of service
constraints. A given message can be routed through a (logarithmic) network of Na-

rada brokers using if needed a different protocol at each link. For example, an audio
stream might have a TCP/IP link through a firewall followed by a UDP link across a
high latency reliable satellite link. Currently there is support for TCP, UDP, Multi-
cast, SSL, raw RTP and specialized PDA clients. Also NaradaBrokering (NB) pro-
vides the capability for communication through firewalls and proxies. It can operate
either in a client-server mode like JMS (Java Message Service [22]) or in a com-
pletely distributed JXTA-like [8] peer-to-peer mode. Some capabilities of importance
include

 (1) NB Supports heterogeneous network transportation and provides unified
multipoint transportation

Software multicast – Since NB relies on software multicast, entities interested in
linking collaboratively with each other need not set up a dedicated multicast group for
communication. Each NB broker can handle hundreds of clients and can be arranged
in general networks. Further as shown in fig. 3, the typical delay on a fast network is

less than a millisecond per hop between brokers. Thus software multicast appears
practical under general circumstances.

Communication over firewalls and proxy boundaries – NB incorporates strategies
to tunnel through firewalls and authenticating proxies such as Microsoft’s ISA and
those from iPlanet and Checkpoint.

Communication using multiple transport protocols – We described above how this
can be effectively used to provide quality of service.

(2) NB provides robust, scalable and high efficient multipoint transportation
services

Availability and scalability – There is no single point of failure within the NB
messaging system. Additional broker nodes may be added to support large heteroge-
neous distributed systems. NB’s cluster based architecture allows the system to scale.
The number of broker nodes may increase geometrically, but the communication path
lengths between nodes increase logarithmically.

7/6/20037/6/2003 uri="http://www.infomall.org" email="gcf@indiana.edu"uri="http://www.infomall.org" email="gcf@indiana.edu" 3737

1

2

3

4

5

6

7

8

9

1000 1500 2000 2500 3000 3500 4000 4500 5000

Tr
an

si
t D

el
ay

 (
M

illi
se

co
nd

s)

Message Payload Size
(Bytes)

hop-2
hop-3
hop-5
hop-7

Sender/receiver/broker - (Pentium-3, 1
GHz, 256 MB RAM). 100 Mbps LAN.
JDK-1.3, Red Hat Linux 7.3

Fig. 3: Transit Delays for NaradaBrokering

Efficient routing and bandwidth utilizations – NB efficiently computes destinations
associated with an event. The resultant routing solution chooses links efficiently to
reach the desired destinations. The routing solution conserves bandwidth by not over-
load links with data that should not be routed on them. Under conditions of high loads
the benefits accrued from this strategy can be substantial.

Security – NB uses a message-based security mechanism that avoids difficulties
with connection (SSL) based schemes and will track the emerging Web service stan-
dards in this area [23].

Typical performance measurements for NB are given in figures 3 and 4. Further it
compares well with the performance of commercial JMS and JXTA implementations.
Future work will develop NB to support the emerging Web service messaging stan-
dards in areas of addressing [24], reliability [25] and security [23]. One can build
Grid hosting environments on NaradaBrokering that allow efficient flexible federa-
tion of Grids with different architectures.

References

1. MPICH-G2 grid-enabled implementation of the MPI v1.1 standard based on the MPICH
library http://www.nsf-middleware.org/NMIR3/components/mpichg2.asp

0

5

10

15

20

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Ji
tte

r
(M

ill
is

ec
on

ds
)

Packet Number

Fig. 4: Jitter (roughly standard deviation) in ms. for a single broker
handling 400 video clients with a total bandwidth of 240 Mbps. The
lower red lines are for NB using publish-subscribe and RTP transport;
the upper green line is for a standard Java Media Framework video
server. The mean interval between packets is 30 ms.

2. PACX-MPI described in M. Mueller , E. Gabriel and M. Resch, A Software Development
Environment for Grid Computing, Concurrency and Computation: Practice and Experience
Vol. 14, Grid Computing environments Special Issue 13-15, pages 1543-1552, 2002.

