
Mining Hidden Mixture Context With ADIOS-P To
Improve Predictive Pre-fetcher Accuracy
Jong Youl Choi∗, Hasan Abbasi∗, David Pugmire∗, Norbert Podhorszki∗, Scott Klasky∗,
Cristian Capdevila†, Manish Parashar‡, Matthew Wolf§, Judy Qiu¶ and Geoffrey Fox¶

∗ Scientific Data Group, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
† Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, Tennessee, USA

† Electrical and Computer Engineering, Rutgers University, Piscataway, New Jersey, USA
‡ School of Computer Science, Georgia Institute of Technology, Atlanta, Georgia, USA
§ School of Informatics and Computing, Indiana University, Bloomington, Indiana, USA

{choij, habbasi, pugmire, pnorbert, klasky}@ornl.gov,
ccapdevi@utk.edu, parashar@rutgers.edu, mwolf@cc.gatech.edu, {xqiu, gcf}@indiana.edu

Abstract—Predictive pre-fetcher, which predicts future data
access events and loads the data before users requests, has
been widely studied, especially in file systems or web contents
servers, to reduce data load latency. Especially in scientific data
visualization, pre-fetching can reduce the IO waiting time.

In order to increase the accuracy, we apply a data mining
technique to extract hidden information. More specifically, we
apply a data mining technique for discovering the hidden contexts
in data access patterns and make prediction based on the inferred
context to boost the accuracy. In particular, we performed
Probabilistic Latent Semantic Analysis (PLSA), a mixture model
based algorithm popular in the text mining area, to mine hidden
contexts from the collected user access patterns and, then, we run
a predictor within the discovered context. We further improve
PLSA by applying the Deterministic Annealing (DA) method to
overcome the local optimum problem.

In this paper we demonstrate how we can apply PLSA and
DA optimization to mine hidden contexts from users data access
patterns and improve predictive pre-fetcher performance.

Index Terms—prefetch; hidden context mining;

I. INTRODUCTION

Over the past decade the computing industry in general,
and the HPC community in particular, has seen an explosive
growth in computing power, driven primarily by the industry’s
need to keep up with Moore’s law. This has resulted in the
Top500 moving from almost 5 TFlops in the year 2000, to
more than 16 PFlops in 2012, an astounding increase of
3 orders of magnitude [1, 2]! This substantial growth in
computing power in FLops has far outpaced growth in other
aspects of computing, particularly in the area of IO-related
technologies. Today, IO has become a significant source of
performance bottleneck for scientific applications.

In this era of data explosion, deploying a predictive data pre-
fetcher has been considered as a viable solution to load data in
before real requests happen, i.e., if one can predict incoming
data access patterns, the data can be pre-fetched or pre-
loaded to reduce data loading latency. This idea is not brand-
new and has been explored for years in the area of serving
shared resources. During the development and deployment of
our IO middleware, Adaptive IO System (ADIOS) [3], we

(a) Combustion simulation by S3D

(b) Climate simuation output from GEOS-5

Fig. 1: Examples of visualization of S3D (a) and GEOS-5 (b) with
multiple variables through VisIt.

have observed the potential for pre-fetching in many real-
world large-scale scientific applications, such as combustion
simulation (S3D) [4], climate modeling (GEOS-5) [5], Gyroki-
netic Toroidal Code (GTC) [6], plasma fusion simulation code
(XGC) [7], amongst others, as well as for parallel visualization
softwares for scientific data, such VisIt (examples are shown
in Fig. 1). ADIOS is designed to improve IO performance
by orchestrating various types of IO requests transparently,
targeting large-scale and data-intensive scientific applications.
ADIOS has been designed as an extensible middleware, and
we have taken advantage of this characterstic to add a prove-
nance module, called ADIOS-P, by which file-related activities
will be stored, indexed, and queried later (Fig. 2).

In a large-scale scientific data visualization, scientists often
want to compare multiple variables embedded in a single

IO Service

Predictor
Engine

Context-based Training Set

Provenance
Service

Provenance
DB

Scientific
Application

ADIOS

Context Mining
Engine

File System

Fig. 2: Overview of the ADIOS Provenance system, ADIOS-P

file (like HDF5 or NetCDF) or spanned from multiple files,
by rendering them together in an interactive way (i.e., the
sequences of loading variables are somehow spontaneous).
However, most visualization operations are data-intensive,
meaning IO operations consume the majority of the time [8].
Users will waste most of their time waiting for the completion
of IO requests. In this scenario accurately coordinated data
pre-fetching may help to significantly reduce the IO time by
loading data into the memory of the visualization software
while users are sitting idle or manipulating graphic objects,
operations without substantial IO requirements.

Our goal is to utilize collected history of file or variable
access activities for developing a predictor that will discover
patterns of file accesses and be able to forecast the upcoming
file access requests. With this predictor, we will be able to
proactively pre-fetch the data that are likely to be requested
and thus expect to reduce IO latency in scientific applications.

As mentioned, extensive research on developing a predictor
have been performed in the file system areas and various types
of algorithms have been proposed to mine underlying corre-
lation between accessed files; frequent set mining, network
models, Markov chain model. However, not many researches
have discussed the importance of preparing training set. In
this paper we focus how we can improve predictor accuracy
by preparing a training set with an informed way.

Our problem is shown in Fig. 3. In many data file access
patterns (in scientific applications) or variable access patterns
(in visualization software) we have observed, a user accesses
multiple files (or variables) with different purposes within a
session. For example, one can open a sequence of files for data
analysis and visualization and other files for writing reports.
Some of them can be opened for both purposes. We call those
purposes contexts. In general, contexts are hidden as they are
not explicitly exposed in the access logs or traces from which
we build a predictor. The intuition is that if we discover a
users’ intentions or contexts, we can build a better predictor,
i.e., if we train a predictor in a more informed manner by
using context-aware training, we can improve its accuracy.
This concept is inspired from the text mining algorithms based
on the topic model in which the purpose is to discover hidden
topics (or contexts) and model documents as a mixture of
multiple topics. In our case, we model file (or variable) access

A

Context 1 Context 2

B C D E

Fig. 3: An example of a mixture of contexts. A session consists of
two contexts which share item C together. C is called polysemous or
multi-contextual.

patterns as a mixture of contexts.
For mining hidden contexts, we used the Probabilistic Latent

Semantic Analysis (PLSA) algorithm [9, 10], derived from
a mixture model [11]. In the text mining area, PLSA has
been popularly used for building a probabilistic model for
languages and documents posing the problems of synonymy
(different words sharing a same concept) and polysemy (a
same word having different meanings), from which we also
suffer in analyzing file access patterns, i.e., there are multiple
files used in a same context or the same file used in different
multiple contexts. We observed simply applying the PLSA
algorithm itself can improve prediction accuracy (More details
will be discussed in Section V). However, we take a further
step toward squeezing the prediction quality by improving the
PLSA algorithm. PLSA is natively suffered from the local
optimum problem because its optimization routine is based on
the Expectation-Maximization (EM) algorithm [12]. We find a
more optimized solution by using the Deterministic Annealing
(DA) method to improve prediction quality and accuracy.

