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1. Introduction 
As standards such as SOAP 1.2, WSDL 2.0, and WS-Addressing become widely implemented and 
deployed, the initial concepts and implementations of Web Services as “remote procedure calls for the 
Web” are giving way to a more message-oriented, service-oriented approach.  Such systems place an 
emphasis on managing secure, reliable messages that may be delivered in any number of ways across 
multiple routing SOAP intermediaries.    
 
As we discuss in this article, all communications in SOA-based systems are messages.  Further, a 
powerful way to implement these systems is to place the service “islands” on a software-level messaging 
substrate that implements efficient routing, security, reliability and other qualities of service.  As we will 
show, such systems support messages of all types, from infrequent update notification events to 
continuous streams. We suggest that in the complex evolving technology scene today, not only services 
but their collection into systems of higher functionality should be as decoupled as possible in architecture 
and tight timing constraints. This we call the principle of building “Grids of Grids of Simple Services” 
 
Many important Grid applications in real-time data mining involve all of these message types.  We 
discuss a GIS (Geographical Information System) example from our SERVOGrid (Solid earth Research 
Virtual Observatory) work that uses the NaradaBrokering messaging system for managing data streams 
from GPS stations.  We are in the process of connecting these to RDAHMM, a time series data analysis 
program useful for mode change detection.  These streaming services form one sub-Grid in the “Grid of 
Grids” system supporting solid earth science and also containing (sub)-Grids involving code execution 
services and information/metadata services.   
 

2. Service Oriented Architectures for Grids 
With the advent of the Open Grid Computing Architecture (OGSA) [1] and the UK e-Science program, 
Grid computing has aligned itself with Web Service standards activities: Grid infrastructure will be Web 
Service infrastructure, although the aggressiveness in developing and adopting extensions is a matter of 
debate.  The current general consensus is that Web and Grid Services should follow Service Oriented 
Architecture (SOA) principles, such as discussed by the World Wide Web Consortium’s Web Service 
Architecture working group. We summarize key SOA features as follows, following Ref. [2]: 

1. SOAs are composed of services that present programmatic access to resources to remote client 
applications. Typical basic (atomic) services include data access (logically wrapping storage 
technologies such as databases and file systems) and the ability to run and manage remote 
applications.  More complicated services may be composed of these basic services using 
workflow expression languages coupled with workflow engines. 

2. Services communicate using messages.  Messages are usually encoded using SOAP [26].  The 
asynchronous nature of messaging is one of the keys to Grid and Web Service scalability beyond 
the intranets. 

3. SOAs are metadata rich.  We must describe service interfaces, provide descriptions of services so 
that we know how to use them, provide look-up registries to find service URLs, and so forth. 

Much debate has gone into refining concepts such as stateful conversations and stateful resources 
accessed through services [3].  However, we believe that the other two characteristics, messaging and 
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metadata, have been somewhat overlooked.  In this paper, we are particularly interested in the messaging 
infrastructure needed to realize such things as the SOAP message processing model (particularly in 
SOAP 1.2), which allows for multiple intermediaries that will need to process header information 
required by WS-Addressing and WS-Security.  
 
These issues have direct relevance to scientific Grid applications, which need to go beyond remote 
procedure calls in client-server interactions to support integrated distributed applications that couple 
databases, high performance computing codes, and visualization codes with real time streaming data [4, 
5].  These coordinated, composite applications are asynchronous by their nature: applications may take 
hours or days to complete.  Message-based Grids, events, and service coordination are not just abstract 
Grid research issues: they are needed to meet the requirements of real science application Grids, as we 
discuss below.    
 
In our discussion of these topics, we emphasize the message orientation of SOAs and Web Service Grids.  
Messages may range from infrequent notification events to remote method invocations/responses to 
streaming data.  Various Web Service specifications (Sections 2 and 3) are intended to provide the 
underpinnings of such a system, allowing for asynchronous communication, reliability, message routing, 
and security.  We discuss our implementation of these specifications on top of NaradaBrokering, a 
general purpose messaging software substrate (Sections 4 and 5).  The implication of SOA principles is 
that service implementations will proliferate in various domains, which may be composed in various 
ways for specific applications.  We have dubbed this composition of services as a “Grid of Grids,” 
discussed in Section 6.  Finally, in Sections 7 and 8 we present an example application within a Grid of 
Grids: streaming data control of GPS stations to support real-time data mining. 
 

