
Towards High Performance Processing of Streaming
Data in Large Data Centers

Supun Kamburugamuve, Saliya Ekanayake, Milinda Pathirage, Geoffrey Fox
School of Informatics and Computing

Indiana University
Bloomington, IN, United States

{skamburu, sekanaya, mpathira, gcf}@indiana.edu

Abstract—Smart devices, mobile robots, ubiquitous sensors,
and other connected devices in the Internet of Things (IoT) in-
creasingly require real-time computations beyond their hardware
limits to process the events they capture. Leveraging cloud infras-
tructures for these computational demands is a pattern adopted
in the IoT community as one solution, which has led to a class of
Dynamic Data Driven Applications (DDDA). These applications
offload computations to the cloud through Distributed Stream
Processing Frameworks (DSPF) such as Apache Storm. While
DSPFs are efficient in computations, current implementations
barely meet the strict low latency requirements of large scale
DDDAs due to inefficient inter-process communication. This
research implements efficient highly scalable communication
algorithms and presents a comprehensive study of performance,
taking into account the nature of these applications and charac-
teristics of the cloud runtime environments. It further reduces
communication costs within a node using an efficient shared
memory approach. These algorithms are applicable in general
to existing DSPFs and the results show significant improvements
in latency over the default implementation in Apache Storm.

I. INTRODUCTION

Real-time data processing at scale in cloud-based large data
centers is challenging due to their strict latency requirements
and distributed nature of applications. Modern distributed
stream processing frameworks (DSPF) such as Apache Storm
[1] provide an effective platform for real-time large scale
applications. A parallel real-time distributed streaming algo-
rithm implementing simultaneous localization and mapping
(SLAM) [2] for mobile robots in the cloud is a good example
of an application requiring low latency parallel processing
with strict guarantees. Current DSPFs [3] are designed to
cater to traditional event processing tasks such as extract
transformation and load (ETL) pipelines, counting, frequent
itemset mining, windowed aggregations and joins or pattern
detection. The above-mentioned novel applications with strict
real-time guarantees demand low-latency synchronous and
asynchronous parallel processing of events, which is not a
fully explored area in DSPFs.

The work in real-time applications in robotics [2], [4] and
research into high performance computing on streaming [3]
highlighted the fact that there are opportunities for further
enhancements in distributed streaming systems. Particularly
in the areas such as low-latency and efficient communication,
scheduling of streaming tasks for predictable performance, and
high-level programming abstractions. This paper focuses on

efficient communication in a DSPF and look at how commu-
nication infrastructure of a DSPF can be improved to achieve
low latency. Previous work has found that inefficient commu-
nication for data distribution operations, such as broadcasting
in current DSPF implementations, are limiting the performance
of parallel applications when the parallelism of the processing
increases. Also, it was identified that communications among
processes inside a node can be improved significantly using
shared memory approaches.

A Distributed streaming application is generally represented
as a graph where nodes are streaming operators and edges are
communication links. Data flow occurs through the edges of
the graph as streams of events. The operators at the nodes
consume these event streams and produce output streams. With
naive implementation, a collective operation such as broadcast
is done through separate communication links (edges) from the
source to each target serially. As shown in various areas such
as MPI [5] and computer networks [6] these communications
can be made efficient by modeling them based on data
structures such as trees.

Apache Storm [1] is an open source distributed stream
processing engine developed for large-scale stream processing.
Its processing model closely resembles the graph-based data
flow model that was described earlier. It is capable of low
latency stream processing and has been used for real-time
applications [2], [4], [7]. This paper presents the results of
the improvements that was made to Apache Storm by imple-
menting several broadcasting algorithms, as well as reducing
communication overhead using shared memory. The under-
lying algorithms used for broadcasting are flat tree, binary
tree and ring. Storm utilizes both process-based and thread-
based parallel execution of stream operators. The tasks of
a Storm streaming application run in different processes in
different nodes. Tasks running in the same process can use
the memory to communicate while those running in separate
processes utilize networks. The communication algorithms are
optimized in consideration of the task locality to improve
network and inter-process communications. To test the system,
a simple stream processing application is used with minimal
processing at the parallel tasks for evaluating the behavior of
the broadcasting algorithms with different data sizes and tasks.