Our contribution in this paper is summarized as follows:
• Propose a hidden context mining algorithm to train pre-

dictive predictors built around the ADIOS provenance
system, called ADIOS-P.

• Demonstrate experimental results showing improvements
in prefetching accuracy and data read performance by
using two trace data sets; DFSTrace file access traces [13]
and variable access logs collected from VisIt through the
ADIOS provenance system, ADIOS-P.

• Propose a pre-fetcher performance model from which we
can estimate an improved IO throughput.

II. BACKGROUND

A. Predictive Prefetching

Developing predictive algorithms for the purpose of pre-
fetching has been extensively studied in the areas of using
shared resources, such as file systems, metadata services, web
services, etc. In our paper we focus on mining IO access
patterns from the logs of file or variable accesses.

Formally, we define file access pattens as follows (similar
analogy can be made for variable access patterns). Assume
we have a total L files {x1, · · · , xL} in the system. During
the i-th session si, a user accesses a sequence of Mi files,
(a1, a2, · · · , aMi

), where access aj corresponds to a file
among L files. Then, we denote the history, or the collection
of sessions, as H = {s1, ..., sN}. The purpose of prediction
is to forecast the next upcoming file access in a given session
based on the history H .

In a graphical model, file access patterns are summarized
as a directed graph in which each node represents a file and
an edge between two nodes, say, xi and xj , represents a
conditional probability P (xj |xi) meaning the probability of
file xj accessed after file xi. This model is also known as a
Markov chain describing file accesses activities as a finite state
transition. If we consider consecutiveN transitions to compute
the probability of file xj access, we can build a N -th order
Markov chain in which the probability can be represented by
P (xj |xj−1, · · · , xj−N).

Nexus [14, 15], another prefetching algorithm based on a
graph model with weighted edges, has been proposed. Nexus
is a variant of a N -th order Markov chain with a decaying
effect in a way in which the conditional probability between
two nodes is decreasing as the path length is getting larger.
Please refer to the original papers [14, 15] for more details of
the algorithms.

B. Probabilistic Latent Semantic Analysis (PLSA)

PLSA [9, 10] is an algorithm seeking a generative process
of observed data, from which one can discover essential
probabilistic structures or latent aspects of data. Most notably,
PLSA is one of the most used algorithms applied in analyzing
and retrieval of text document [11, 16]. PLSA originally
stemmed from Latent Semantic Analysis (LSA) [17, 18], a
method to summarize data based on a linear combination of
L2-norm approximation and provides a principled approach to
build a statical model of data.

In a nutshell, PLSA is based on a latent mixture model,
in which data (or documents) is represented by a mixture of
finite number of latent components (or topics). In other words,
PLSA seeks a finite number of topics, say K topics, which
can represent optimally the group of documents.

In PLSA, we denote a collection of N text documents,
called a corpus, asX = {x1, . . . , xN} where xi (1 ≤ i ≤ N)
represents a document vector. In this corpus, we have a
vocabulary set containing D unique words (or terms) denoted
by {w1, . . . , wD} and each document xi is a D-dimensional
vector where its j-th element represents the number of occur-
rences (or frequency) of word wj . One may summarize the
corpus X in a rectangular N ×D matrix, called co-occurence
(or document-term) matrix X = [xij]ij for 1 ≤ i ≤ N and
1 ≤ j ≤ D, in a way in which an element xij denotes the
frequency of word wj occurred in a document xi. In this paper,
we use PLSA to analyze the trace data for files or variable
access logs, in which we can translate sessions as documents
and words as file names or variable names in PLSA.

Then, we define a topic as a generative function that will
create a document (i.e, a list of words and word frequencies)
with a multinomial distribution over words. More specifically,
if a document is generated from a certain topic, say k-th topic,
its conditional probability can be written by

P (xi | ζk = 1) = Multi(xi |θk) (1)

where ζk is called a latent class, a binary random vari-
able indicating association with the k-th latent class, and

Multi(xi |θk) represents a multinomial probability of xi over
word probability θk = (θk1, . . . , θkD) where θkj represents a
word probability P (wj | ζk = 1), defined by

Multi(xi |θk) =
Γ (|xi |+ 1)∏D
j=1 Γ(xij + 1)

D∏
j=1

(θkj)
xij (2)

with a gamma function, Γ(·).
Assuming we have total K topics in a given corpus, the

marginal document probability can be defined as a mixture of
topics written by

P (xi |Θ,Ψ) =

K∑
k=1

ψikMulti(xi |θk) (3)

where a word probability set is denoted by Θ = {θ1, . . . , θK}
and a mixture weight set is presented by Ψ = [ψik]ik for
each mixture weight ψik with the constraint 0 ≤ ψik ≤ 1
and

∑
k ψik = 1. Note that a mixture weight ψik is a

document level parameter, rather than a corpus level, in that
each document can have different mixture weights over the
finite number of topics. This is the key difference between
clustering algorithms, like K-Means, and the topic model.

Then, PLSA is a problem to seek an optimal set of param-
eters which maximizing the log-likelihood defined by

LPLSA(X,Θ,Ψ) =

N∑
i=1

log

{
K∑
k=1

ψikMulti(xi |θk)

}
. (4)

Finding such parameters in this mixture model, known
as model fitting or parameter estimation, is intractable. The
original PLSA algorithm maximizes the objective function (4)
by using the Expectation Maximization (EM) method.

In Section IV we will discuss how the Deterministic An-
nealing (DA) algorithm can be used to get better optimized
solution for the PLSA problem.

III. RELATED WORK

We discuss related previous research on predictive prefetch-
ing and deterministic annealing.