3. Messaging in Web/Grid Environments  
Messaging is a fundamental primitive in distributed systems. Entities communicate with each other 
through the exchange of messages, which can encapsulate information of interest such as application 
data, errors and faults, system conditions, search and discovery of resources. A related concept is that of 
notifications where entities receive messages based on their registered interest in certain occurrences or 
situations. Messaging and notifications are especially important in the Service Oriented Architecture 
(SOA) model engendered by Web Services. Here, Web Services interact with each other through the 
exchange of messages.  
 
In this section, we first discuss message exchange patterns and also briefly review two specifications in 
the area of notifications. There are two main entities involved in a notification: the source which is the 
generator of notifications and the sink which is interested in these notifications. A sink first needs to 
register its interest in a situation, this operation is generally referred to as a subscribe operation. The source 
first wraps occurrences into notification messages. Next, the source checks to see if the message satisfies 
the constraints specified in the previously registered subscriptions. If so, the source routes the message to 
the sink. This routing of the message from the source to the sink is referred to as a notification. It should 
be noted that there could be multiple sources and sinks within the system. Furthermore, each sink could 
register its interests with multiple sources, while a given source can manage multiple sinks. The 
complexity of the subscriptions registered by a sink could vary from simple strings such as 
“Weather/Warnings” to complex XPath or SQL queries.  Some application examples are given in Section 
8. 
 
We take the point of view that all communications within an SOA-based Grid should be treated as 
messages.  This applies equally well to event notifications as to data streams.  The capabilities of the 
messaging substrate, and the associated Web Service standards that define qualities of service, may be 
applied equally to all of these messages. 
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3.1 WSDL Message Exchange Patterns  
Messaging is fundamental to Web Services, and WSDL [6], which describes these services, facilitate the 
description of various message exchange patterns (hereafter MEP) that are possible between service 
endpoints. Since these MEPs are defined to be part of the WSDL document, any node wishing to interact 
with the service knows both the sequence and the cardinality of messages associated with a given WSDL 
operation. WSDL 1.1 defined a basic set of MEPs; this has been expanded upon in WSDL 2.0. 
 
WSDL 1.1 describes four MEPs defining the sequence and cardinality of abstract messages –- In, Out, 
Fault – that are part of a WSDL operation. The MEPs governing the exchanges between a service S and a 
node N are one-way, request/response, notification and solicit. A one-way message comprises a single Out 
message from a service S to node N. A request/response comprises an In message sent by a node N that 
is followed by an Out message by the service S. The notification MEP is simply an Out message from a 
service S to a node N. Finally, a solicit MEP is an Out message from service S followed by an In message 
from node N. It must be noted that the Out message in the notification MEP and the In message in the 
solicit MEP can also be a Fault message. 

 
WSDL 2.0 has defined 4 additional MEPs Robust In-Only, In-Optional-Out, Robust Out-Only and Out-
Optional-In which are extensions to the four MEPs that were defined in WSDL 1.1. These patterns occur 
because of the new fault propagation rules that are part of WSDL 2.0. The MEPs with the optional tag 
within them are patterns that comprise one or two messages, with the second message being a Fault that 
was triggered because of the first message in the pattern. The MEPs with the robust tag within them are 
patterns with exactly one message, however a fault may be triggered because of the first message. 
 

3.2 WS-Eventing  
Figure 3 depicts the chief components in WS-Eventing [7] a specification from Microsoft and IBM. When 
the sink subscribes with the source, the source includes information regarding the subscription manager 
in its response. Subsequent operations –- such as getting the status of, renewing and unsubscribing –- 
pertaining to previously registered subscriptions are all directed to the subscription manager. The source 
sends both notifications and a message signifying the end of registered subscriptions to the sink.  

 
Figure 1: WS-Eventing - Chief components 

 
 

3.3 WS-Notification 
The WS-Notification specification refers to a set of specifications comprising WS-BaseNotification [8], 
WS-Brokered Notification [9] and WS-Topics [10]. WS-BaseNotification standardizes exchanges and 
interfaces for producers and consumers of notifications. WS-Brokered Notification facilitates the 
deployment of Message Oriented Middleware (MOM) to enable brokered notifications between 
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producers and consumers of the notifications. WS-Topics deals with the organization of subscriptions 
and defines dialects associated with subscription expressions; this is used in the conjunction with 
exchanges that take place in WS-BaseNotification and WS-Brokered Notification. WS-Notification 
currently also uses two related specifications from the WSRF specification; WS-ResourceProperties [11] to 
describe data associated with resources, and WS-ResourceLifetime [12] to manage lifetimes associated 
with subscriptions and publisher registrations (in WS-BrokeredNotifications).  

