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Abstract 
 

In this paper we describe the architecture and 
initial performance analysis results of the SERVOGrid 
Complexity Computational Environments (CCE). The 
CCE architecture is based on a lightly coupled, 
Service Oriented Architecture approach that is 
suitable for distributed applications that are tolerant 
of Internet latencies. CCE focuses on integrating 
diverse Web and Grid Services for coupling scientific 
applications to Geographical Information Systems.  
The services and coupling/orchestrating infrastructure 
are mapped to problems in geophysical data mining, 
pattern informatics, and multiscale geophysical 
simulation.  
 
1. Introduction 

We describe the initial testing of the integration and 
performance of several component pieces being 
developed as part of the SERVOGrid Complexity and 
Computational Environment (CCE).  The overall CCE 
architecture is described in the technical report, 
“Complexity Computational Environment (CCE) 
Architecture,” [1].  To briefly summarize this 
document, the primary components of the system are 
as follows:  
1. Earthquake simulation and modeling codes to 

support data assimilation, data mining, and 
multiscale modeling; 

2. Data modeling with ontologies and semantic tools; 
3. Web Services for managing data sources, data 

flow, code execution, and information; 
4. A message-based event system 

(NaradaBrokering); and 
5. A workflow management system (HPSearch) [11] 

for connecting services. 
In this document, we explicitly focus on points 3, 4, 
and 5.     

The goal of the CCE system is to build and 
integrate different domains of Grid and Web Services 
into a single cooperating system.  Science Grids have 
tended to focus on code execution, job management, 
and high performance data transfer. However, projects 
such as LEAD [23] and GEON [24] have demonstrated 
the importance of integrating scientific computing with 
online meteorological and geophysical data sources.  
In our SERVOGrid work, the importance of both 
archival and real-time geophysical data has led us to 
implement a number of Web Services to support 
Geographical Information Systems.  In this paper, we 
present an initial integration of these various services. 

To establish some performance measurements on a 
particularly interesting application, we chose the 
Pattern Informatics (PI) application [14] as a test case. 
A screen shot of the user interface is shown in Figure 
1. Our distributed architecture is an iteration of the 
earlier RDAHMM data mining tests documented in 
[2].  The current tests extend this earlier system by 
adding Geographical Information Services (GIS) -- the 
Web Map Service [21] and Web Feature Service [20] -
- and the WS-Context [12] information service. We 
designed and developed all services described in this 
paper.   More information and WSDL interfaces are 
available from [6, 7, 11, 12]. 

We chose the PI application since it is used to 
produce the well-publicized “hot spot” maps published 
by SERVO team member Prof. John Rundle and his 
group at the University of California-Davis. The 
integrated PI-GIS system profiled here, when in 
production, represents a very high-profile application 
of SERVOGrid, so the current tests provide an 
important practical example. The PI code is also 
simple to run, reliable, and fast, simplifying our tests.  
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Figure 1. The SERVOGrid WMS client interface 

creates overlay maps that can also be used to set up 
and launch the Pattern Informatics code.   

The PI case study provides more general insights 
into overall system performance because the GIS 
services provide access to GPS, seismic event, and 
fault catalogs, and so are important parts of many CCE 
applications such as GeoFEST, RDAHMM, Virtual 
California, and Potts Model codes.  Also, the 
HPSearch workflow engine provides a general purpose 
service management system and transparently manages 
data flow between service components. Hence it is 
imperative to test the overhead introduced by this 
scheme.  

This report documents our efforts welding the 
various pieces of SERVO together and has served to 
point out various bottlenecks in the current system, as 
described below.  We report specific lessons learned 
for improving performance in applying conventionally 
designed Java Web Services to problems with non-
trivial data requirements.  We do not anticipate major 
changes in the architecture as the system evolves, but 
we do anticipate interesting Web Service performance 
research will be required to overcome some 
performance problems inherent to HTTP-based Web 
Services.  In particular, we plan to address some of 
these issues using techniques described in [3] to 
improve the performance of the data services.   
 