The remainder of this paper is organized as follows: Section
II discusses related work and then Section III presents Apache



Storm architecture in detail. Section IV provides details about
our implementation of broadcasting algorithms and Section V
provides details on shared memory communication improve-
ments in Apache Storm. Experiments and results are discussed
in Section VI and VII. Section VIII presents future work and
Section IX conclude the paper.

II. RELATED WORK

Apart from Apache Storm, there are several other DSPFs
available, each solving specific problems with their own
strengths. Such open source DSPFs include Apache Samza [8],
Apache S4 [9], Apache Flink [10] and Apache Spark Stream-
ing [11], with commercial solutions including Google Mill-
wheel [12], Azure Stream Analytics and Amazon Kinesis.
Early research in DSPFs include Aurora [13], Boreiles [14]
and Spade [15]. Apache Spark Streaming uses micro-batch
jobs on top of its batch engine to achieve streaming compu-
tations while Samza is a storage-first processing framework;
both target high throughput applications rather than low la-
tency applications. Apache Flink is comparable to Storm in
its underlying execution and supports low latency message
processing.

Neptune [16] and Heron [17] improve some of the ineffi-
ciencies of Apache Storm. Heron addresses issues in the task
scheduling, enhances flow control by handling back pressure,
and improves connection management for large applications
and task isolation for better performance in Storm. Neptune
streamlines the throughput of applications by using multiple
threads for processing and efficient memory management.
Apache Flink employs efficient fault tolerance and message
processing guarantee algorithms [18] that are lightweight and
introduce minimal overheads to the normal processing flow
when compared to the upstream backup [19] mechanisms
utilized by DSPFs such as Apache Storm. Further, Nasir
et al. [20] utilize a probabilistic algorithm in Storm’s load
balancing message distribution operator to avoid imbalance
work loads in tasks. Adaptive scheduling [21] improves the
scheduling of Storm by taking into account the communica-
tion patterns among the tasks and Cardellini et al. [22] has
improved scheduling to take QoS into account.

In MPI, operations requiring more than simple P2P com-
munications are termed collective operations. The collective
communications are optimized for HPC applications [5], [23]
in technologies such as MPI. There are many such collective
operations available including Gather, AllGather, Reduce,
AllReduce, Broadcast, Scatter, etc. Multiple communication
algorithms apply to each of these, and their suitability de-
pends on the message size, cluster size, number of processes
and networks. There has been much discussion over various
techniques to choose the best algorithm for a given application
and hardware configuration [24], [25]. Recently collective
communications are being introduced to batch processing
big data solutions requiring rich communication [26], [27].
These improvements have greatly enhanced the performance
of applications implemented on top of these platforms. High
performance interconnects like RDMA [28] are being studied

for MPI applications as well as big data platforms such as
Hadoop [29] and Spark [30] to further reduce the communi-
cation among the processes. Also shared memory communica-
tions [31] are being used for inter-process communications in
MPI applications. This paper investigates how to bring these
improvements to Distributed Stream Processing applications.

III. APACHE STORM

Every DSPF consists of two logical layers identified as the
application layer and the execution layer. The application layer
provides the API for the user to define a stream processing
application as a graph. The execution layer converts this user
defined graph into an execution graph and executes it on a
distributed set of nodes in a cluster.

A. Storm Application Layer

A Storm application called a topology determines the data
flow graph, with streams defining the edges and processing
elements defining the nodes. A stream is an unbounded
sequence of events flowing through the edges of the graph,
and each such event consists of a chunk of data. A node in
the graph is a stream operator implemented by the user. The
entry nodes in the graph acting as event sources to the rest
of the topology are termed Spouts while the rest of the data
processing nodes are called Bolts. The spouts generate event
streams to the topology by connecting to external event sources
such as message brokers. From here onwards we refer to both
spouts and bolts as processing elements (PEs) or operators.
Bolts consume input streams and produce output streams. The
user code inside a bolt executes when an event is delivered to
it on incoming links. The topology defines the logical flow of
data among the PEs in the graph by using streams to connect
PEs. A user can also define the parameters necessary to convert
this user defined graph into an execution graph. The physical
layout of the data flow is mainly defined by the parallelism
of each processing element and the communication strategies
defined among them. This graph is defined by the user who
deploys it to the Storm cluster to be executed. Once deployed,
the topology runs continuously, processing incoming events
until it is terminated by the user. An example topology is
shown in Figure 1 where it has a spout connected to a bolt
by a stream and a second bolt connected to the first bolt by
another stream.