3. Geoffrey Fox, Dennis Gannon, Sung-Hoon Ko, Sangmi Lee, Shrideep Pallickara, Marlon
Pierce, Xiaohong Qiu, Xi Rao, Ahmet Uyar, Minjun Wang, Wenjun Wu, Peer-to-Peer
Grids, Chapter 18 of Reference [4].

4. Grid Computing: Making the Global Infrastructure a Reality edited by Fran Berman, Geof-
frey Fox and Tony Hey, John Wiley & Sons, Chichester, England, ISBN 0-470-85319-0,
March 2003. http://www.grid2002.org

5. High Performance Java http://www.hpjava.org.
6. Zoran Budimlic, Ken Kennedy, and Jeff Piper. The cost of being object-oriented: A prelimi-

nary study. Scientific Programming, 7(2):87-95, 1999.
7. S. Markidis, G. Lapenta and W.B. VanderHeyden, Parsek: Object Oriented Particle in Cell

Implementation and Performance Issues. Java Grande Conference 2002 and Concurrency
and Computation: Practice and Experience, to be published.

8. Project JXTA Peer-to-peer system http://www.jxta.org/
9. SOAP: Simple Object Access Protocol http://www.w3.org/TR/SOAP/
10. WSDL: Web Services Description Language http://www.w3.org/TR/wsdl.html.
11. OGSI Open Grid Service Infrastructure Working Group of Global Grid Forum

http://www.gridforum.org/ogsi-wg/
12. Open Grid Services Architecture (OGSA) http://www.gridforum.org/ogsi-

wg/drafts/ogsa_draft2.9_2002-06-22.pdf
13. Global Grid Forum http://www.gridforum.org
14. G. Fox, D. Gannon, M. Pierce, M. Thomas, Overview of Grid Computing Environments,

Global Grid Forum Informational Document http://www.gridforum.org/documents/
15. OASIS Web Services for Remote Portlets (WSRP) http://www.oasis-open.org/committees/
16. Apache Jetspeed Portal http://jakarta.apache.org/jetspeed/site/index.html
17. Ahmet Uyar, Shrideep Pallickara and Geoffrey Fox Audio Video Conferencing in Distrib-

uted Brokering Systems in Proceedings of the 2003 International Conference on Communi-
cations in Computing, Las Vegas June 2003,
http://grids.ucs.indiana.edu/ptliupages/publications/NB-AudioVideo.pdf.

18. Geoffrey Fox, Wenjun Wu, Ahmet Uyar, Hasan Bulut, Shrideep Pallickara, A Web Services
Framework for Collaboration and Videoconferencing. WACE Conference Seattle June
2003. http://grids.ucs.indiana.edu/ptliupages/publications/finalwacepapermay03.doc.

19. NaradaBrokering from Indiana University http://www.naradabrokering.org
20. Shrideep Pallickara and Geoffrey Fox NaradaBrokering: A Distributed Middleware

Framework and Architecture for Enabling Durable Peer-to-Peer Grids in Proceedings of
ACM/IFIP/USENIX International Middleware Conference Middleware-2003, Rio Janeiro,
Brazil June 2003. http://grids.ucs.indiana.edu/ptliupages/publications/NB-Framework.pdf

21. Network Weather Service NWS http://www.nsf-middleware.org/documentation/NMI-
R3/0/NWS/index.htm.

22. JMS: Java Message Service http://java.sun.com/products/jms/.
23. Yan Yan, Yi Huang, Geoffrey Fox, Ali Kaplan, Shrideep Pallickara, Marlon Pierce and

Ahmet Topcu, Implementing a Prototype of the Security Framework for Distributed Broker-
ing Systems in Proceeedings of 2003 International Conference on Security and Management
(SAM'03: June 23-26, 2003, Las Vegas, Nevada, USA,
http://grids.ucs.indiana.edu/ptliupages/publications/SecurityPrototype.pdf.

24. Draft Web Service Addressing Standard from IBM and Microsoft
http://msdn.microsoft.com/ws/2003/03/ws-addressing/

25. Draft Web Service Reliable Messaging Standard from BEA IBM Microsoft and TIBCO
http://www-106.ibm.com/developerworks/library/ws-rm/.