2. System Overview and Components 

Web Feature Service: The Web Feature Service 
(WFS) [20] is an Open Geospatial Consortium (OGC) 
[4] based data service that manages “feature” data: 
abstract representations of map features and associated 
metadata.  WFS servers are conventionally used by the 
GIS community to store map entities such as political 
boundaries and geographic features (rivers, roads), and 
so forth.  We may also use the WFS to store 
information sets specific to the SERVO modeling code 

requirements, including a) GPS data archives, 
accumulated from SOPAC, JPL, and USGS data 
archives; b) seismicity data archives, accumulated 
from SCSN, SCEDC, Dinger-Shearer, and Haukkson 
formatted data archives; and c) earthquake faults 
obtained from the QuakeTables fault database [5]. 

We have designed and built a Web Services-based 
WFS [6], which we use in these tests. The WFS stores 
data accumulated from public, online archives. We 
reformat and store locally, to support query searches 
and combined/filtered results.   More information is 
available from [10]. 

 
Web Map Service: The Web Map Service (WMS) 

[21] is an OGC specification for generating interactive, 
online maps.  WMS can generate maps in several 
formats (JPEG, SVG) by acting as client to both WFS 
and other WMS instances.  WMS maps are generated 
as overlays, so it is possible to generate and customize 
maps interactively.  The SERVOGrid WMS [7] 
interacts with the NASA OnEarth WMS [8], which 
provides very high quality satellite images.  WMS 
implementations can also be used to interactively 
extract component features.  We use the SERVOGrid 
WMS to, for example, set up initial problems visually 
with information from the WFS (such as seismic event 
records described below or earthquake faults), then 
“read off” the WFS from the map to generate input 
files for running SERVOGrid earthquake modeling 
codes.    For a general overview of WMS and related 
material, see [9]. 

We designed and developed a Web Services-
compatible Web Map Service for this project.  All 
performance measurements are made using this 
implementation.  More information on the 
SERVOGrid WMS implementations can be found at 
[10]. 
 

HPSearch: The HPSearch [11] system provides a 
scripting environment for managing distributed Web 
Services.  We specifically use HPSearch for deploying 
system components and for managing the distributed 
services in a workflow pattern on SERVOGrid. For the 
current system, we rely on a HPSearch node, which is 
responsible for managing the execution of services, 
and WSProxyService [17], a specialized Web Service 
that functions as both, a Web Service and a 
NaradaBrokering publisher and/or subscriber.  

 
Context Service: The Context Service [12] is a 

system for storing transitory metadata needed to 
describe distributed session state information.  In the 
current test system, it is used to store information 
needed by HPSearch to orchestrate system interactions.   
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NaradaBrokering: NaradaBrokering [13] 

development is not directly part of the current work, 
but we rely upon it to manage data flows and event 
notifications within the SERVOGrid system.  
NaradaBrokering may be thought of a as topic-based 
publish/subscribe messaging system: interested entities 
can register to a NaradaBrokering node to send and 
receive messages on particular topics. HPSearch uses 
NaradaBrokering to route data streams. 

 
3. Performance Tests 
 

Computers and Networks: All tests were run at 
the Community Grids Lab using modestly performing 
PCs and Linux servers. CGL computing environment 
consists of Windows (2000 and XP), Linux, Sun 
Solaris workstations and servers, including 40 Pentium 
4-based desktop class machines, 20 Linux/Solaris 
(dual-CPU) server class, and two 8-CPU 16 GB Sun 
v880 server class machines to support the lab’s 
development and research efforts. The laboratory’s 
network consists of server, workstation, and mobile 
connectivity provided by 100Mbit/second Ethernet, 
and 11Mbit/second 802.11b wireless connections 
respectively, connected in turn to Indiana University’s 
network backbone via a 1000Mbit/s fiber optic link, 
and from there to the Internet2 Abilene network and 
the commodity internet via multiple OC3 links.  