Predictive Prefetching: Predictive prefetching has been
widely studied in the areas of file system and web services
to reduce the file loading or web page access time. In the
file system ares, a series of Partitioned Context Modeling
(PCM) based schemes [19–21] have been studied for sequence
file prediction for IO prefetching. AMP [22] and TaP [23]
have been proposed for sequence prediction. Researches about
the prefetching in shared file storage [15, 24] have been
performed. Memory prefetching schemes [25, 26] have been
also researched to increase cache performance.

In the web service area, G. Pallis et al. proposed clustWeb, a
graph-based clustering algorithm for web pages, and clustPref,
a web prefetching scheme based on clustWeb algorithm, to
improve network performance by using a predictive approach
and reported a significant performance improvement [27]. We
take a similar clustering-based approach but we focus on
a mixture model based algorithm for file systems in which
mining hidden users contexts or intensions are important.

Deterministic Annealing: The DA algorithm [28, 29]
has been applied to solve optimization problems in various
machine learning algorithms, such as clustering [28, 30, 31],
visualization [32, 33], protein alignment [34], and so on. A
general DA solution for EM algorithm is proposed in [12].

Our focus in this paper is to solve a EM-based text mining
algorithm, PLSA, by using DA. T. Hofmann, the author of
the PLSA algorithm, has also proposed a DA-like algorithm,
called Tempered EM [9]. However, the Tempered EM is
different from the traditional DA algorithm in that the cooling
schedule is reversed and is only applied to solve overfitting
problem. Our proposed algorithm, Probabilistic Latent Se-
mantic Analysis with Deterministic Annealing (DA-PLSA), is
more close to the original DA approach presented by K. Rose
and G. Fox [28, 29].

IV. MINING HIDDEN MIXTURE CONTEXT WITH
DETERMINISTIC ANNEALING

To maximize the log-likelihood function shown in Eq. (4),
T. Hofmann has proposed an EM algorithm for model fitting
in PLSA [9, 10]. However, EM has a well-known problem,
called a local optimum problem, finding only local solutions.
To overcome such problem, we propose a new DA algorithm
for PLSA, named Probabilistic Latent Semantic Analysis with
Deterministic Annealing (DA-PLSA). We follows the same
approach in solving a clustering problem with DA presented
by K. Rose and G. Fox [28, 29].

The DA algorithm, based on the principle of maximum
entropy [35], developed by E. T. Jaynes, a rational approach
to choose the most unbiased and non-committal answer for a
given condition, was developed to avoid local optimum and
seek a global optimum solution in a deterministic way [28],
which contrasts to stochastic methods used in the simulated
annealing [36], by controlling the level of randomness or
smoothness. The DA algorithm, adapted from a physical
process known as annealing, finds an optimal solution in a
way gradually lowering a numeric temperature which controls
randomness or smoothness

In DA, we optimize a new objective function F , called
free energy, similar to the Helmholtz free energy in statistical
physics, defined by

F = 〈D〉 − T S (5)

where 〈D〉 represents an expected cost, T is a Lagrange
multiplier, also known as a numeric temperature, and S is
an entropy.

To solve the PLSA problem with DA, we define the follow-
ing objective function, free energy FPLSA, by

FPLSA = − 1

β

N∑
i=1

log

K∑
k=1

{ψkiMulti (xi |θk)}β (6)

where β represents inverse computational temperature, defined
by β = 1/T . Please note that the free energy function (6)
equals with the EM objective function (4) when temperature
is 1.0, which implies that the DA algorithm treats the EM
solution as a special case.

TABLE I: List of trace data sets

Data Set Name Users Sessions Files/Variables

DFSTrace barber 9 6,410 6,833
dvorak 8 29,613 16,815
ives 12 7,724 5,776
mozart 10 11,026 13,687

VisIt+ADIOS-P VisIt 27 94

With Eq. (6), we will gradually lower a temperature from
high to low (equivalently, β will be changed from near zero to
1). At each temperature, we have the following internal EM
steps to minimize FPLSA.
• E-step : compute ρki, known as the responsibility, by

ρki =
{ψkiMulti (xi |θk)}β∑K

k′=1 {ψk′iMulti (xi |θk′)}β
(7)

• M-step : maximize FPLSA by computing the following
parameters:

θk =

∑N
n=1 ρkixi∣∣∣∑N
n=1 ρkixi

∣∣∣ , ψik =
ρki∑K
k=1 ρki

(8)

which make the first derivative of FPLSA, ∂FPLSA/∂θk
and ∂FPLSA/∂ψik, be zero.

In summary, with DA-PLSA, we model the collection of
sessions H , defined in II-A; i) each session can be described as
a mixture of hidden K contexts with different mixing weights,
and ii) K generative processes can be inferred. In conjunction
with a predictor, we can exploit those properties to increase
the prediction performance; prediction will be made based on
the major context or multiple contexts to which each session
belongs.

V. EXPERIMENTAL RESULT

In this section, we demonstrate our experimental results
evaluating the impact of using hidden context mining algo-
rithms to improve the predictor performance. As our focus is
mining hidden contexts for training predictive pre-fetcher, we
chose two basic and popular predictors, N -th order Markov
chain (nMarkov hereafter) and Nexus.

For the trace data, we have used two datasets. First, a pub-
licly available file trace data, called DFSTrace [13], generated
from the Coda project [37]. Second, a dataset collected directly
from the visualization software, VisIt, integrated with the
ADIOS provenance module, ADIOS-P. The DFSTrace consists
of 4 different datasets collected from the different machines,
barber, ives, dvorak, and mozart, each of which has unique
file access characteristics [19]; barber has the highest rate of
system calls per second, dvorak has the highest percentage of
write activity, ives the largest number of users, and mozart a
typical desktop work-station.

To prepare the VisIt trace data, we integrated the VisIt
program with the ADIOS-P module and recorded variable ac-
cess activities while users’ performing visualization of outputs

2 4 8 12

−25

−20

−15

−25

−20

−15

−35
−30
−25
−20
−15

−40

−35

−30

−25

●●

●●

●●●●

●●

●●

●

●

●●

●

●●

●

barber
dvorak

ives
m

ozart

EM DA EM DA EM DA EM DA

Lo
g−

lik
lih

oo
d

Fig. 4: EM-optimized vs DA-optimized PLSA. DA optimization out-
performs EM-optimization by showing larger log-likelihood values
than EM.

from the real scientific applications, such as S3D [4], GEOS-
5 [5], etc. Examples of S3D and GEOS-5 outputs are shown
in Fig. 1. The trace data used in this paper is summaried
in Table I.