 
 

Figure 2: WS-BaseNotification - Chief components 
 
Figure 1 depicts the chief components of the WS-BaseNotification specification. Also, depicted in this 
figure are the interactions (along with the directions) that these components have with each other. In WS-
BaseNotification, a subscriber registers a consumer with a producer, which in turn includes information 
regarding the subscription manager in its response. Consumers can pause and resume subscriptions, with 
no messages being delivered while the subscription is in a paused state. Resumption of subscriptions 
after a pause can entail replay of all notifications that occurred in the interim. After a disconnect, either 
due to a scheduled downtime or failure, a consumer may also retrieve the last message issued by a 
producer. Finally, notifications from the producer are issued directly to the consumer. In WS-Notification 
each subscription is considered to be a resource (more appropriately a WS-Resource [13]). A consumer 
can use WS-ResourceLifetime or WS-ResourceProperties to manage lifetimes and properties associated 
with these subscriptions. 
 

 
Figure 3: WS-BrokeredNotification - Chief components 

 
Figure 2 depicts the chief components of the WS-BrokeredNotification specification. The notification 
broker interface performs the function of an intermediary between the producers and consumers of 
content. The broker is responsible for managing the subscriptions and also for routing the notifications to 
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the subscriber. Furthermore, the broker also maintains a topic space (based on the WS-Topics 
specification) that allows consumers to review the list of topics to which publishers publish. It should be 
noted that each topic is also a resource and can be inspected for its properties such as dialect and topic 
expressions. 
 

4. Reliable Messaging in Web/Grid Environments 
As web services have become dominant in the Internet and Grid systems landscape, a need to ensure 
guaranteed delivery of interactions (encapsulated in messages) between services has become increasingly 
important. This highly important and complex area was previously being addressed in the Web Services 
community using homegrown, proprietary, application specific solutions. It should be noted that the 
terms guaranteed delivery and reliable delivery tend to be used interchangeably to signify the same 
concept.  
Reliable delivery of messages is now a key component of the Web Services roadmap, with two promising, 
and competing, specifications in this area viz. WS-Reliability (hereafter WSR) [14] from OASIS and WS-
ReliableMessaging  (hereafter WSRM) [15] from IBM and Microsoft among others 
 

4.1 WS-ReliableMessaging and WS-Reliability 
The specifications – WSR and WSRM – both of which are based on XML, address the issue of ensuring 
reliable delivery between two service endpoints. Both the specifications use positive acknowledgements 
to ensure reliable delivery. This in turn implies that error detections, initiation of error corrections and 
subsequent retransmissions of “missed” messages can be performed at the sender side. A sender may 
also proactively initiate corrections based on the non-receipt of acknowledgements within a pre-defined 
interval. WSRM also incorporates support for negative acknowledgements which facilitates sender side 
error corrections. 
 
The specifications also address the related issues of ordering and duplicate detection of messages issued 
by a source. A combination of these issues can also be used to facilitate exactly once delivery. Both the 
specifications facilitate guaranteed exactly-once delivery of messages, a very important quality of service 
that is highly relevant for transaction oriented applications; specifically banking, retailing and e-
commerce. 
 
Both the specifications also introduce the concept of a group (also referred to as a sequence) of messages. 
All messages that are part of a group of messages share a common group identifier. The specifications 
explicitly incorporate support for this concept by including the group identifier in protocol exchanges 
that take place between the two entities involved in reliable communications. Furthermore, in both the 
specifications the qualities of service constraints that can be specified on the delivery of messages are 
valid only within a group of messages, each with its own group identifier. 
The specifications also introduce timer based operations for both messages (application and control) and 
group of messages. Individual and group of messages are considered invalid upon the expiry of timers 
associated with them. Finally, the delivery protocols in the specifications also incorporate the use of 
timers to initiate retransmissions and to time out retransmission attempts. 
 