We run the WFS, WMS, PI code, and Context 
Service each on separate servers, as described in “Test 
Scenario.”  The purpose of these tests is to establish 
relative performance numbers and identify bottlenecks, 
not to establish absolute times or benchmarks.   

Running the Test Application: The Pattern 
Informatics (PI) code is used to generate “hot spot” 
maps based on past seismic records: it identifies areas 
of high probability for large future earthquakes.  The 
PI code is described in more detail in [14].  For our 
purposes, we only need to be concerned with the 
requirements for running the code.  It needs these 
inputs: a) a seismic record catalog (SCEDC) [15] file 
with dates, latitude/longitude coordinates, and event 
magnitudes; b) time and space boundaries for selecting 
the region and time period of interest from the seismic 
catalog; and c) a lower bound for seismic event 
magnitudes: seismic events below the desired 
threshold are discarded.  Note this threshold 
dramatically affects the size of the input data file since 
the number of events grows exponentially as the lower 
bound decreases (see Table 1).  PI generates an output 
file consisting of a latitude/longitude grid of 

probabilities (forecasts) for events within a given 
future time period.   
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Figure 2. Architectural diagram of the integrated 
system.  Host names are given in parenthesis. 

The PI application is a natural candidate for testing 
the SERVOGrid WFS, WMS, HPSearch and Context 
services because the local copy of the SCEDC catalog 
file can be replaced by the SERVOGrid WFS, and the 
WMS can be used to interactively set up the problem, 
allowing a user to visually set latitude/longitude 
bounding boxes and time intervals. After the problem 
parameters are configured through WMS interface, 
HPSearch can be used to execute the simple workflow 
associated with the PI code: extract data from the 
WFS, transfer it to the PI code’s host, execute the PI 
code, and notify listeners when the output data is 
available. Finally the WMS can be used to visualize 
the hotspot outputs.  In this scenario the Context 
Service can be used to store various pieces of 
information, such as the state of the system 
(“executing” or “done”) and the location of data files. 

Following steps summarizes how system works (see 
Figure 2.  We will expand on this in more detail in the 
“HPSearch Performance Tests” subsection.   
1: WMS queries WFS for a given bounding box and 
time interval 
2: WFS dumps the results into a web accessible ASCII 
file (see comment below). 
3: WMS starts a session, invokes HPSearch to run 
workflow script for PI Code with a session id 
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4: HPSearch runs the workflow script and generates 
output file in GML format as result 
5: HPSearch writes the URI of the of the output file 
into Context 
6: WMS polls the information from Context Service 
7: WMS retrieves the generated output file’s location 
from the Context Service, downloads the data, and 
generates a map. 

Note that Step 2 is a temporary solution. Normally 
WFS returns the query results as a GML Feature 
Collection, but since we did not want to impose GML 
processing overhead on HPSearch, we devised this 
intermediary step where WFS dumps the query results 
to a file for HPSearch before converting them to GML 
to transfer to WMS. We are developing streaming 
support both for WFS and WMS which will allow us 
to remove Step 2. 

We calculated the performance of the various 
system components for the following lower bounds for 
the seismic event magnitudes: M=5.0, 4.5, 4.0, 3.5, and 
3.0.  These correspond to increasing data file size, as 
shown in Table 1 for the eventful year 1992 in the 
SCEDC catalog for Southern California.  The entire 
catalog from 1932 to 2004 has 401,403 entries. 

Table 1. SCEDC entries for test year 1992. 

Event Magnitude 
Lower Bound 

Number of 
Seismic Events 

GML 
Result Size 

(KB) 
5.0 19 11 
4.5 67 36 
4.0 209 106 
3.5 587 287 
3.0 1790 880 

 
WFS Performance: We measure WFS 

performance by timing the steps needed to extract 
seismic records with specific latitude/longitude 
bounding boxes, time periods, and lower bounds for 
the earthquake threshold magnitudes. These extracted 
records are returned as GML responses. This test is 
representative of other SERVOGrid applications that 
need to extract records from remote data bases through 
the WFS.  The tests are made over 10 runs. Data from 
1/1/1992 to 12/31/1992 were requested and 
latitude/longitude bounding box (32.0, -117.0)-(37.0, -
114.0) was used.   