A. Deterministic Annealing performance

We compare the optimization performance of the original,
EM-optimized PLSA algorithm (EM-PLSA) with the one with
our proposed DA-optimized PLSA algorithm (DA-PLSA).
We performed the EM-PLSA and DA-PLSA algorithms by
using the DFSTrace data sets while using different context
numbers, K = 2, 4, 8, and 12, and measured the maximum
log-likelihood values as outputs. Models with larger log-
likelihood values are preferred. We repeated the process with
10 randomly initialized conditions.

The results are summarized in Fig. 4 by using box plots
(also known as a box-and-whisker diagram) in which observed
data are represented by a box for the upper quartile (Q3) and
lower quartile (Q1), whiskers for the smallest and the largest
values, a middle line in the box for the median, and

As a result (Fig. 4), the DA optimization outperformed the
EM method by generating larger log-likelihood values than
EM in all the cases we tested, except barber with K = 2.
On average, the log-likelihood values generated by DA-PLSA
were bigger by 2.028 than ones from EM-PLSA.

Please note also that the variance of log-likelihood values
generated from DA-PLSA is smaller than the one from EM-
PLSA; the average standard deviations of log-likelihood are
0.029 and 0.510 for DA-PLSA and EM-PLSA respectively.
This illustrates the robustness of our DA method; DA-PLSA
is less sensitive to random initial conditions than EM-PLSA.
In short, this experiment demonstrates that our DA-PLSA
algorithm finds better model parameters than EM-PLSA with
smaller deviations.

B. Impacts on prediction quality

In this experiment, we measure how context mining algo-
rithms can improve prediction quality. We used the following

4 context mining algorithms:
• K-Means – algorithm to find K clusters based on Eu-

clidean distance measures. Strictly speaking, K-Means is
not considered as a topic or context mining algorithm in
general. We used as a simple initial approach.

• PLSA – The original, EM-optimized algorithm.
• DA-PLSA – Our proposed, DA-optimized algorithm.
• DA-PLSA2 – The DA-PLSA algorithm with 2 modes

(explained below).
For PLSA family algorithms, we limited the mode, the
maximum number of membership that each session can be
associated with, be 1, except DA-PLSA2 which was set to
have 2 modes; in PLSA and DA-PLSA, each session will be
associated with one latent context group, while in DA-PLSA2
two latent groups will be selected for each session.

Then, we measured the impacts of using the 4 different
context mining algorithms on the prediction performances of
two sequence predictors, Nexus and nMarkov, by using two
trace datasets; the DFSTrace datasets (barber, ives, dvorak,
and mozart) and the VisIt trace set. More specifically, first,
we measured the prediction accuracy of Nexus and nMarkov
without using any context information. This measurement
was used as base values. Then, we performed the prediction
again by using the context information mined from K-Means,
PLSA, DA-PLSA, and DA-PLSA2 and measured the predic-
tion accuracies. Then, we calculated the percentage differences
compared with the base values. Positive percentage difference
values indicate the performance (or prediction accuracy) im-
provements.

The experimental results with the DFSTrace sets are shown
in Fig. 5 by using a box plot (We omit the results of mozart
due to the space limitation. However, the results were similar
with others). As a result, DA-optimized PLSA algorithms
(DA-PLSA and DA-PLSA2) outperformed the original, EM-
optimized algorithm (PLSA) and K-Means. Especially, DA-
PLSA with 2 mode membership (DA-PLSA2) showed the
best performances in all the cases by generating the largest
accuracy improvements. Most notably, DA-PLSA2 in dvorak
showed about 90% prediction accuracy increase with Nexus
at K=8 and 12.

However, for small K values (K=2 or 4), the performance
improvement was not impressive (although DA-PLSA2 still
worked better than any others in most cases). This is expected
as mining of small number of hidden contexts is not much
different from clustering and there is not much model-specific
information we can exploit to improve prediction quality.

Fig. 6 shows another experimental results with the VisIt
trace data, containing the variable access history. However,
due to the limited time of collecting trace data, the data set
contains only the small number of sessions. By using the same
method to compute base values (prediction accuracy without
using context mining results), we measured the percentage
improvements of prediction algorithm by using the context
mining results. In Fig. 6, we can see also DA-PLSA2 out-
performed than any other algorithms, K-Means, PLSA, and
DA-PLSA. However, unlike in the previous experiment, we

2 4 8 12

0

10

20

30

40

−30

−20

−10

0

10

20

−20

0

20

40

60

80

●●

●

●

●

●●
●●

●

●●●●●●

●

●●●●●●●●●●●●

●

●●●

●

●●●
●
●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●
●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●●●

●●

●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●
●

●
●

●●

●
●

●

●
●

●

●

●

●●●●●●●
●●●●
●
●
●●
●
●
●●
●●
●
●
●
●
●
●
●
●●●●
●
●●
●
●
●
●
●
●
●●●
●●
●
●
●●●
●
●
●
●●
●●●●●
●●
●
●●
●
●●
●●
●●
●●
●
●
●
●
●●
●
●●●
●
●
●
●●
●●
●●
●●
●●
●
●●
●
●
●
●
●●●
●
●
●
●
●●
●
●
●
●
●●
●●
●
●●●
●
●
●
●●
●●
●
●
●●
●
●
●
●
●
●
●
●●
●●
●●
●
●
●
●●
●
●
●●
●
●
●
●
●