In terms of security both the specifications aim to leverage the WS-Security [16] specification, which 
facilitates message level security. Message level security is independent of the security of the underlying 
transport and facilitates secure interactions over insecure communication links. 
The specifications also provide for notification and exchange of errors in processing between the 
endpoints involved in reliable delivery. The range of errors supported in these specifications can vary 
from an inability to decipher a message’s content to complex errors pertaining to violations in implied 
agreements between the interacting entities. 
 



 6

5. Messaging Infrastructures for SOA  
The SOAP processing model supports a general purpose messaging strategy of multiple, distributed 
SOAP processing nodes that can act as intermediaries, routing nodes, and final destinations.  This model 
goes well beyond the standard client-server, remote procedure call methodology that many current Web 
Service implementations use.  In this section, we review the general requirements for building a message 
oriented middleware (MoM) that will realize the SOAP processing model as well as several Web Service 
extensions. A more detailed discussion of these topics is given in [17].  Such middleware messaging 
substrates may, in addition, provide additional levels of support that are logically separate from services 
and messages, such as performance, fault tolerance, and reliability. The Community Grids Lab has for 
several years been developing a messaging substrate NaradaBrokering [18]-24.  NaradaBrokering is an 
open-source, distributed messaging infrastructure. The smallest unit of this distributed messaging 
infrastructure intelligently processes and routes messages, while working with multiple underlying 
communication protocols. We refer to this unit as a broker. In NaradaBrokering communication is 
asynchronous and the system can support different interactions by encapsulating them in specialized 
messages, which we call events. Events can encapsulate information pertaining to transactions, data 
interchange, method invocations, system conditions and finally the search, discovery and subsequent 
sharing of resources. NaradaBrokering places no constraints on the size, rate, or scope of the interactions 
encapsulated within these events or the number of entities present in the system.  
 
In NaradaBrokering we impose a hierarchical, cluster-based structure on the broker network [19]. This 
cluster-based architecture allows NaradaBrokering to support large heterogeneous client configurations. 
The routing of events within the substrate is very efficient [21] since for every event, the associated 
targeted brokers are usually the only ones involved in disseminations. Furthermore, every broker, either 
targeted or en route to one, computes the shortest path to reach target destinations while eschewing links 
and brokers that have failed or have been failure-suspected. 
 
5.1 Services within Messaging Infrastructures 
In messaging systems, entities should be able to specify constraints on the Quality of Service (QoS) 
related to the delivery of messages. The QoS pertain to the reliable delivery, order, duplicate elimination, 
security and size of the published events and their encapsulated payloads. We have researched these 
issues for delivery [22] of events to authorized/registered entities.  The delivery guarantee is satisfied in 
the presence of both link and node failures. Entities are also able to retrieve events that were missed 
during failures or prolonged disconnects. The scheme also facilitates exactly-once ordered delivery of 
events.  
 
5.1.1 Reliable Delivery Service and Replay of events 
The NaradaBrokering substrate’s reliable delivery guarantee holds true in the presence of four 
conditions.  
1. Broker and Link Failures: The delivery guarantees are satisfied in the presence of individual or 

multiple broker and link failures. The entire broker network may fail. Guarantees are met once the 
broker network (possibly a single broker node) recovers.  

2. Prolonged Entity disconnects: After disconnects an entity can retrieve events missed in the interim.  
3. Stable Storage Failures: The delivery guarantees must be satisfied once the storage recovers.  
4. Unpredictable Links: Events can be lost, duplicated or re-ordered in transit over individual links. 
The scheme also facilitates ordered and exactly once delivery of events. More recently the reliable delivery 
framework has been extended to incorporate support for multiple replications. Any of these replicas 
could be used for recovery from failures or to ensure reliable delivery. The replicas themselves may fail 
and a recovering replica arrives at a consistent after exchanging a series of control messages with the 
other replicas.  
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The NaradaBrokering reliable delivery scheme has been extended to provide support replays of events. A 
variety of replay requests formats are supported. Furthermore, a time differential service which preserves 
the time-spacing between successive events in the replay is also available. 
 
5.1.2 Dealing with large payload sizes: Compression/Fragmentation 
Web Service messaging systems that support science Grids should provide a means for managing very 
large data transmissions.  Compression and decompression are obviously desirable capabilities. 
Additionally, message fragmentation/coalescence can be used to verify completed and uncorrupted large 
transmissions, and also support partial re-transmissions in the case of failures.  The latter efficiently 
eliminates the need to re-transmit the entire message in the case of a few incorrectly delivered fragments.  
Fragmentation also allows for parallel transmission within the MoM. 
 