Fig. 1. A sample stream processing user defined graph

B. Storm Execution layer

Storm master (known as Nimbus) converts logical graph
of processing elements to an execution graph by taking the
number of parallel tasks for each logical PE and the stream
grouping III-C into account. For example, Figure 2 displays
an execution graph of the user graph shown in Figure 1 where
two instances of S, three instances of W and one instance of
G are running. The stream grouping between S and W is a



Fig. 2. A sample stream processing execution graph

load balancing grouping where each instance of S distributes
its output to the 3 W instances in a round-robin fashion. A
runtime instance of a node in the execution graph is called a
task.

After converting logical graph to execution graph, master
node takes care of scheduling of the execution graph and also
manages the stream processing applications running in the
cluster. Each slave node runs a daemon called a supervisor,
which is responsible for executing a set of worker processes
which in turn execute the tasks of the execution graph. Tasks
in an execution graph will get assigned to multiple workers
running in the cluster. Figure 3 shows one configuration of
the example topology assigned to two nodes both running two
workers. Each worker can host multiple tasks of the same
graph, and the worker assigned a thread of execution to every
task. If multiple tasks run in the same worker, multiple threads
execute the user codes in the same worker process.

Fig. 3. Storm task distribution in multiple nodes

C. Communication

The communication strategy between two nodes in the user
graph is called stream grouping. A stream grouping defines
how the messages are distributed from one set of parallel
tasks of the first processing element to another set of parallel
tasks of the second processing element. As an example, in
Shuffle grouping, messages are sent from each task of the first
component to all the other tasks of the second component in a
round-robin fashion, thereby achieving load balancing of the
events for the distributed tasks. Other communication strate-
gies include patterns like key-based distributions, broadcasting
and direct message sending.

The default implementation of Apache Storm uses a TCP-
based binary protocol for sending messages between tasks.
Connections are established between worker processes which
carry messages with a destination task ID. Workers then use
this in determining the correct task to deliver their message.
Storm uses Kryo Java object serialization to create byte

messages from the user objects that need to be transferred.
Communication between the tasks running in the same worker
happen through the process memory via object references; no
serialization or deserialization is involved.

This design implies that there is a single TCP port at
which every worker is listening for incoming messages. These
ports are known across the cluster and workers connect to
each other using these ports. The design reduces the number
of connections required for an application. With the default
implementation, the tasks within the nodes also communicate
using TCP, which can be efficient because of the loopback
adapter but can be further improved using shared memory-
based communications.

IV. BROADCAST

Broadcasting is a widely used message distribution strategy
in Apache Storm. Broadcasting involves a task instance send-
ing a message to all the tasks of another node in the user graph.
When this is applied to a continuous stream of messages, the
broadcasting happens continuously for each message. Let’s
assume propagation delay of lt for TCP and ls for processes
inside a node; transmission delay of mt for TCP and ms for for
processes inside a node and there are n nodes participating in
broadcast each having w workers. The default implementation
of Storm serially sends the same message to each task as a
separate message and this method is inefficient due to the
following reasons: 1. Max latency is at least ms × n + lt. 2.
If the message size is M it takes at least M × n network
bandwidth of the broadcasting node. 3. A worker can run
multiple tasks and the same message is sent to the worker
multiple times.

The three algorithms developed reduce deficiencies 1 and
2 mentioned above to varying degrees and eliminate 3 com-
pletely. They use a tree model to arrange the edges of
the broadcast part of execution graph and take advantage
of the fact that communication among the processes in a
single computer is less expensive compared to inter machine
communications. The workers are mapped to nodes of the
tree instead of individual tasks because communication cost
is zero between the tasks running in the same worker due
to in-memory message transfers. To preserve the worker
locality within a node, a machine participating in the broadcast
operation uses at most one incoming message stream and one
outgoing message stream for the broadcasting operation. This
rule reduces the network communication drastically because
it minimizes inter-machine communications and maximizes
intra-node communications. Figure 4 shows an example
message distribution for the broadcast operation with the three
algorithms with 2 machines each running 4 workers.

