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Abstract—Big data processing tools have evolved rapidly in
recent years. MapReduce has proven very successful but is
not optimized for many important analytics, especially those
involving iteration. In this regard, Iterative MapReduce frame-
works improve performance of MapReduce job chains through
caching. Further, Pregel, Giraph and GraphLab abstract data
as a graph and process it in iterations. But all these tools are de-
signed with a fixed data abstraction and have limited collective
communication support to synchronize application data and
algorithm control states among parallel processes. In this paper,
we introduce a collective communication abstraction layer
which provides efficient collective communication operations
on several common data abstractions such as arrays, key-values
and graphs, and define a MapCollective programming model
which serves the diverse collective communication demands in
different parallel algorithms. We implement a library called
Harp to provide the features above and plug it into Hadoop
so that applications abstracted in MapCollective model can
be easily developed on top of MapReduce framework and
conveniently integrated with other tools in Apache Big Data
Stack. With improved expressiveness in the abstraction and
excellent performance on the implementation, we can simul-
taneously support various applications from HPC to Cloud
systems together with high performance.

Keywords-Collective Communication; Big Data Processing;
Hadoop

I. INTRODUCTION

Beginning with the publication of Google’s MapReduce
paper [1], the last decade saw a huge shift in the evolution
of big data processing tools. Since then Hadoop [2], the
open source version of Google MapReduce, has become
the mainstream of big data processing, with many other
tools emerging to handle big data problems. Extending the
original MapReduce model to include iterative MapReduce,
tools such as Twister [3] and HaLoop [4] can cache loop
invariant data in iterative algorithms locally to avoid repeat
input data loading in a MapReduce job chain. Spark [5]
also uses caching to accelerate iterative algorithms by ab-
stracting computations as transformations on RDDs instead
of restricting computations to a chain of MapReduce jobs.
To process graph data, Google unveiled Pregel [6] and soon
Giraph [7] emerged as its open source version.

Regardless of their differencess, all such tools are based
on a kind of “top-down” design. Each has a fixed program-
ming model which includes a data abstraction, a computation

model and a communication pattern. The catch is that
individual tools with a fixed pattern cannot adapt to a variety
of applications, which could cause performance inefficiency.

For example, in k-means clustering with Lloyd’s algo-
rithm [8], every parallel task in the successive iteration needs
all the centroids generated in the previous iteration. Mahout
[9] on Hadoop chooses to reduce the outputs from all the
map tasks in one reduce task, store the new centroids data
on HDFS, and read the data back to memory for the next
iteration. The whole process is commonly applied in many
big data tools and can be summarized as “reduce-gather-
broadcast”. But “gather-broadcast” is not an efficient way to
redistribute new centroids generated in the previous iteration,
especially when the size of centroids data grows large. The
time complexity of “gather” is at least kdβ where k is the
number of centroids, d is the number of dimensions and β
is the communication time used to send each element in the
centroids (communication startup time α is neglected). Also
the time complexity of “broadcast” is at least kdβ [10][11].
Therefore the time complexity of “gather-broadcast” is about
2kdβ. This can be reduced to kdβ if “allgather” operation
is used instead [12], however none of these tools provides
this pattern of data movement.

Many parallel iterative algorithms use such methods of
data movement to synchronize the dependent application
data and the algorithm execution states between all the par-
allel processes. These operations can be executed only once
or multiple times per iteration, therefore their performance
is crucial to the efficiency of the whole application. We call
this type of data movement “Collective Communication”.
Iterative algorithms which were previously expressed as a
chain of MapReduce jobs can now be re-abstracted as iter-
ations of high performance collective communication oper-
ations. Such algorithms include k-means clustering, logistic
regression, neural network, principal component analysis,
expectation maximization and support vector machine, all
of which follow the statistical query model [13].

Rather than fixing communication patterns, we decided to
separate this layer out and build a collective communication
abstraction layer. We studied a broad range of communica-
tion patterns including “allgather”, “allreduce”, “broadcast”
in MPI collective communication operations, “shuffle” in
MapReduce, “group-by” in database applications, and “send
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messages along edges to neighbor vertices” in Pregel. Our
contributions in this paper are as follows: (a) We provide
a common set of data abstractions and related collective
communication operation abstractions. On top of this ab-
straction layer we define the MapCollective programming
model, which allows users to invoke collective communica-
tion operations to synchronize a set of parallel processes. (b)
We implement these ideas in the Harp open source library
[14] as a Hadoop plugin. The word “harp” symbolizes how
parallel processes coordinate through collective communica-
tion operations for efficient data processing, just as strings
in harps can make concordant sound. By plugging Harp
into Hadoop, we can express the MapCollective model in a
MapReduce framework and enable efficient in-memory col-
lective communication between map tasks across a variety
of important data analysis applications.