This capability in tandem with the reliable delivery service was used to augment GridFTP to provide 
reliable delivery of large files across failures and prolonged disconnects. The recoveries and 
retransmissions involved in this application are very precise. Additional details can be found in Ref [23].  
Here, we had a proxy collocated with the GridFTP client and the GridFTP server. This proxy, a 
NaradaBrokering entity, utilizes NaradaBrokering’s fragmentation service to fragment large payloads (> 
1 GB) into smaller fragments and publish fragmented events. Upon reliable delivery at the server-proxy, 
NaradaBrokering reconstructs original payload from the fragments and delivers it to the GridFTP server.  
 
5.1.3 Time and Buffering Services 
Proper time sequence ordering of messages and events is of utmost importance in many applications, 
such as audio/video collaboration systems.  The NaradaBrokering system provides this capability 
through an implementation of the Network Time Protocol (NTP). The NaradaBrokering TimeService [24] 
allows NaradaBrokering processes (brokers and entities alike) to synchronize their timestamps using the 
NTP algorithm with multiple time sources (usually having access to atomic time clocks) provided by 
various organizations, like NIST and USNO. The NaradaBrokering time service plays an important role 
in collaborative environments and can be used to time order events from disparate sources. The substrate 
includes a buffering service which can be used to buffer replays from multiple sources, time order these 
events and then proceed to release them.  
 
5.1.4 Security Services 
Messaging systems possess many interesting requirements not present in client-server systems.  The 
latter may be suitably handled by transport level security, but in MoMs the messages may pass through 
many intermediaries and may be destined for multiple recipients. The NaradaBrokering security 
framework [25] provides a scheme for end-to-end secure delivery of messages between entities within the 
system. The scheme protects an event in its traversal over multiple, possibly insecure, transport hops. 
Entities can verify the integrity and source of these events, before proceeding to process the encrypted 
payload.  
 
5.2 Broker Discovery 
Since accesses to services are mediated through the distributed broker substrate it is essential that an 
entity connect to a broker that maximizes its ability to utilize the hosted services. Furthermore, since the 
broker network is a very dynamic and fluid system, where broker processes may join and leave the 
broker network at arbitrary times and intervals, it is not possible for an entity to assume that a given 
broker is available at all times. Static solutions to this problem might result in a certain known remote 
broker being accessed over and over again. This in turn causes degradations due to poor bandwidth 
utilizations. The broker discovery process in the NaradaBrokering substrate operates on the current state 
of the broker network and ensures that a discovered broker is the nearest available one; where nearest 
corresponds to network proximities or latencies. In this scheme newly added brokers within overloaded 
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broker clusters in the substrate are assimilated faster since the discovery process allows these brokers to 
be preferentially selected. This scheme thus allows brokers to be added to enable to the system to scale. 
 
5.3 Support for Web/Grid Service specifications 
The substrate has recently incorporated support for Web/Grid Services. The substrate incorporates 
support for several Web/Grid service specifications such as WS-Eventing, WS-ReliableMessaging  and 
WS-Reliability. Work on the implementation of the WS-Notification suite of specifications is currently an 
on-going effort. It must be noted that almost all Web/Grid Service specifications leverage the SOAP [26] 
specification. We are currently also incorporating support for SOAP within the substrate. This would 
allow the substrate to perform certain services for SOAP messages, function as a SOAP intermediary, and 
also facilitate the routing of SOAP messages. Web/Grid Services can then send SOAP messages directly 
to the substrate. Another area that we intend to research further is the support for high-performance 
transport of SOAP messages. 
 

6. Support for SOAP within messaging substrates  
SOAP has emerged as the de facto standard for encapsulating and transporting various Web Services 
interactions. SOAP, along with WSDL  and UDDI [27], has been included as part of the WS-I Basic Profile 
[18]. Addressing support for SOAP within the substrate is thus central to our strategy. Subsequent sub-
sections describe our approach to providing support for Web Services within the substrate. By 
incorporating the SOAP processing stack into the substrate applications residing in different hosting 
environments (C++ based gSOAP, .NET-based WSE, or Perl-based SOAP::Lite) can interact with the 
substrate. Furthermore, so long as these Web Services are connected to the substrate they can partake 
from all the QoS provided to the NaradaBrokering clients. This includes features such as failure resilience 
and recovery from failures. This approach requires the substrate to function as a SOAP node which 
conforms to the SOAP processing model governing the actions that need to taken upon receipt of a SOAP 
message. Specifically in SOAP 1.2 the substrate needs to deal with the role (in SOAP 1.1 this corresponds 
to the actor attribute), mustUnderstand and the relay attributes. The substrate will issue a fault if the 
message contains any headers targeted to its role, with the mustUnderstand attribute set, which it 
cannot process. 
 