A. Flat tree

Flat tree algorithm broadcasting has a root level branching
factor equal to the number of nodes with active topology work-
ers participating in the broadcasting operation. This means
the broadcast nodes first send the message to a worker in
each node. After the designated worker in the node receives



Fig. 4. Example broadcasting communications for each algorithm in a 4 node cluster with each machine having 4 workers. The outer green boxes show
cluster machines and inner small boxes show workers. The top box displays the broadcasting worker and arrows illustrate the communication among the
workers

the message, it is distributed to workers running in that node
sequentially or using a binary tree. The max latency observed
by the workers will be n×mt + lt + (w− 1)ms + ls for flat
tree distribution inside the node.

B. Binary Tree

Binary tree algorithms broadcast to two workers in the first
level and these two workers broadcast to another four workers.
When picking the first two workers the algorithm always tries
to use two workers in two nodes. The worker receiving the
messages from upper machine broadcast to an worker inside
its machine and another worker in another machine if there
are such workers and machines available. The algorithm gives
high priority to tasks in the same worker of the broadcast task
and tasks in other workers in the same node in that order.
So the tree always expands through those workers in the first
levels if there are such workers. The max latency will be of
the order log2n× (lt +mt) + log2w(ls + 2ms).

C. Ring

As shown in Figure 4, the ring starts at the broadcast worker
and goes through all the workers participating in the broadcast.
It always connects the workers of a single node first before
reaching to the next node. Two variants of the ring algorithm
are used. In the first variant the ring starts from one node and
ends at the last node connecting all the tasks. In the second
case two communications are started from the root and each
of these connects half of the nodes in the broadcast creating
a bidirectional ring. The broadcast takes the task locality into
account and always starts the ring from tasks running in the
same worker as broadcast tasks and then connects the workers
in the same machine. The ring topology used with a stream
of messages becomes a communication pipeline as incoming
messages are routed through the workers while other messages
transmitted before are still going through the worker. The max
latency will be (w − 1)(ls + ms)n + (n − 1)(lt + mt)n for
full ring and half of this for bidirectional ring.

V. SHARED MEMORY COMMUNICATIONS

DSPFs use TCP messages to communicate within processes
of a machine. Apache Storm, for example, may create up to
(w − 1) ∗ w TCP connections to communicate among tasks
running with w workers in a node. Such communication poses
a significant bottleneck considering the fact that they occur
within a single node. As an efficient alternative, this work

implements a Java shared memory maps-based communication
between intra-node workers.

While Java has built-in support for memory maps, it does
not have consistency guarantees to be used as an inter-
process communication technique. Therefore, we implement
a custom multiple writer-singer-reader styled memory map-
based queuing system. This implementation is safe to use
across multiple platforms and it is possible to use either the file
system or main memory to persist messages. In Linux systems
the special tmpfs directory, usually mounted as /dev/shm,
points to the main memory, which is more efficient than using
a regular file in this queue implementation.

In the shared memory implementation each Storm worker
has a memory mapped file allocated to it with a single reader.
This reader continuously reads its file for new messages
written by workers. The file is written and read using fixed
size message chunks, meaning a message will be broken
into multiple parts during communication. Also, these chunks
include a unique ID and a sequence number to guarantee
correctness and to match messages with the corresponding
writer as it is possible for messages to arrive in a mixed
order due to multiple writers writing to the same file. Figure
6 shows the structure of a packet. Each packet contains a
UUID to identify which message it belongs to, the source
task, destination task, total number of packets and the current
packet number. A multiple part messaging is used because
the file size is fixed and the message sizes do not always fit
the remaining file size. Also multiple writers can write to the
file without waiting for a single writer to finish with a large
message. The implementation was started with open source
shared memory bus 1 and deviated from it because of the
continuous streaming requirements.

The structure of a single file is shown in Figure 5. To
achieve multiple writers, a shared long integer is stored at
the beginning of the file to mark the used space. When a
writer intends to write a packet, it incrementally alters this
field by the packet size atomically and gets the new address.
Then it writes the packet to the allocated space. Because of the
atomic increment of the value, multiple writers can write to
the same file at the same time. When the file limit is reached
the writer allocates a new file and starts writing to that. While
allocating a new file, the writers acquire a lock using another
shared file to prevent multiple writers allocating the same file.

1https://github.com/caplogic/Mappedbus



Fig. 5. The structure of the shared memory file

Fig. 6. The structure of the data packet sent through shared memory

With the current design of Storm, a separate reader has to poll
the file for messages and these are put into a queue where
the processing threads pick the message out. In the future
these two can be combined into one thread for reading and
processing. The source code of the improvements are available
in github repository 2.