From here on, Section 2 discusses related work. Sec-
tion 3 shows some application examples as expressed with
collective communication operations. Section 4 describes
the collective communication abstraction layer. Section 5
explains Map-Collective model works. Section 6 presents
the Harp library implementation, and Section 7 shows Harp’s
performance through benchmarking on the applications.

II. RELATED WORK

MapReduce became popular thanks to its simplicity and
scalability, yet is still slow when running iterative algo-
rithms. Frameworks like Twister, HaLoop and Spark solved
this issue by caching intermediate data and developed the
iterative MapReduce model. Another iterative computation
model is the graph model, which abstracts data as vertices
and edges and executes in BSP (Bulk Synchronous Parallel)
style. Pregel and its open source version Giraph follow this
design. By contrast, GraphLab [15] abstracts data as a “data
graph” and uses consistency models to control vertex value
updates. GraphLab was later enhanced with PowerGraph
[16] abstraction to reduce the communication overhead. This
was also used by GraphX [17]. For all these tools, collective
communication is still hidden and coupled with the computa-
tion flow. Although some research works [10] [11] [18] [19]
try to add or improve collective communication operations,
they are still limited in operation types and constrained by
the computation flow. As a result, it is necessary to build
a separate communication abstraction layer. With this we
can fashion a programming model that provides a rich set
of communication operations and grants users flexibility in
choosing operations suitable to their applications.

III. APPLICATION SCENARIOS

In this section we use k-means clustering, force-directed
graph drawing algorithm, and weighted deterministic anneal-
ing SMACOF (WDA-SMACOF), to express the applications
using collective communication operations.

A. K-means Clustering

At the start of k-means clustering with Lloyd’s algorithm,
each task loads and caches a part of the data points while
a single task needs to prepare initial centroids and use
“broadcast” operation to send the data to all other tasks.
Later in every iteration, the tasks do their own calculations
and then use “allreduce” operation to produce the global
centroids of this iteration.

B. Force-directed Graph Drawing Algorithm

Fruchterman-Reingold algorithm produces aesthetically
pleasing, two-dimensional pictures of graphs by crafting
simplified simulations of physical systems [20]. Vertices
of the graph act as atomic particles. Initially vertices are
randomly placed in a 2D space. The displacement of each
vertex is generated based on the calculation of attractive and
repulsive forces. Every iteration, the algorithm calculates the
effect of repulsive forces to push them away from each other,
then determines attractive forces to pull them close, limiting
the total displacement by temperature. Both attractive and
repulsive forces are defined as functions of distance between
vertices following Hooke’s Law. The input data of this
algorithm is abstracted as graph data. Since the algorithm
requires calculation of the repulsive forces between every
two vertices in the graph, the communication is more than
just sending messages between neighbor vertices. Instead
we use “allgather” to redistribute the current positions of
the vertices to all the tasks between iterations.

C. WDA-SMACOF

SMACOF (Scaling by MAjorizing a COmplicated Func-
tion) is a gradient descent type of algorithm used for large-
scale multi-dimensional scaling problems. Through iterative
stress majorization, the algorithm minimizes the difference
between distances from points in the original space and their
distances in the new space. WDA-SMACOF improves on
the original SMACOF [21]. It uses deterministic annealing
techniques to avoid local optima during stress majorization,
and employs conjugate gradient for the equation solving
with a non-trivial matrix to keep the time complexity
of the algorithm in O(N2). WDA-SMACOF has nested
iterations. In every outer iteration, the algorithm firstly
does an update on an order N matrix, then performs a
matrix multiplication; the coordination values of points on
the target dimension space is calculated through conjugate
gradient process in inner iterations; the stress value of this
iteration is determined as the final step. We express WDA-
SMACOF with “allgather” and “allreduce”, two operations.
In outer iterations, “allreduce” sums the results from the
stress value calculation. For inner iterations the conjugate
gradient process uses “allgather” to collect the results from
matrix multiplication and “allreduce” for those from inner
product calculations.
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IV. COLLECTIVE COMMUNICATION ABSTRACTIONS