Finally it must be noted that the substrate may forward or interact with other SOAP intermediaries inside 
or outside the substrate to accomplish certain functions. The SOAP 1.2 model allows the relay attribute to 
be incorporated into SOAP message headers to facilitate such an interaction. In some cases, such as WS-
Eventing and WS-Notification, the substrate can provide support for delegated interactions such as 
information regarding the list of topics, management of subscriptions and their lifetimes, and replays of 
notification messages to recovering endpoints. Another related capability is that of a proxy where the 
substrate can interact with other Web Services on behalf of a non-Web Service endpoint. 
 

6.1 Federation of competing specifications  
The substrate can facilitate federation between competing specifications in the same target area. Examples 
of such scenarios include WS-ReliableMessaging (WSRM) and WS-Reliability in the reliable delivery area 
and WS-Eventing and WS-Notification in the area of notifications. Such a federation would enable service 
endpoints from competing specifications to interoperate with each other. This capability requires the 
substrate to map not only the structural elements of the SOAP messages but do so while ensuring that the 
semantics encapsulated within the original message are also mapped accordingly. It is entirely possible 
that in some cases it might not be possible to find a semantically equivalent operation in a target 
specification; here we may either throw faults or provide for custom extensions.  
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6.2 Functioning as a SOAP intermediary  
The substrate can provide a variety of services to SOAP messages. This includes support for compressing 
and decompressing, fragmenting and coalescing data encapsulated in the SOAP body, and logging of 
messages for subsequent replays among others. A substrate operates in variety of roles. A SOAP message 
can include such processing directives for the substrate through SOAP headers targeted to it as a SOAP 
intermediary. Additionally the substrate can provide support for conversion between different encoding 
schemes that may be employed in a SOAP message.  
 

6.3 Support for Filters/Handlers  
In this section we include a brief description of the typical deployment of services and accesses to these 
services. We also discuss extensions that most hosting environments provide for augmenting the 
behavior and functionality of service endpoints. This lays the groundwork for our strategy for making the 
substrate permeate service endpoints.  
 
To facilitate incremental addition of capabilities to service endpoints one can also configure filters 
(examples include filters for encryption, compression, logging etc.) in the processing path between the 
service endpoints. Since the service endpoints communicate using SOAP messages these filters operate 
on SOAP messages. Several of these filters can be cascaded to constitute a filter pipeline.  Services are 
generally hosted within a hosting environment also known as a container. The container provides a 
variety of services which the service implementation can use. For example, a service implementation 
need not worry about communication details since this necessary functionality would be implemented 
within a container component such as servlets in the Java J2EE environment. This component in tandem 
with the container support classes is responsible for packaging data received over the wire into data 
structures that can be processed by the service implementation. An instance of the web component is 
typically automatically generated by the container during the deployment phase of the Web Service. This 
scenario is depicted in Figure 1. It is possible to deploy services without a container. In the simplest case 
one may simply use the TCP protocol for communications and reconstruct SOAP messages from byte 
packets received over a socket; a custom deployment component can used to configure filter pipelines. 
 

 
Figure 4: Deployment of services and filter-pipelines 
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Filters within a pipeline operate on SOAP messages encapsulating invocation requests or responses. In 
the case of a service this pipeline is configured between the container component and the service, while in 
the case of clients this is configured between the support classes and the application logic. It should also 
be noted that individual filters are autonomous entities that have access to the entire SOAP message 
encapsulating the request/invocation. Individual filters are allowed to modify both the header and body 
elements of SOAP messages. The order in which filters operate on messages needs to be consistent, for 
example the stages at which encryption/decryption and compression/decompression take place at the 
service endpoints should be consistent otherwise unpredictable results/behavior may ensue. 
 
There are three advantages to utilizing the filter approach. First, it entails no changes to the service 
endpoints: this facilitates incremental addition of capabilities. Second, filters can be developed and tested 
independent of the service endpoints thus providing greater robustness. Finally, the filter approach 
promotes code reuse since different filters corresponding to security, compressions, logging or 
timestamps can be utilized by multiple services. 
 