VI. EXPERIMENT SETUP

The experiments are conducted on a dedicated cluster using
10 nodes, each having 4 Intel Xeon E7450 CPUs at 2.40GHz
with 6 cores, totaling 24 cores per node; and 48GB main
memory running Red Hat Enterprise Linux Server release
5.11 (Tikanga) OS. The nodes are connected using a 1GB/s
standard Ethernet connection. The nimbus and Zookeeper were
running in one node, 8 Supervisors were running in 8 nodes
each with 4 workers, and RabbitMQ [32] was running in
another node. Each worker was configured to have 2GB of
memory. This configuration creates 32 workers in the 8 nodes.
Our experiments used 32 workers in the system.

Figure 7 shows the topology used for experiments, which
includes a receive spout (S), broadcasting bolt (B), set of
worker bolts (W) and a gather bolt (G). The experiments were
set up to measure the latency and throughput of the application
when message size and number of parallel tasks change. To
measure the latency, a client sends a message to the spout R
using RabbitMQ including the message generation time. Then
this message is broadcast to N worker bolts W by broadcast
bolt B and they send these messages to Gather bolt G. Finally
the message is transmitted back to the client with the original
timestamp and round trip time is calculated. Using this setup
we avoid time measurements across different machines which
can be inaccurate due to time skew. To measure number of
messages transferred per second using the broadcast operation,
bolt B generated a set of messages and sent them through W
to G at which point G measured the time it takes to completely
receive the messages.

Two sets of experiments are conducted with TCP-based and
shared memory-based messaging. All the latency results are

2https://github.com/iotcloud/jstorm

for round trip latency, and theoretically a constant including
the message broker overhead should be subtracted from la-
tency to get the true time, but since this is constant for all
the experiments and because we are comparing the results of
previous and new implementations, we did not consider this
cost.

Fig. 7. Storm application graph

VII. RESULTS & DISCUSSION

The first experiment was conducted to measure the effect
of memory mapped communications compared to the default
TCP communications among the worker processes in a node.
A topology with a communication going from worker to
worker sequentially was used to measure the difference be-
tween the two. The communication connects the workers in
one node and then connects to a worker in another node. All
the workers in the Storm cluster were used for the experiment.
The difference between the TCP latency and memory mapped
latency is shown in Figure 8. Figure 8 shows the latency
observed with the default TCP implementation. With only
10 tasks running in parallel and 32 workers available in
8 nodes, 6 nodes will have 1 task each and 2 nodes will
have 2 tasks apiece. This means the use of memory mapped
communication is minimal with only 10 tasks. Because of this
the difference between the two communications is practically
zero. When increasing the number of tasks and the message
size beyond 10K, it is clear from Figure 8 that we are gaining
significant latency improvement by using memory mapped
files, especially when the number of tasks increases. Beyond
30 parallel tasks all the workers in the cluster are used by the
topology, and because in-memory messaging is used between



0 20 40 60 80 100 120 140 160 180 200
Message Size (KB)

0

2

4

6

8

10

12

14

(T
C

P
 -

 S
h
a
re

d
 M

e
m

o
ry

) 
T
im

e
 (

m
s)

Difference (TCP - SHM) time (b)

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180 200
Message Size (KB)

0

10

20

30

40

50

60

T
C

P
 T

im
e
 (

m
s)

TCP Time (a)

10

20

30

40

50

60

Fig. 8. Relative Importance of Shared Memory Communication compared to TCP in a broadcasting ring, (a) The time for TCP communications. (b) Y-axis
shows the difference in latency for TCP implementation and shared memory implementation (TCP - SHM)

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

ti
m

e
 (

m
s)

Serial Implementation (a)

10

30

60

0 20 40 60 80 100 120 140 160 180 200
Message Size (KB)

0

1

2

3

4

S
e
ri

a
l 
T
im

e
 /

 B
in

a
ry

 T
im

e

Binary Implementation (c)

10-TCP

30-TCP

60-TCP

10-SHM

30-SHM

60-SHM

0 20 40 60 80 100 120 140 160 180 200
Message Size (KB)

0

1

2

3

4

S
e
ri

a
l 
T
im

e
 /

 F
la

tt
 T

re
e
 T

im
e

Flat Tree Implementation (d)