We make 4 types of measurements in addition to 
the total processing time between receiving the 
getFeature request and returning the feature collection 
object: Initialization time is spent during object 
initializations and checking to see if the database that 
contains the requested feature is alive. This is a 
relatively small period of time (average 30ms) and can 

be ignored. During the initialization phase, the WFS 
extracts the query from the request and opens a 
connection to database that has the requested feature 
data. We measure the total query execution time since 
it affects the performance significantly. Other 
important measurements are made to find out how 
much time it takes to build GML feature objects from 
the query results and then how long it takes for 
merging them into a feature collection as the final 
result to return.  

WFS test results (Figure 3) show that the 
performance decreases as the lower event threshold M 
decreases, corresponding to the increase in data size. 
Higher thresholds are dominated by database query 
execution time which remains relatively constant for 
all magnitudes. However for event thresholds 3.5 and 
3 time for building GML object takes considerable 
amount of time. Our further tests showed that for event 
magnitudes between 2.5 and 1 this step dominates the 
total processing time.  

WFS Performance
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Figure 3. WFS performance measurements 

We note that the results depicted in Figure 3 are 
intermediate results which show significant 
improvements over initial testing results. Although the 
performance is almost the same for lower event 
threshold M=5 and 4.5 it is improved by a factor of 4.4 
for M=4, 4.7 for M=3.5 and 22.8 for M=3. Since our 
initial design was intended for smaller data loads GML 
FeatureCollection objects were created using string 
concatenation methods. But this proved to be highly 
costly for larger data sizes and we utilized temporary 
files for immediately flushing the intermediate results 
and using byte arrays instead of strings for creating the 
final results. This improved performance significantly 
for M > 4. Currently the most significant portion of the 
total processing time is spent for database query 
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execution and we are investigating methods to 
optimize it. The initial WFS performance analysis 
results are available in an earlier version of this report 
[26].  

The current version of our WFS implementation is 
based on interacting relational databases such as 
MySQL, but we are planning to test support for native 
XML databases as well. The latest version of SERVO 
Grid WFS binary and source files as well as the related 
schemas are available from WFS web site [6]. 

 
HPSearch Performance: The HPSearch engine 

controls the flow of data from the WFS to the data 
filtering service that filters and reformats the data and 
then to the PI service that manages the execution of PI 
code.  As the system goes through these stages, 
HPSearch interacts with the Context Service to store 
metadata and keep track of state.  There are two 
HPSearch nodes in the system: a master node, and a 
worker node. The master node is responsible for 
scheduling worker HPSearch nodes: there is only one 
worker in the demo, but for load balancing and 
scheduling we can run additional worker nodes.  

In addition to the WFS and Context Service 
HPSearch nodes interact with a Data Filter service and 
the PI Code Runner service. The Data Filter service is 
responsible for translating the GML output of the WFS 
into a format understood by the PI code, and for 
transmitting this reformatted data to the PI Code 
Runner. The PI Code Runner is also an extension of 
the WSProxyService class and consists of three related 
services: a Data Accumulator, which receives data 
from the Data Filter; a code wrapper, which can 
execute the PI code; and a “Raw-to-GML” translator, 
which translates the PI code output to GML, for later 
display in the client as a hotspot map.  These services 
are co-located in our tests but may be separated. 

HPSearch uses NaradaBrokering nodes to route 
data streams between components and also for 
exchanging control messages between different 
HPSearch nodes. 

The system works as follows (Figure 2). We denote 
the HPSearch master node as HPMaster (runs on the 
host trex), which also acts as a Web Service, and the 
worker node as HPWorker (runs on the host danube). 

The end user selects a bounding box, time interval 
and lower seismic event threshold for the problem. In 
the user interface we also provide specific UI elements 
for deploying the flow. The deployment is started by 
clicking the “Run PI code” button which invokes the 
Web Service with the appropriate parameters, on the 
HPMaster node submitting the flow for execution.  