The substrate can provide additional capabilities by permeating a service endpoint. Specially designed 
filters allow the incremental addition of capabilities to existing services. These filters encapsulate several 
of the substrate’s capabilities and in some cases allow for richer interaction with the substrate. A heart-
beat filter would send a message at regular intervals to the substrate indicating that it is alive; this in turn 
helps discovery services within the substrate to identify live service instances. A performance monitoring 
filter would in turn notify the substrate at regular intervals about the load that it is experiencing. This in 
turn allows the substrate to load balance service requests by routing them to the least overloaded service 
instance. A filter may also automatically generally service advertisements along with information related 
to the transports available at the service endpoint. Additionally, these filters can also leverage the 
substrate’s capabilities to communicate across NAT (Network Address Translator), firewall and proxy 
boundaries. 
 
 

6.4 High performance transport of SOAP 
The substrate provides support for a very wide array of transports (TCP, UDP, Multicast, SSL, HTTP and 
ParallelTCP among others). Depending on the size of SOAP message and the nature of continuing 
interactions appropriate transports will be deployed for communications. The nature of continuing 
interactions are dictated by issues such as whether the service exchanges messages at a high rate for a 
long time or whether the service considers reliable delivery to be more important than timely delivery. 
Filters at an endpoint can negotiate the best possible transport between itself and the substrate. The 
choice of the transport protocol being deployed is a function of the reliability, volume, rate and security 
requirements at the endpoint. The transport negotiations are carried out using a set of SOAP messages 
some of which are used to determine performance metrics such as latency, bandwidth, loss rates and 
jitters. 
 
Note that the SOAP messages being transported can be based either on the traditional RPC style 
request/response message or the asynchronous one-way messaging. In the former case of RPC the 
substrate will facilitate correlations between requests and responses over transports, such as UDP, that do 
not naturally support a request/response based interaction that is at the heart of HTTP. The substrate will 
generate a UUID for such messages and include this as a header in the SOAP message. This message 
identifier when included in responses allows correlation with the original request.  
 
Another area that we intend to research further is the support for high-performance transport of SOAP 
messages. Here we will leverage the XML Infoset; by separating the SOAP message context from its XML 
syntax, we can freely move between the binary and classic angle-bracketed representations of SOAP 
messages without content loss. Another area for further investigation is the efficient binary 
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representations of XML Infosets such as SOAP Message Transmission Optimization Mechanism (MTOM) 
[28] and XML-binary Optimized Packing (XOP) [29]. We are developing schemes which allow two 
endpoints to first negotiate the best-available transport and then proceed to use it for transfers. To 
accommodate legacy systems that do not use the XML format, the Data Format Description Language 
(DFDL) [30] is an XML-based language that describes the structure of binary and character-encoded files 
and data streams so that their format, structure, and metadata can be exposed. This can also be used in 
tandem while transferring binary data using SOAP. 
 
These latter topics are particularly important in several application areas.  We have primarily been 
interested in efficient message representation in order to support PDA and other end clients, which are 
typically reached over much lower speed networks and have limited memory and processing power.  
However, the same ideas should scale up for Web Service-based scientific computing, since efficient 
message compression and high performance processing are required for moving non-trivial data sets and 
messages. Finally, these transport mechanisms are also important to real-time processing.  As we have 
emphasized, all communications are messages moving through the substrate.  These messages may range 
from infrequent events to remote method invocations to negotiated streams of time-sequenced data.   
 

7. Grids of Grids  
We may view it as a collection of capabilities provided by different organizations that have banded 
together to form a “Virtual Organization” [24].  A capability is just a Web Service, and Grids may be built 
from collections of Web Services. A Grid service is just a Web Service, although it may follow more 
restrictive conventions defined by OGSA. It is actually better to define a Grid by how it is used rather 
than how it is built. In this section we investigate some of the issues involved in building Grids of Grids.  
 
We recommend two sets of services to facilitate such a scenario. Services provided within the substrate 
constitute the Internet-on-Internet (IOI) services. It is referred to as IOI since it enables us to build an 
application-level “Internet” of services connected by a messaging substrate that replicates in the 
application layer many of the desirable features (security, guaranteed delivery, optimal routing) that are 
normally found in the TCP/IP stack.  See Ref [31] for a discussion of why TCP/IP is not enough, and thus 
why IOIs are necessary for SOAP messages. These services have been described in detail in sections 2 and 
3.  
 