10-TCP

30-TCP

60-TCP

10-SHM

30-SHM

60-SHM

0 20 40 60 80 100 120 140 160 180 200
Message Size (KB)

0

1

2

3

4

S
e
ri

a
l 
T
im

e
 /

 B
i-

d
ir

e
ct

io
n
a
l 
R

in
g
 T

im
e

Bidirectional Ring Implementation (b)

10-TCP

30-TCP

60-TCP

10-SHM

30-SHM

60-SHM

Fig. 9. Latency of serial, binary tree, flat tree and bi-directional ring implementations. Different lines show varying parallel tasks with TCP communications
and shared memory communications(SHM).

the tasks inside a worker there is practically no difference
between latency for 30 and 60 tasks.

Figure 9b, 9c and 9d shows the gain in latency with
bidirectional ring, binary tree and flat tree-based broadcasting
algorithms, compared to the default serial implementation
latency shown in Figure 9a. The Y-axis of the graphs
shows the improvements made compared to serial time, i.e.
Serialtime/Improvedtime. The binary tree algorithm per-
forms the best among the three with about 5 times latency
gain compared to the default algorithm for small message sizes
which are most common in distributed streaming processing
applications. Shared memory implementations show a further
decrease in latency compared to the default TCP implementa-
tion for communications in a single node. The ring topology
has the least latency decrease and flat tree falls between binary

tree and ring. The effect of shared memory improvements are
less for binary tree and flat tree compared to ring because they
are dominated mostly by the TCP communication among the
nodes.

Figure 9 shows the arithmetic average latency of the
topology. By looking at the distribution of individual latencies
observed in the serial implementation and improved versions
as shown in Figure 11, we concluded that there is no significant
change in the latency distributions after applying the algo-
rithms. It was observed that the variations in latency are mostly
due to Java garbage collections and the original and improved
results do not show any significant deviation in distribution
due to that fact.

Figure 9 shows a micro-benchmark for broadcasting opera-
tion with default throughput 10a and ring 10b, binary tree 10c



20 40 60 80 100
Message Size (KB)

0

500

1000

1500

2000

2500

3000

3500

4000

M
e
ss

a
g
e
s 

/ 
S
e
cs

Serial Implementation (a)

10

30

60

20 40 60 80 100
Message Size (KB)

0

500

1000

1500

2000

2500

3000

3500

4000

M
e
ss

a
g
e
s 

/ 
S
e
cs

Binary Tree Implementation (c)

10-TCP

30-TCP

60-TCP

10-SHM

30-SHM

60-SHM

20 40 60 80 100
Message Size (KB)

0

500

1000

1500

2000

2500

3000

3500

4000

M
e
ss

a
g
e
s 

/ 
S
e
cs

Flat Tree Implementation (d)

10-TCP

30-TCP

60-TCP

10-SHM

30-SHM

60-SHM

20 40 60 80 100
Message Size (KB)

0

500

1000

1500

2000

2500

3000

3500

4000

M
e
ss

a
g
e
s 

/ 
S
e
cs

Ring Implementation (b)

10-TCP

30-TCP

60-TCP

10-SHM

30-SHM

60-SHM

Fig. 10. Throughput of serial, binary tree, flat tree and ring implementations. Different lines show varying parallel tasks with TCP communications and shared
memory communications (SHM)

2 1 0 1 2 3 4 5
Normalized latency

0

5

10

15

20

25

30

35

Pe
rc

en
ta

ge
 m

es
sa

ge
s 

%

Distribution
serial
binary tree
bidirectional ring
flat tree

Fig. 11. The distribution of message latencies for 100K messages with 60
tasks. The X-axis shows normalized latencies and Y-axis shows the percentage
of messages observed for a latency

and flat tree 10d throughput. As expected the ring topology
performs the best compared to the other algorithms. The
shared memory latency has minimal effect to the throughput
because it is dominated by the TCP connections between
the nodes. In the ring implementation the throughput for 60
parallel tasks is about half of 30 and 10 parallelism. With 0
parallelism, one worker hosts two worker tasks. These two
worker tasks needs to send the same message they receive to
the gather bolts, resulting in the low throughput. This effect

is not seen in the other algorithms because the network is
saturated at the broadcast worker.