●●●●●
●
●●●

●

●●●●
●●●● ●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●●

●●

●

●
●

●

●

●

●●

●

●●

●
●

●●

●

●●

●

●

●

●

●
●

●

●

●
●●

●●

●●

●

●

●●
●●●

●

●●

●

●

●
●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●●●

●
●

●

●

●●

●●

●

●

●●●

●

●●

●

●

●

●
●●

●●

●●●●

●

●

●

●●●

●

●
●
●

●●

●

●
●●

●●

●

●

●

●
●●

●

●
●
●

●

●●

●●

●●

●

●

●

●●

●
●●

●●

●

●●
●

●

●●●

●

●
●●●

●

●

●

●

●

●●●

●

●●

●

●●

●

●
●

●

●●●

●
●

●●

●

●●

●

●●●

●

●●●

●●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●●●●●
●●●
●
●

●

●
●●●●●●
●●
●●
●●●
●
●
●●●●●●
●●
●●●●●
●●●●●●
●●
●
●●●●●
●●●●●●
●
●●

●

●●●●
●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●
●
●●●●●●●

●

●●●●
●●
●●●
●
●●●
●
●●●●●●●
●●
●●●●
●
●●●●●●●
●●●●

●

●●●●●●●●
●
●
●●●●●
●●
●

●

●●●●●●●●●●●●●
●●
●
●●●●●●●

●

●
●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

●

●

●●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●●
●

●

●●

●

●

●●●●
●
●●●
●●●●
●
●
●

●

●
●●●

●

●●

●●●●●●●●●●●●●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●●

●●

●

●●

●●

●●

●

●●

●

●

●

●

●●

●
●

●

●

●●

●
●

●●●

●

●

●

●

●
●

●●●

●

●●●

●

●●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●●●

●

●
●

●

●

●●●

●

●

●
●●

●
●●●
●

●

●

●

●

●●●●●
●

●

●
●●

●

●

●●
●
●

●

●
●
●

●

●
●
●
●
●

●

●
●
●

●
●●

●

●●●

●

●●
●
●●

●

●●●●

●

●
●

●

●

●●●

●●●
●●●

●
●

●

●●

●
●
●
●

●

●

●●
●●
●

●

●

●●

●●

●●

●

●●
●●

●●

●●●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●●

●

●

●

●●

●

●

●
●●

●●●

●

●

●

●
●●

●●●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●●

●
●●

●

●●

●

●●●●●

●●
●

●●●●

●●

●●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●●●●

●●

●

●

●
●●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●
●
●

●●●

●

●

●

●

●●

●

●●

●

●

●

●
●●

●

●●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●
●
●●●
●

●

●
●●

●

●

●
●

●

●

●●
●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●
●
●●●
●

●

●
●●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●●

●
●
●

●

●

●
●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●●
●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●
●●●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●
●●

●

●

●

●

●●●

●
●

●●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●●

●●

●

●●

●

●

●●

●

●
●●
●
●

●
●●●
●

●

●

●
●

●

●

●●●

●●

●
●
●●●●
●
●●●

●

●
●●
●

●

●

●

●

●●

●
●

●

●

●

●
●●●●●●

●

●

●

●
●
●

●●
●
●
●●

●

●

●
●●
●
●
●

●

●

●

●●

●

●
●

●

●
●●●●●●
●
●

●●

●

●●●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●●●

●●
●
●

●

●

●

●
●●●

●
●

●

●
●
●
●●●
●●

●

●●
●

●
●

●

●

●

●

●
●●

●
●●
●
●●●●

●

●

●

●
●●●●●●●

●

●●●●
●

●
●
●●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●●

●

●
●

●

●
●
●
●
●
●
●

●

●

●

●●

●●

●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●●

●

●

●●●
●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●●
●

●
●

●
●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●
●
●

●

●
●
●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●
●
●●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●
●

●
●●

●

●

●●

●

●
●

●
●
●
●●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●
●

●
●
●

●
●
●

●
●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●●
●
●
●
●●

●●

●●
●

●

●
●
●

●

●

●

●

●

●

●●

●

●●
●

●

●
●
●

●

●

●●●●

●

●

●●

●●

●

●

●●
●●●●
●●●●
●
●●
●●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●
●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●●