A. Hierarchical Data Abstractions

Various collective communication patterns have been
observed in existing big data processing tools and the
application examples. To support them, we first abstract
data types in a hierarchy. In Fig. 1, we abstract data
horizontally as arrays, key-values, or vertices, edges and
messages in graphs. Vertically we construct abstractions
from basic types to partitions and tables. Firstly, any data
which can be sent or received is an implementation of
interface Transferrable. At the lowest level, there are
two basic types under this interface: arrays and objects.
Based on the component type of an array, we now have
byte array, int array, long array and double array. To describe
graph data for object type there is vertex object, edge object
and message object; for key-value pairs we use key object
and value object. Next at the middle level, basic types are
wrapped as array partition, key-value partition and graph
data partition (edge partition, vertex partition and message
partition). Notice that we follow the design of Giraph;
edge partition and message partition are built from byte
arrays but not from edge objects or message objects directly.
When reading, bytes are deserialized to an edge object or
a message object. When writing, either the edge object or
the message object is serialized back to byte arrays. At the
top level are tables containing several partitions, each with
a unique partition ID. If two partitions with the same ID
are added to the table it will solve the ID conflict by either
combining or merging them into one. Tables on different
processes are associated with each other through table IDs.
Tables sharing the same table ID are considered as one
dataset and a collective communication operation is defined
as redistribution or consolidation of partitions in this dataset.
For example, in Fig. 2, a set of tables associated with ID 0 is
defined on processes from 0 to N . Partitions from 0 to M are
distributed among these tables. A collective communication
operation on Table 0 is to move the partitions between these
tables.

B. Collective Communication Operations

Collective communication operations are defined on top of
the data abstractions. Currently three categories of collective
communication operations are supported:

1) Collective communication adapted from MPI [22]
collective communication operations: e.g. “broadcast”, “all-
gather”, and “allreduce”.

2) Collective communication derived from MapReduce
“shuffle-reduce” operation: e.g. “regroup” operation with
“combine or reduce” support.

3) Collective communication abstracted from graph com-
munication: e.g. “regroup vertices or edges”, “send mes-
sages to vertices” and “send edges to vertices”.
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Key-Values
Vertices, Edges, 

Messages
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Array
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Array
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Array Partition
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Broadcast, Send

Broadcast, AllGather, AllReduce, 
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Broadcast, Send
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Figure 1. Hierarchical data abstractions

We list several defined operations in Table I. Some
collective communication operations tie to certain data ab-
stractions. For example, “send messages to vertices” has
to be done on graph data. But for other operations, the
boundary is blurred. From application examples, “allgather”
operation is used both on array and vertex tables. Addition-
ally, each collective communication can be implemented in
a rich set of algorithms. We choose candidate algorithms
for optimization based on two criteria: the frequency of
the collective communication and the total data size in the
collective communication. For the operation which most
frequently occurs in the application, we choose the algorithm
with high performance to reduce the cost on application data
synchronization. With different data sizes, some algorithms
are good for small data while others favor large data.
For example, we have two versions of “allreduce”. One
is “bidirectional-exchange” algorithm [12] and another is
“regroup-allgather” algorithm. When the data size is large

Table 0

Partition 0

Table 0

Process 0 Process 1 Process N

Partition 4

Table 0

Partition 
M-1

Partition 1

Collective Communication

Partition 5

Partition 6

Partition M

Partition 3

Partition 2

Figure 2. Tables and partitions in collective communication operations
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Table I
COLLECTIVE COMMUNICATION OPERATIONS

Operation
Name Data Abstraction Algorithm Time

Complexity

broadcast arrays, key-value
pairs & vertices chain nβ

allgather arrays, key-value
pairs & vertices bucket pnβ

allreduce arrays, key-value
pairs

bi-directional
exchange (log2 p)nβ

regroup-
allgather 2nβ

regroup arrays, key-value
pairs & vertices

point-to-point
direct sending nβ

send messages
to vertices

messages,
vertices

point-to-point
direct sending nβ

send edges to
vertices edges, vertices point-to-point

direct sending nβ

Notice that in Column “Time Complexity”, p is the number of
processes, n is the number of input data items per process, β is the
per data item transmission time, communication startup time α is ne-
glected and the time complexity of the “point-to-point direct sending”
algorithm is estimated regardless of potential network conflicts.

and each table has many partitions, “regroup-allgather” is
more suitable because it has less data sending and more
balanced workload per process. But if the table on each
process only has one or a few partitions, “bidirectional-
exchange” is more effective.

V. MAPCOLLECTIVE PROGRAMMING MODEL

Since communication is hidden in many existing big
data processing tools, even with a collective communication
abstraction layer, the applications still cannot benefit from
the expressiveness of this abstraction. As a solution we
define a MapCollective programming model to enable using
collective communication operations.