VIII. FUTURE WORK

The algorithm selection for the collective operation has to
be done manually considering the message size and required
behavior of the application. This process can be automated
and the framework can choose the collective algorithms at
the runtime. Making scheduling decisions while taking into
account the communication algorithms can further improve
the latency. Both process-based parallelism and thread-based
parallelism are used in a loose way in DSPFs using a few
threads at different stages for processing a single message.
Some threads are shared among all the tasks running in the
worker and some are dedicated to specific tasks. This model
makes it hard to analyze the performance of the applications
in a deterministic way when the number of tasks increases
and especially when tasks perform different functions. A
better model is needed for those applications which demand
deterministic processing with clear bounds on latency. Fur-
thermore the communications supported by the DSPFs do not
include rich communication operations such as scatter, gather,
and barrier needed for true parallel streaming computations.
Investigating how to incorporate such operations to DSPFs
would be a great addition.

IX. CONCLUSION

The results show significant performance improvements in
Apache Storm when applying collective algorithms for stream-



ing applications along with shared memory-based communi-
cations. The algorithms implemented take the worker distri-
bution and nature of the parallelism of streaming applications
into account. Binary tree algorithm showed the best latency
for a reasonable range of message sizes with both shared
memory messaging and TCP messaging. The shared memory
improvements are important specially with the advancement
of processor technology that increasingly adds many cores
into a single chip. Throughput is best when using the ring
algorithms and no significant gains are shown in throughput
with shared memory messaging because of the dominance
of TCP communication. Bidirectional ring is a compromise
between the throughput and latency for applications requiring
both. The techniques described in this paper are not limited
to Storm and are equally applicable to other DSPFs.

ACKNOWLEDGMENT

This work was partially supported by NSF CIF21 DIBBS
1443054 and AFOSR FA9550-13-1-0225 awards. We would
also like to express our gratitude to the staff and system
administrators at the Digital Science Center (DSC) at Indiana
University for supporting us on this work.

REFERENCES

[1] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham et al., “Storm@ twitter,”
in Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. ACM, 2014, pp. 147–156.

[2] S. Kamburugamuve, H. He, G. Fox, and D. Crandall, “Cloud-based
Parallel Implementation of SLAM for Mobile Robots.”

[3] S. Kamburugamuve, G. Fox, D. Leake, and J. Qiu, “Survey of dis-
tributed stream processing for large stream sources,” Technical re-
port. 2016. Available at http://dsc.soic.indiana.edu/publications/ sur-
vey distributed stream frameworks.pdf, Tech. Rep., 2016.

[4] H. He, S. Kamburugamuve, and G. C. Fox, “Cloud based real-time
multi-robot collision avoidance for swarm robotics.”

[5] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel,
and J. J. Dongarra, “Performance analysis of MPI collective operations,”
Cluster Computing, vol. 10, no. 2, pp. 127–143, 2007.

[6] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides, “On the con-
struction of energy-efficient broadcast and multicast trees in wireless
networks,” in INFOCOM 2000. Nineteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEE,
vol. 2. IEEE, 2000, pp. 585–594.

[7] S. Kamburugamuve, L. Christiansen, and G. Fox, “A Framework for
Real Time Processing of Sensor Data in the Cloud,” Journal of Sensors,
vol. 2015, 2015.

[8] “Apache Samza,” https://samza.apache.org/, accessed: 2016.
[9] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed

stream computing platform,” in Data Mining Workshops (ICDMW), 2010
IEEE International Conference on. IEEE, 2010, pp. 170–177.

[10] “Apache Flink,” https://flink.apache.org/, accessed: 2016.
[11] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,

“Discretized streams: Fault-tolerant streaming computation at scale,”
in Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles. ACM, 2013, pp. 423–438.

[12] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, and S. Whittle, “Millwheel: fault-
tolerant stream processing at internet scale,” Proceedings of the VLDB
Endowment, vol. 6, no. 11, pp. 1033–1044, 2013.

[13] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: a new model
and architecture for data stream management,” The VLDB JournalThe
International Journal on Very Large Data Bases, vol. 12, no. 2, pp.
120–139, 2003.

[14] “The Design of the Borealis Stream Processing Engine., author=Abadi,
Daniel J and Ahmad, Yanif and Balazinska, Magdalena and Cetintemel,
Ugur and Cherniack, Mitch and Hwang, Jeong-Hyon and Lindner,
Wolfgang and Maskey, Anurag and Rasin, Alex and Ryvkina, Esther
and others, booktitle=CIDR, volume=5, pages=277–289, year=2005.”