●●

●
●
●
●

●

●●
●
●

●●

●

●

●●

●

●

●

●

●
●
●●●
●
●
●

●

●●
●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●
●●
●
●

●
●

●

●

●

●

●

●

●●

●

●

●●●
●

●
●●

●●

●●
●
●

●

●

●●

●

●

●●

●

●

●

●

●●
●
●
●
●

●
●

●

●
●●●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●
●●
●
●

●●

●

●

●

●

●

●

●●

●

●

●●●
●

●
●●
●●

●●
●
●

●

●

●

●●

●

●

●●

●

●

●

●
●●
●
●
●

●

●
●

●

●
●●●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

barber
ives

dvorak

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

A
cc

ur
ac

y
Im

pr
ov

em
en

t (
%

)
Nexus

(a) Nexus

2 4 8 12

−20

−15

−10

−5

0

5

−20

−10

0

−30

−20

−10

0

●●
●
●●●●●
●
●
●●●●●●●
●
●●●●
●
●●
●●●●●●●●●●●●
●
●●
●●●●●●
●

●

●

●●●

●

●●●●
●

●

●
●
●●●
●

●
●●●
●

●
●
●

●

●●●

●

●●●●●●
●
●●●●●●
●
●●●
●
●
●
●●
●
●●●●●●●

●

●●●

●

●
●

●●

●●●●

●
●●●
●●●●●●●
●●●●●●●●

●
●●●●
●●●●●●●
●
●
●
●
●●●●

●

●●●●●
●●●●●
●
●●
●

●

●

●

●

●●
●
●●
●

●

●●●●
●

●●

●●●
●

●

●●
●●
●
●●
●
●
●●●
●
●
●
●
●●●
●●●●●
●●
●
●●●●●●●
●
●
●●●
●●●●

●

●
●●●●●●
●
●●
●●●

●

●

●

●
●
●
●●

●

●
●

●

●●
●●●●
●
●
●●

●

●●●●
●●

●

●●●●●●
●

●●●●
●

●●●●●●

●

●●
●
●
●
●

●

●

●

●

●

●

●●
●
●
●
●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●●●
●●
●●●●●

●

●

●

●

●

●

●

●
●
●

●

●

●●●

●●

●●

●

●
●

●

●

●
●
●

●
●●

●

●●●
●
●●

●●

●

●

●
●

●

●●
●
●

●

●

●

●●●●●●●●●●
●

●●

●

●
●

●

●

●

●●
●●
●

●

●●●

●

●
●●
●
●
●
●

●

●●●●

●

●●●●●●●●●●●●●●

●

●●●●●

●

●●

●

●
●

●●
●
●●●

●

●
●●●●●●

●

●●
●

●

●●

●

●

●
●
●
●
●
●

●●

●●
●
●

●

●
●●
●
●
●●●

●

●
●
●●●●

●

●

●

●●●●●●●●
●
●●

●

●
●●
●●
●

●●

●

●●

●

●

●

●●●
●●
●●●●
●●●
●
●●●●
●●
●
●●
●●●
●

●●●●●●●
●●●
●●●●●
●
●
●●●●
●
●●
●●●●
●
●
●
●●●●●
●
●●
●

●
●●●●
●●
●●●
●●●●●
●●●
●
●
●
●●
●●●●
●
●
●●●●●
●
●
●●●●●
●
●
●●
●●

●

●
●●

●

●●
●●
●●●●
●
●
●●●●●

●●
●

●

●●●●
●●●●●●●●●●
●●●●●●
●
●

●

●●●
●
●●
●
●●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●
●
●●●

●
●
●

●

●

●

●

●

●●

●●●
●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●●
●●

●

●

●

●●

●

●●

●

●●
●
●●

●

●

●●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●●
●

●

●

●

●●●

●

●

●

●

●●●●●●●●●●●
●

●

●●●
●●●●

●

●●●
●●
●
●●●
●●●●

●

●●●●●●●

●

●

●

●●

●

●●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●●

●●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●
●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●
●
●
●
●

●
●
●●

●

●

●

●
●●
●
●

●

●
●

●

●●

●
●

●

●
●
●
●●
●
●●●●
●●
●

●

●●

●

●

●●
●

●

●
●●●

●

●

●●●●

●

●●
●●

●

●
●●

●

●

●●●

●
●
●●
●●●

●●

●

●●●

●●
●●●

●

●
●

●

●

●

●
●●●

●

●●
●
●

●

●

●
●●

●
●
●
●
●
●

●
●

●

●●

●

●
●

●
●
●●●

●

●●
●
●
●
●

●

●

●

●●
●●
●
●
●●
●
●
●
●●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●
●
●
●
●
●
●●

●

●

●

●

●●●●●

●

●

●

●

●
●●
●●
●●●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●●

●
●

●
●
●
●
●

●

●
●
●
●
●

●

●

●

●
●
●

●●

●●●●

●

●

●

●
●

●

●●

●

●●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●●

●

●●

●

●

●
●

●

●●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●●●

●●●

●

●

●

●●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●
●

●
●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●
●

●

●
●

●●●●●●●●●
●

●●
●

●

●●
●

●

●
●

●

●●

●●●

●●
●
●

●
●●

●

●

●

●

●

●●●
●

●

●
●
●

●
●

●

●

●

●

●●

●

●
●●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●
●●●
●

●●

●●

●

●

●●

●

●

●

●

●

●

●
●
●●
●●●

●

●
●●●
●

●

●

●●

●
●

●
●
●
●
●

●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●●●
●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●
●

●●●●●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●
●

●
●

●

●

●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●
●●

●

●

●●
●
●

●

●●

●●

●●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●●●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●●●

●

●●
●

●
●
●
●
●

●

●

●
●●

●●●
●
●●●

●
●
●
●●

●

●

●●

●

●
●
●
●

●
●
●
●●●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●
●
●●
●
●

●●

●

●●
●
●
●

●

●
●

●●

●●

●

●

●●
●●
●
●
●
●

●

●

●

●
●●

●

●
●
●
●●

●
●
●●
●
●
●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●●●
●

●

●

●

●

●
●
●

●●
●
●

●●

●

●
●●●
●

●

●
●●
●

●

●●
●●
●
●●

●

●

●

●

●●●
●

●
●●
●
●
●
●
●

●

●

●

●

●

●
●●
●●

●●

●●

●●

●

●
●
●
●●

●

●

●

●
●

●

●

●

barber
ives

dvorak

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

A
cc

ur
ac

y
Im

pr
ov

em
en

t (
%

)

nMarkov

(b) N -th order Markov

Fig. 5: Impacts of context mining algorithms on the prediction performance of Nexus (a) and nMarkov (b) for DFSTrace data, depicted as
box plots. For each box plot, observed data are summarized as a box, whiskers, and circles; top of box for the upper quartile (Q3), bottom
of box for the lower quartile (Q1), whiskers for the smallest and the largest values, a middle line in the box for the median, and circles for
outliers. DA-optimized PLSA algorithms (DA-PLSA and DA-PLSA2) outperform the original, EM-optimized PLSA algorithm. Especially
DA-PLSA with 2 mode membership (DA-PLSA2) shows the best performances overall.

observed the poor performance of DA-PLSA. We think this is
due to the small number of trace events.

C. IO pre-fetch performance

We demonstrate how prefetching can affect IO performance.
Instead of measuring IO performance directly in a system
with prefetching deployed, we performed a simulation-based
experiment by building a performance model.

We consider a 1:N parallel execution model in which
there are 1 staging process (Ps) mainly for IO handling
and prefetching and N computing processes (Pn) which will
communicate with the staging process Ps for IOs (See Fig. 7).
For simplicity, we ignore communication overheads between
processes in this model. We also assume an iterative map-
reduce style execution [38]; a full execution can be divided
into small sub steps and a computing task in each step begins
with an IO input received from the staging process Ps and ends
in a synchronized fashion so that the next IO reading follows
after the end of the computing. The staging process Ps handles
IO sequentially, while N computing processes, P1, · · · , PN ,
can run concurrently.

We denote T (rit) as an elapsed time for reading t-step data
for process Pi and T (ct, P) as a parallel computing time,
or longest computing time among N processes. Then, we

r1t +1 r3t +1r2t +1

P3

P2

P1

Ps

c2t

c3t

c1t

c2t +1

c3t +1

c1t +1

r1t +2 r3t +2r2t +2r3t +1

Prefetch Overhead

T (ct , P)

(a) Compute intensive – T (ct, P) > PT (rt)

r1t +1 r3t +1r2t +1

P3

P2

P1

Ps

c2t

c3t

c1t

c2t +1

c3t +1

c1t +1

r1t +2 r3t +2r2t +2r3t +1

T (ct , P)

(b) IO intensive – PT (rt) > T (ct, P)

Fig. 7: 1:N ADIOS staging service model where 1 staging process
(Ps) handles IO requests from P compute processes (Pn). Here we
depicts N=3 case. With pre-fecting in Ps, we can overlap computing
time and IO time.