A. BSP Style Parallelism

MapCollective model follows the BSP style. We consider
two levels of parallelism. At the first level, each parallel
component is a process where the collective communication
operations happen. The second is the thread level for parallel
processing inside of each process. This is not mandatory in
the model but it can maximize memory sharing and multi-
threading in each process and save the data size in collective
communication. To enable in-memory collective communi-
cation, we need to make every process alive simultaneously.
As a result, instead of dynamic scheduling, we use static
scheduling. When processes are scheduled and launched,
their locations are synchronized between all the processes
for future collective communications.

B. Fault Tolerance

When it comes to fault tolerance, failure detection and
recovery are crucial system features. Currently we have
focused our efforts on failure detection to ensure every

process can report exceptions or faults correctly without
getting hung up. Failure recovery poses a challenge because
the execution flow in the MapCollective model is very
flexible. Currently we do job level failure recovery. Based
on the execution time length of scale, an algorithm with
a large number of iterations can be separated into a small
number of jobs, each of which contains several iterations.
This naturally forms checkpointing between iterations. Since
MapCollective jobs are very efficient on performance, this
method is feasible without generating large overhead. At
the same time, we are also investigating task level recovery
by re-synchronizing execution states between new launched
tasks and other old live tasks.

VI. HARP IMPLEMENTATION

We implemented the collective communication abstraction
layer and MapCollective model in the Harp library. By
plugging it into Hadoop, users can write a MapCollective
job with the support of MapReduce frameworks. Collective
communication is enabled between map tasks.

A. Layered Architecture

The current Harp implementation targets Hadoop 2. Fig.
3 shows how different layers interface with each other in the
architecture. At the bottom level is the MapReduce frame-
work. We extend the original MapReduce framework to
expose the network location of map tasks. In the upper level,
Harp builds collective communication abstractions which
provide collective communication operators, hierarchical
data types of tables and partitions, and the memory alloca-
tion management pool for data caching and reuse. All these
components interface with the MapCollective programming
model. After wrapping, the MapCollective programming
model provides three components to the application level:
a MapCollective programming interface, a set of collective
communication APIs, and data abstractions which can be
used in the programming interface.

MapReduce

Collective Communication Abstractions

MapCollective Programming Model

Applications: K-Means, WDA-SMACOF, Graph-Drawing…

Collective Communication 
Operators

Hierarchical Data Types 
(Tables & Partitions)

Memory Resource 
Pool

Collective 
Communication APIs

Array, Key-Value, Graph 
Data Abstraction

MapCollective
Interface

Task Management

Figure 3. Architecture layers in Harp implementation
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B. MapCollective Programming Interface

To program in MapCollective model, users need to
override a method called mapCollective in class
CollectiveMapper which is extended from class
Mapper in the original MapReduce framework. While sim-
ilar, mapCollective method differs from map method
in class Mapper in that it employs KeyValReader
to provide flexibility to users; therefore users can either
read all key-values into the memory and cache them,
or read them part by part to fit the memory constraint.
CollectiveMapper not only provides collective com-
munication operation APIs but also an API called doTasks
to enable users to launch multithread tasks. Given an input
partition list and a Task object with user-defined run
method, the doTasks method can automatically perform
thread level parallelization and return the outputs. See the
code example below:
protected void mapCollective(

KeyValReader reader,Context
context) throws IOException,
InterruptedException {
// Put user code here...
// doTasks(...)
// allreduce(...)

}

VII. EXPERIMENTS

A. Test Environment

We evaluate the performance of Hadoop-Harp on the Big
Red II supercomputer [23]. The tests use the nodes in “cpu”
queue where the maximum number of nodes allowed for job
submission is 128. Each node has 32 processors and 64GB
memory. The nodes are running in Cluster Compatibility
Mode and connected with Cray Gemini interconnect. But
the implementation of communication in Harp is based on
Java socket without optimizations aimed at Cray Gemini
interconnect. Hadoop-2.2.0 and JDK 1.7.0 45 are installed.
Because there is only a small 32GB memory mapped local
/tmp directory on each node, we choose Data Capacitor II
(DC2) to store the data. We group file paths on DC2 into
partition files on HDFS and let each map task read file paths
as key-value pairs.