The script which defines the flow structure initially 
creates a placeholder entry in the context service and 

marks the status of the flow as “Executing”. The script 
further sets up the various components of the flow 
(components wrapped as Web Services using the 
WSProxy) and initializes them. Initialization entails 
setting up the various communication channels thus 
linking the individual components via streams using 
NaradaBrokering.  

After a successful initialization, the HPMaster node 
signals the Data Filter component to start the flow. The 
Data Filter components downloads the input data, 
filters and reformats each line of the data and streams 
it to the PI Code Runner service. After the entire data 
is collected, the PI Code Runner service executes the 
PI code on the data followed by conversion of the 
output data to GML format for further use. This marks 
the end of the flow and the HPSearch master node is 
notified of the successful flow completion. The 
HPMaster node then modifies the placeholder entry in 
the context service created previously, to reflect the 
URL of the final output GML file.  

The WMS, in the meantime, continuously polls the 
Context service, checking to see if the service was 
completed. Once the HPMaster has updated the 
placeholder entry, the WMS can download the 
resulting GML file to plot the results. 

The total HPSearch processing time contains a) the 
time required to create a placeholder entry in the 
context service, b) executing the flow and c) updating 
the placeholder entry. In addition to this we measure 
Data Processing time and the PI Code Runner Service 
time. Data Processing time is spent for reading, 
transporting, and re-formatting the GML output from 
the WFS into the legacy format expected by the PI 
code.  The data is read line by line, transformed, and 
transported from the WFS to the PI Code Runner 
service. For the sample data this takes, on average, a 
little over eight seconds. The PI Code Runner Service 
consists of several co-located services.  The first, Data 
Accumulate, receives data from the Data Filter service 
and writes it to a local file (required by the PI code 
executable).  The Exec PI Code service then runs the 
PI application.  For the test data, the PI code execution 
time is negligible. Raw->GML is a filter for 
transforming the PI output file into a GML format that 
can be interpreted by the Web Map Service. 

The HPSearch overhead may be found by 
comparing the “Data Processing” time to the “Exec PI 
Code” time.  Note that the Data Filter and Data 
Accumulate steps run concurrently.   The overhead 
percentage is 

 
The overhead percentage we calculated is about 4% for 
all values of M. 
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Note that from Figure 3 below, it takes about 16 – 
18 seconds to run the PI code using the HPSearch 
system. Also note that the time required while running 
the PI code for different magnitudes is approximately 
the same. Our current architecture contains a data filter 
component which is responsible for filtering and 
reformatting the input data file to suit the PI code. This 
step reads all the input data (about 50000 lines) and 
filters each line with the given specifications. Since the 
data filtering step takes the maximum time, the overall 
time is dominated by this step and is constant for each 
run. Ref [22] contains more detailed overhead results 
for the same test. During the development of our initial 
prototype, we could improve the performance by a 
factor of 1000 by making the following modifications. 
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Figure 4. HPSearch performance measurements 

First, HPSearch previously used the 
RunnableProxyService interface for hosting the data 
filter service. This data service checks after each run, 
whether the service STOP / PAUSE was requested. 
This extra step introduces a heavy penalty and we were 
able to reduce this penalty by a factor of about 50 by 
implementing the WrapperProxyService interface. 

Second, the RAW data to GML format conversion 
service performance was also improved by introducing 
immediate flushing out of the relevant output streams 
rather than buffering the data, thereby improving the 
performance by a factor of about 20. 

We plan to make future amendments to the 
prototype to further improve the performance. 
Currently the data accumulation step works in 2 parts, 
namely, the WFS creates a temporary file for string the 
query results, which is then filtered by the data filter 
service. By having HPSearch directly invoke the WFS 
and have it stream data to the PI code runner, we can 
remove the extra overhead of the data filtering and 
temporary file creation step. 

 

Context Service Performance: The Context 
Service stores metadata that (collectively) identifies the 
state of the system, as shown in Figure 2.  The 
metadata pieces are typically small and are 
independent of the event magnitude M used in the PI 
testing.   