4 8 12 16

−100

−50

0

50

100

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●●

●●

●

●

●

●●●

●

●●

● ●

●

●

●

●

visit

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

A
cc

ur
ac

y
Im

pr
ov

em
en

t (
%

)
Nexus

4 8 12 16

−100

−50

0

50

100

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●●

visit

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

K−Means

PLSA
DA−PLSA

DA−PLSA2

A
cc

ur
ac

y
Im

pr
ov

em
en

t (
%

)

nMarkov

Fig. 6: Impacts of context mining algorithms on the prediction performance of the Nexus algorithm, nMarkov, for the VisIt dataset. The
DA-PLSA algorithm with 2 mode membership (DA-PLSA2) shows the best performances.

can define the base time TBase, total execution time without
prefetching, can be defined as a sum of sequential reading and
parallel computing time, such that,

TBase = P
∑
n

T (rt) +
∑
n

T (ct, P) (9)

Hereafter, for brevity, we ignore superscripts indicating the
process indices and assume an uniform reading and computing
time through steps.

Now we consider two types of workload: A) compute
intensive case when T (ct, P) ≥ PT (rt) (Fig. 7a), and B)
IO intensive case, otherwise (Fig. 7b).

Compute intensive case (Case A): Ps has enough time
for pre-fetching N data sets for the t + 1 step while N
Pn’s running concurrently in t-th step. After Pns’ finishing
computing, incorrectly pre-fetched data need to be re-fetched,
which occurs overheads. Let denote α be the average accuracy
of pre-fetching in Ps. Compared with TBase, we can save
αN

∑
t T (rt) time due to the pre-fetching. The expected

execution time with pre-fetching, TPrefetch−A, is defined by

TPrefetch−A = TBase − αN
∑
t

T (rt) (10)

IO intensive case (Case B): Ps has no enough time for
pre-fetching N data sets during the computing time T (ct, P).
Re-fetching for incorrect prefetched data can be occurred
immediately after T (ct, P). Compared with the base time
TBase, we can save on average αT (ct, P) with the pre-fetching
accuracy α. We can define the expected execution time by

TPrefetch−B = TBase − α
∑
t

T (ct, P) (11)

We denote γ be the ratio of workload; either γ =
T (ct, P)/NT (rt) (Case A) or γ = NT (rt)/T (ct, P) (Case
B), so that γ ≥ 1. Then, we can define speedup Sprefetch,
time improvement ratio due to the prefetching, by

Sprefetch =
TBase

TPrefetch
=

1 + γ/N

1 + γ/N − α
(12)

for both cases.
With Eq. (12), we can estimate the maximum speedup

we can achieve with different pre-fetching accuracy levels.

1.0

1.2

1.4

1.6

1.8

2.0

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0
Prefetch Accuracy

S
pe

ed
up

Workload
Ratio

● 1:1

2:1

4:1

8:1

16:1

Fig. 8: Estimated speedup with respect to the different level of
prefetch accuracy.

In Fig. 8, a simulation result is summarized with various
workload ratios (γ = 1, 2, . . . , 16) and prefetching accuracies
(α = 0.0, . . . , 1.0). What Fig. 8 implies is as follows:
• Ideally, we can achieve maximum 2 times speedup when

the prefetch accuracy is 1.0 with an uniform compute-IO
workload (i.e., γ = 1.0), since we can overlap IO and
computing time without any overhead.

• If the workload get skewed (γ > 1.0), the speedup will
be degraded, which is expected.

• High prefetching accuracy contributes more to large
speedup, while low prefetching accuracy does less to
speedups; Even small increase of prefetching accuracy
is important in a balanced workload execution to achieve
large speedup.

VI. CONCLUSION

Today, I/O has become a significant source of performance
bottleneck for scientific applications. Deploying a predictive
data pre-fetcher has been considered as a viable solution
to load data in before real requests happen. Especially in
scientific data visualization, pre-fetching can be used to reduce
the IO waiting time.

To support predictive pre-fetching to reduce IO latency, in
this paper we have presented two main solutions. We have
developed and demonstrated a provenance system built on
ADIOS, named ADIOS-P, that can collect file and variable
access patterns for data mining.

We have also proposed a data mining technique for discov-
ering the hidden contexts in data access patterns to improve
the prediction performance. More specifically, we applied
Probabilistic Latent Semantic Analysis (PLSA), a mixture
model based algorithm popular in the text mining area, to
mine hidden contexts from the collected user access patterns
and, then, we run a predictor within the discovered context.
We further improved the PLSA algorithm by applying the
Deterministic Annealing (DA) method to overcome the local
optimum problem from which the original PLSA algorithm
suffered.

We also demonstrated performance results of our DA-
optimized PLSA, named DA-PLSA, compared with the orig-
inal EM-optimized PLSA and presented experimental results
showing improvements in prefetching accuracy by using two
data sets; DFSTrace file access traces and variable access
logs collected from the visualization software, VisIt, through
ADIOS-P.

REFERENCES

[1] Top500.org. (2012, July) Top500 list - november 2000 (1-100).
[Online]. Available: http://www.top500.org/list/2000/11/

[2] ——. (2012, July) Top500 list - june 2012 (1-100). [Online]. Available:
http://www.top500.org/list/2012/06/100

[3] J. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin, “Flexible
IO and integration for scientific codes through the adaptable IO system
(ADIOS),” in Proceedings of the 6th international workshop on Chal-
lenges of large applications in distributed environments. ACM, 2008,
pp. 15–24.

[4] J. H. Chen et al., “Terascale direct numerical simulations of turbulent
combustion using S3D,” Comp. Sci. & Disc., vol. 2, no. 1, p. 015001
(31pp), 2009.

[5] M. Rienecker, M. Suarez, R. Todling, J. Bacmeister, L. Takacs, H. Liu,
W. Gu, M. Sienkiewicz, R. Koster, R. Gelaro et al., “The geos-5 data
assimilation system: Documentation of versions 5.0. 1, 5.1. 0, and 5.2.
0,” NASA Tech. Memo, vol. 104606, 2007.

[6] S. Klasky, S. Ethier, Z. Lin, K. Martins, D. McCune, and R. Samtaney,
“Grid -based parallel data streaming implemented for the gyrokinetic
toroidal code,” in SC ’03: Proceedings of the 2003 ACM/IEEE confer-
ence on Supercomputing, 2003, p. 24.

[7] C. S. Chang, S. Klasky et al., “Toward a first-principles integrated
simulation of Tokamak edge plasmas - art. no. 012042,” Scidac 2008:
Scientific Discovery through Advanced Computing, vol. 125, pp. 12 042–
12 042, 2008.