In all the tests, we deploy one map task on each node
and utilize all 32 CPUs to do multi-threading inside. To
reflect the scalability and the communication overhead, we
calculate the speedup based on the number of nodes but not
the number of CPUs. In JVM options of each map task,
we set both Xmx and Xms to 54000M, NewRatio to 1 and
SurvivorRatio to 98. Because most memory allocation is
cached and reused through the memory resource pool, we
can increase the size of the young generation and leave most
of its space to Eden space.

B. Results on K-means Clustering

We run k-means clustering with two different random
generated data sets. One is clustering 500 million 3D points
into ten thousand clusters, while another is clustering 5
million 3D points into 1 million clusters. In the former, the
input data is about 12GB and the ratio of points to clusters is
50000:1. In the latter case, the input data size is only about
120MB but the ratio is 5:1. Such a ratio is commonly high
in clustering; the low ratio is used in a scenario where the
algorithm tries to do fine-grained clustering as classification
[24]. The baseline test uses 8 nodes, then scales up to 128
nodes. The execution time and speedup are shown in Fig.
4a. Since each point is required to calculate distance with all
the cluster centers, total workload of the two tests is similar.
But due to the cache effect, we see “5 million points and 1
million centroids” is slower than “500 million points and 10
thousand centroids” when the number of nodes is small. As
the number of nodes increases, however, they draw closer to
one another. We assume we have the linear speedup on the
smallest number of nodes that we test. So we consider the
speedup on 8 nodes is 8. The experiments show the speedup
comparison in both test cases is close to linear.

C. Results on Force-directed Graph Drawing Algorithm

This algorithm runs with a graph of 477,111 vertices and
665,599 undirected edges. The graph represents a retweet
network about the U.S. presidential election in 2012 from
Twitter [25]. Although the size of input data is fairly small,
the algorithm is computation intensive. We test the algorithm
on 1 node as the base case and then scale up to 128
nodes. Execution time of 20 iterations and speedup are
shown in Fig. 4b. From 1 node to 16 nodes, we observe
almost linear speedup. The speedup drops smoothly after 32
nodes and then plummets sharply on 128 nodes because the
computation time per iteration slows to around 3 seconds.

D. Results on WDA-SMACOF

The WDA-SMACOF algorithm runs with different prob-
lem sizes including 100K points, 200K, 300K and 400K.
Each point represents a gene sequence in a dataset of
representative 454 pyrosequences from spores of known AM
fungal species [26]. Because the input data is the distance
matrix of points and related weight matrix and V matrix,
the total size of input data is in quadratic growth. It is
about 140GB for the 100K problem, about 560GB for 200K,
1.3TB for 300K and 2.2TB for 400K. Due to memory
limitations, the minimum number of nodes required to run
the application is 8 for the 100K problem, 32 for the 200K,
64 for 300K and 128 for 400K. The execution time and
speedup are seen in Fig. 4c and Fig. 4d. Since we cannot
run each input on a single machine, we choose the minimum
number of nodes to run the job as the base to calculate
parallel efficiency and speedup. In most cases, the efficiency
values are very good. The only point that has low efficiency
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Figure 4. The performance results of the applications (a) execution time and speedup of k-means clustering (b) execution time and speedup of force-directed
graph drawing algorithm (c) execution time of WDA-SMACOF (d) speedup of WDA-SMACOF

is 100K problems on 128 nodes. This is a standard effect
in parallel computing where the small problem size reduces
compute time compared to communication, which in this
case has an overhead of about 40% of total execution time.

VIII. CONCLUSION

We propose to abstract a collective communication layer
in the existing big data processing tools to support communi-
cation optimizations required by the applications. We build
a MapCollective programming model on top of collective
communication abstractions to improve the expressiveness
and performance of big data processing. Harp is an im-
plementation designed in a pluggable way to bridge the
differences between Hadoop ecosystem and HPC system
and bring high performance to the Apache Big Data Stack
through a clear communication abstraction, which did not
exist before in the Hadoop ecosystem. Note that these
ideas will allow simple modifications of Mahout library
that drastically improve its low parallel performance; this
demonstrates the value of building new abstractions into
Hadoop rather than developing a totally new infrastructure
as we did in our prototype Twister system. With three
applications, the experiments show that with Harp we can
scale these applications to 128 nodes with 4096 CPUs
on the Big Red II supercomputer, where the speedup in
most tests is close to linear. Future work will include the
high performance communication libraries developed for
simulation (exascale). We will extend the work on fault
tolerance to evaluate the current best practices in MPI, Spark
and Hadoop. We are working with several application groups
and will extend the data abstractions to include those needed
in pixel and spatial problems.
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