[15] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and M. Doo, “SPADE: the
system s declarative stream processing engine,” in Proceedings of the
2008 ACM SIGMOD international conference on Management of data.
ACM, 2008, pp. 1123–1134.

[16] T. Buddhika and S. Pallickara, “NEPTUNE: Real Time Stream Process-
ing for Internet of Things and Sensing Environments.”

[17] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter Heron: Stream
Processing at Scale,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. ACM, 2015, pp.
239–250.

[18] P. Carbone, G. Fóra, S. Ewen, S. Haridi, and K. Tzoumas, “Lightweight
Asynchronous Snapshots for Distributed Dataflows,” arXiv preprint
arXiv:1506.08603, 2015.

[19] J.-H. Hwang, M. Balazinska, A. Rasin, U. Çetintemel, M. Stonebraker,
and S. Zdonik, “High-availability algorithms for distributed stream
processing,” in Data Engineering, 2005. ICDE 2005. Proceedings. 21st
International Conference on. IEEE, 2005, pp. 779–790.

[20] M. A. U. Nasir, G. D. F. Morales, D. Garcı́a-Soriano, N. Kourtel-
lis, and M. Serafini, “The Power of Both Choices: Practical Load
Balancing for Distributed Stream Processing Engines,” arXiv preprint
arXiv:1504.00788, 2015.

[21] L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive online scheduling
in storm,” in Proceedings of the 7th ACM international conference on
Distributed event-based systems. ACM, 2013, pp. 207–218.

[22] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Distributed QoS-
aware scheduling in storm,” in Proceedings of the 9th ACM International
Conference on Distributed Event-Based Systems. ACM, 2015, pp. 344–
347.

[23] G. Almási, P. Heidelberger, C. J. Archer, X. Martorell, C. C. Erway,
J. E. Moreira, B. Steinmacher-Burow, and Y. Zheng, “Optimization of
MPI collective communication on BlueGene/L systems,” in Proceedings
of the 19th annual international conference on Supercomputing. ACM,
2005, pp. 253–262.

[24] A. Faraj and X. Yuan, “Automatic generation and tuning of MPI
collective communication routines,” in Proceedings of the 19th annual
international conference on Supercomputing. ACM, 2005, pp. 393–402.

[25] A. Faraj, X. Yuan, and D. Lowenthal, “STAR-MPI: self tuned adaptive
routines for MPI collective operations,” in Proceedings of the 20th
annual international conference on Supercomputing. ACM, 2006, pp.
199–208.

[26] B. Zhang, Y. Ruan, and J. Qiu, “Harp: Collective communication
on hadoop,” in IEEE International Conference on Cloud Engineering
(IC2E) conference, 2014.

[27] T. Gunarathne, J. Qiu, and D. Gannon, “Towards a Collective Layer in
the Big Data Stack,” in Cluster, Cloud and Grid Computing (CCGrid),
2014 14th IEEE/ACM International Symposium on. IEEE, 2014, pp.
236–245.

[28] J. Liu, J. Wu, and D. K. Panda, “High performance RDMA-based
MPI implementation over InfiniBand,” International Journal of Parallel
Programming, vol. 32, no. 3, pp. 167–198, 2004.

[29] X. Lu, N. S. Islam, M. Wasi-Ur-Rahman, J. Jose, H. Subramoni,
H. Wang, and D. K. Panda, “High-performance design of Hadoop RPC
with RDMA over InfiniBand,” in Parallel Processing (ICPP), 2013 42nd
International Conference on. IEEE, 2013, pp. 641–650.

[30] X. Lu, M. W. U. Rahman, N. Islam, D. Shankar, and D. K. Panda,
“Accelerating spark with RDMA for big data processing: Early expe-
riences,” in High-Performance Interconnects (HOTI), 2014 IEEE 22nd
Annual Symposium on. IEEE, 2014, pp. 9–16.

[31] R. L. Graham and G. Shipman, “MPI support for multi-core architec-
tures: Optimized shared memory collectives,” in Recent Advances in
Parallel Virtual Machine and Message Passing Interface. Springer,
2008, pp. 130–140.

[32] A. Videla and J. J. Williams, RabbitMQ in action. Manning, 2012.