[8] H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison, G. Weber,
E. Bethel et al., “Extreme scaling of production visualization software
on diverse architectures,” Computer Graphics and Applications, IEEE,
vol. 30, no. 3, pp. 22–31, 2010.

[9] T. Hofmann, “Probabilistic latent semantic indexing,” in Proceedings of
the 22nd annual international ACM SIGIR conference on Research and
development in information retrieval. ACM, 1999, pp. 50–57.

[10] ——, “Unsupervised learning by probabilistic latent semantic analysis,”
Machine Learning, vol. 42, no. 1, pp. 177–196, 2001.

[11] J. Choi, “Unsupervised learning of finite mixture models with determin-
istic annealing for large-scale data analysis,” Ph.D. dissertation, Indiana
University, 2012.

[12] N. Ueda and R. Nakano, “Deterministic annealing em algorithm,” Neural
Networks, vol. 11, no. 2, pp. 271–282, 1998.

[13] L. Mummert and M. Satyanarayanan, “Long term distributed file refer-
ence tracing: Implementation and experience,” Software: Practice and
Experience, vol. 26, no. 6, pp. 705–736, 1996.

[14] P. Gu, Y. Zhu, H. Jiang, and J. Wang, “Nexus: a novel weighted-
graph-based prefetching algorithm for metadata servers in petabyte-scale
storage systems,” in Cluster Computing and the Grid, 2006., vol. 1.
IEEE, 2006, pp. 8–pp.

[15] P. Gu, J. Wang, Y. Zhu, H. Jiang, and P. Shang, “A novel weighted-

graph-based grouping algorithm for metadata prefetching,” Computers,
IEEE Transactions on, vol. 59, no. 1, pp. 1–15, 2010.

[16] D. Blei, A. Ng, and M. Jordan, “Latent dirichlet allocation,” The Journal
of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[17] G. Furnas, S. Deerwester, S. Dumais, T. Landauer, R. Harshman,
L. Streeter, and K. Lochbaum, “Information retrieval using a singular
value decomposition model of latent semantic structure,” in Proceedings
of the 11th annual international ACM SIGIR conference on Research and
development in information retrieval. ACM, 1988, pp. 465–480.

[18] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman,
“Indexing by latent semantic analysis,” Journal of the American society
for information science, vol. 41, no. 6, pp. 391–407, 1990.

[19] T. Kroeger and D. Long, “The case for efficient file access pattern
modeling,” in Hot Topics in Operating Systems, 1999. Proceedings of
the Seventh Workshop on. IEEE, 1999, pp. 14–19.

[20] ——, “Design and implementation of a predictive file prefetching
algorithm,” in Proceedings of the 2001 USENIX Annual Technical
Conference, 2001, pp. 105–118.

[21] I. Choi and C. Park, “Enhancing prediction accuracy in pcm-based file
prefetch by constained pattern replacement algorithm,” Computational
Science—ICCS 2003, pp. 714–714, 2003.

[22] B. Gill and L. Bathen, “Amp: adaptive multi-stream prefetching in a
shared cache,” in Proceedings of the 5th USENIX conference on File
and Storage Technologies. USENIX Association, 2007, pp. 26–26.

[23] M. Li, E. Varki, S. Bhatia, and A. Merchant, “Tap: Table-based prefetch-
ing for storage caches,” in Proceedings of the 6th USENIX Conference
on File and Storage Technologies. USENIX Association, 2008, p. 6.

[24] X. Fang, O. Sheng, W. Gao, and B. Iyer, “A data-mining-based prefetch-
ing approach to caching for network storage systems,” INFORMS
Journal on computing, vol. 18, no. 2, pp. 267–282, 2006.

[25] D. Joseph and D. Grunwald, “Prefetching using markov predictors,”
ACM SIGARCH Computer Architecture News, vol. 25, no. 2, pp. 252–
263, 1997.

[26] K. Nesbit and J. Smith, “Data cache prefetching using a global history
buffer,” in High Performance Computer Architecture, 2004. HPCA-10.
Proceedings. 10th International Symposium on. Ieee, 2004, pp. 96–96.

[27] G. Pallis, A. Vakali, and J. Pokorny, “A clustering-based prefetching
scheme on a web cache environment,” Computers & Electrical Engi-
neering, vol. 34, no. 4, pp. 309–323, 2008.

[28] K. Rose, “Deterministic annealing for clustering, compression, classifi-
cation, regression, and related optimization problems,” Proceedings of
the IEEE, vol. 86, no. 11, pp. 2210–2239, 1998.

[29] K. Rose, E. Gurewitz, and G. Fox, “A deterministic annealing approach
to clustering,” Pattern Recognition Letters, vol. 11, no. 9, pp. 589–594,
1990.

[30] T. Hofmann and J. Buhmann, “Pairwise data clustering by determin-
istic annealing,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19, no. 1, pp. 1–14, 1997.

[31] X. Yang, Q. Song, and Y. Wu, “A robust deterministic annealing
algorithm for data clustering,” Data & Knowledge Engineering, vol. 62,
no. 1, pp. 84–100, 2007.

[32] H. Klock and J. Buhmann, “Multidimensional scaling by deterministic
annealing,” Lecture Notes in Computer Science, vol. 1223, pp. 245–260,
1997.

[33] J. Choi, J. Qiu, M. Pierce, and G. Fox, “Generative topographic mapping
by deterministic annealing,” Procedia Computer Science, vol. 1, no. 1,
pp. 47–56, 2010.

[34] L. Chen, T. Zhou, and Y. Tang, “Protein structure alignment by deter-
ministic annealing,” Bioinformatics, vol. 21, no. 1, pp. 51–62, 2005.

[35] E. Jaynes, “On the rationale of maximum-entropy methods,” Proceed-
ings of the IEEE, vol. 70, no. 9, pp. 939–952, 1982.

[36] S. Kirkpatric, C. Gelatt, and M. Vecchi, “Optimization by simulated
annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[37] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and
D. Steere, “Coda: A highly available file system for a distributed
workstation environment,” Computers, IEEE Transactions on, vol. 39,
no. 4, pp. 447–459, 1990.

[38] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S. Bae, J. Qiu, and
G. Fox, “Twister: a runtime for iterative mapreduce,” in Proceedings
of the 19th ACM International Symposium on High Performance Dis-
tributed Computing. ACM, 2010, pp. 810–818.

