High Performance Processing of Streaming Data

Supun Kamburugamuve, Milinda Pathirage, Saliya Ekanayake and Geoffrey C. Fox
School of Informatics and Computing, Indiana University

I. OVERVIEW

With recent advancements in cloud-based technologies
and the Internet of Things, there is an emergent class
of applications where real-time computing requirements of
mobile robots and other IoT related devices are offloaded
to clouds in order to improve mobility of the devices and
accuracy of computing tasks. Due to the event-based nature
of these applications, modern distributed stream processing
frameworks (DSPF) such as Apache Storm provide an effec-
tive platform to meet their needs. A good example is a par-
allel real time distributed streaming algorithm implementing
simultaneous localization and mapping (SLAM) for mobile
robots [1] in the cloud. This algorithm requires low latency
parallel processing with strict guarantees. Current DSPFs are
designed to cater to traditional event processing tasks, such
as extract transformation and load (ETL) pipelines, counting,
cardinality estimation, frequent itemset finding, windowed
aggregations and joins or pattern detections. The above-
mentioned novel applications with strict real time guarantees
demand support for low latency synchronous and asyn-
chronous parallel processing of events, requiring efficient
broadcast and gathering of data streams. Our research into
high performance computing on streaming data has found
that the lack of efficient communication for data distribution
operations like broadcasting in current DSPF implementa-
tions is limiting the performance of these applications when
the parallelism of the processing increases.

Distributed streaming applications are generally defined
as a directed graph where process elements are connected
through edges. Data flow occurs through the edges of the
directed graph as streams of events. With naive implemen-
tations, a collective operation such as broadcast happens
through separate communication links (edges) from the
source to each target. Such communications can be made
efficient by modeling them based on data structures such as
trees. In the last couple of decades, different broadcasting
algorithms have been perfected for HPC applications using
technologies like MPI. In this work we propose to remodel
these algorithms to improve broadcasting for DSPFs consid-
ering attributes of the special class of streaming algorithms
mentioned above and those of cloud runtime environments.

We implemented several broadcasting algorithms for an
open source fork of a DSPF called Apache Storm. The
primary algorithms we implement are flat tree with node-
based variation, binary tree and pipeline. Storm utilizes
both process based and thread based parallel execution of
events. The tasks of a Storm streaming application run in

different processes in different nodes. Tasks running in the
same process can use the memory to communicate, while
others running in different processes utilize networks. The
communication algorithms are optimized to consider the
task locality in order to improve network and interprocess
communications. To test the system we use the SLAM
streaming algorithm mentioned above and a simple stream
processing application with synchronous and asynchronous
processing at the parallel tasks for evaluating the behavior
of the broadcasting algorithms with different data sizes and
nodes. The tests are conducted on an OpenStack-based cloud
test bed and a HPC cluster.

II. EVALUATION

We evaluated an initial implementation of proposed im-
provements on a cluster of four nodes with each node hosting
four Storm workers. We observed about 10% reduction of
end-to-end latency when the payload size was more than
S50KB. Our streaming application consists of a single data
source, a single broadcaster, 30 workers and a single gatherer
in a DAG as shown below:

worker

broadc

RabbitMQ source et

gather

worker

III. CONCLUSION

Our preliminary results in Section II shows that these
algorithms are a viable solution for improving latencies
for real-time applications. We also observed that there is
room for improvement to further reduce latencies and net-
work overhead by incorporating techniques such as memory-
mapped file-based communications.

REFERENCES

[1] Kamburugamuve, Supun, Hengjing He, Geoffrey Fox, and David
Crandall. ”Cloud-based Parallel Implementation of SLAM for Mobile
Robots.”

[2] Storm, Apache. “Storm, Distributed and Fault-Tolerant Real-time
Computation.” (2014)

[3] Pjeivac-Grbovi, Jelena, Thara Angskun, George Bosilca, Graham E.
Fagg, Edgar Gabriel, and Jack J. Dongarra. "Performance analysis of
MPI collective operations.” Cluster Computing 10, no. 2 (2007): 127-
143.