The Context Service’s primary operations are 
GetContext and SetContext. Three measurement sets 
were made using a 50 byte string for GetContext.  
Each of the three sets consisted of 100 individual 
measurements. We also performed 3 sets of 100 
measurements on the SetContext method. In average, 
we measure ~116 ms for GetContext and ~125 ms for 
SetContext functions to be performed. Both of these 
measurements are internal timings to process requests.  

We conclude from this that the Context Service 
does not add excessive overhead to the overall system 
for these small metadata stores.  The actual internal 
processing time for small metadata pieces is typically 
smaller than the network invocation time.   

 
WMS Performance: The WMS generates maps 

based on input (bounding boxes and time intervals) 
from the user interface.  Maps are generated in layers 
from features sets obtained from one or more WFS 
sources.  WMS can also combine the locally generated 
images of features with images obtained from other 
(remote) WMS instances.  In the current test case, our 
WMS generates map boundaries, locations of 
earthquake events, and locations of hotspots, which are 
superimposed on images obtained from the OnEarth 
WMS at JPL [8].  

We tested WMS service performance for M=5.0, 
4.5, 4.0, 3.5, and 3.0.  We chose a latitude/longitude 
bounding box of (-124.85, 32.26), (-113.56, 42.75) and 
tested results for the time period 1/1/1992 to 
12/31/1992 (the most active year in the catalog).  The 
timings represent averages of ten measurements per 
point. 

Our WMS Client (shown in Figure 1) is a thin client 
to the WMS for displaying the maps returned by the 
server.  The WMS generates the images and delivers 
back to the client.  The WMS operation timings are 
thus split between the internal server timings and the 
overall timings seen by the client.  Note that the 
“internal” server timings, Figure 5, include remote 
calls to the WFS and OnEarth WMS. In addition to the 
initialization and total processing time we measured 
the times to retrieve the LandSat images for the 
selected latitude/longitude bounding box from OnEarth 
WMS and GML formatted seismic records from WFS. 
We also measure the time to assemble the abstract map 
pieces to render as a JPEG image. 
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WMS Server Side Performance
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Figure 5. WMS server side performance 

WMS Client Side Performance
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Figure 6. WMS client side performance 

The WMS client side performance results (Figure 
6) show that plotting the GML result dominates the 
total processing time.  
 
4. Conclusions and Future Work 

This initial performance evaluation and related tests 
have served to prove several of the basic concepts of 
CCE architecture, while revealing bottlenecks and 
areas of needed performance improvement.   

We employ Web Service-based WFS to bridge data 
sources with client applications by using standard 
OGC interfaces. However, the HTTP protocol-based 
approach has its limitations: transfer of large volumes 
of data may cause long delay or may not be possible at 
all. To overcome this difficulty we are initially 
implementing a streaming version of WFS using 
NaradaBrokering as transfer medium [16].  There are 
also interesting techniques that use the XML Infoset to 
preserve the XML message in binary transmissions 
[25].  These techniques have been applied to hand-held 
devices but could apply equally well to large data 
transmissions from standard servers. 

The WMS performance depends on WFS, 
HPSearch, and network speed.  However, it also can 
be made more efficient. We plan to increase 
performance of both WMS server and client modules 
by employing new algorithms and optimization 
techniques such as using distributed rendering and 

tiling, and parallel rendering of images. Additionally 
future versions of WMS will be used for scientific 
visualization which requires us to handle high volumes 
of data. To support high performance large volume 
data transfer we are integrating our WMS 
implementation with NaradaBrokering. 

We have demonstrated the use of HPSearch [2] to 
deploy and manage system components. However, 
currently the system can only handle one user at a 
given time. We are currently adding support for 
session management within HPSearch so that multiple 
users can execute the same flow while HPSearch 
transparently manages temporary data files created 
during execution of each instance. Further, HPSearch 
currently does not address security for data streams. 
We plan to leverage NaradaBrokering's security 
features [18] for securing data streams in the future. 
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