The IOI services will be invisible to the applications that run in it. Applications would simply specify the 
QoS constraints and the substrate would deal with the complexity of satisfying these constraints. There 
are a number of higher level services and capabilities that do not belong in the IOI layer: these services 
typically extend the capabilities available through the IOI layer and are more specifically needed for Web 
Service management and apply to specific domains. Typical examples include service information and 
metadata management.  We refer to this collection of capabilities as the Context and Information 
Environment (CIE). CIE services broadly fall into the following 5 categories.  
1. Collaboration: Some collaborative applications may place a premium on the ability to pause/replay 

live streams rather than timely delivery. It is easy to see how the buffering strategies may vary in 
such scenarios. Strategies for the demarcation and subsequent retrieval of major and minor events 
may vary in different domains. 

2. Authorization and authentication interfaces: Depending on the domain authentication schemes may 
span the wide spectrum from bio-metrics to text-based passwords. Same is true for trust propagation. 

3. Support for specifications in various domains: Prime examples of this include WS-Discovery which is 
suitable for ad-hoc networks, and WS-Context which maintains contexts for a distributed 
computation.  

4. Metadata Management: Different domains may have different formats for storing metadata and 
constraints regarding their exchange. In some scenarios custom solutions may be used or some 
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endpoints may choose to use WS-Metadata exchange which facilitates exchange of metadata between 
two end points. 

5. Portal Services: This involves allowing access to all metadata, the management of system 
deployments, firewall tunnels, performance information, and error-logs. Additionally a portal service 
may aggregate a set of services and provide a domain specific view of the state of these services. 

 
Grids of Grids are composed of applications and services from many different domains.  In the next 
section, we take an extended example from Geographical Information Services, which combine streaming 
data sources with data filters and online data mining applications. 
 

8. Applications to Earthquake Science and Geographical Information 
Systems Grids 

8.1 A Motivating Example: Data Mining Live GPS Streams 
SERVO Grid [4, 5] is a Grid system for earthquake modeling and simulation and includes a diverse set of 
applications, but we will focus on Robert Granat’s Regularized Deterministic Annealing Hidden Markov 
Model (RDAHMM) application [32].  An earlier, non-streaming version of this application was discussed 
in [33]. RDAHMM may be used to analyze arbitrary time ordered data, such as GPS position 
measurements and seismic records, to identify underlying modes of the system.  This occurs in three 
distinct methods of operation: 

1. Training and mode analysis: this phase applies to historical data.  The RDAHMM application is 
applied to a particular data set (i.e. an archived time sequence from a GPS station) in order to 
determine the historical modes.  These may be compared to known physical processes, but the 
mode identification process does not involve fixed parameters. 

2. Change detection: once RDAHMM has initially identified a system’s historical modes (a one-
time operation), it can be used to detect mode changes in new, incoming data streams.  Typically 
we need one logical RDAHMM application per data source (i.e.  GPS station).  RDAHMM clones 
may be periodically retrained on the updated historical data sets. 

3. Event Accumulation and Notification:  Methods of operation (1) and (2) apply to specific data 
sources, but we will also be interested in network-wide events.  For example, there may be 
several causes for individual GPS stations to undergo mode transitions, but simultaneous mode 
change events in several stations in the same geographic region may be associated with 
underlying seismic events.  Such network-wide changes need to spawn additional notifications, 
to both humans and other application codes. 

 
Data mining of live data streams [34, 35, 36, 37]   is an important scientific Grid application in many areas 
of crisis management and homeland security.   As we have outlined in the previous sections of this 
chapter, Service Oriented Architecture-based Grids implemented with Web Service standards will meet 
many of the requirements of real-time Grids, providing a system based open and extensible standards.  
As we have emphasized above, messages are a key component of SOA systems, and a software 
messaging substrate such as NaradaBrokering may be used to implement the qualities of service 
demanded by sophisticated Grids.  As we emphasize again here, there is no difference between 
notifications, events, and data transfers from the point of view of the messaging substrate.  Substrates 
such as the NaradaBrokering system may be applied equally well to problems in Web Service 
Eventing/Notification and to streaming data.  Web Service Architectures likewise may be adapted to 
streaming applications and associated message patterns, just has they have been applied to remote 
procedure call-style patterns. 
 
For the problem at hand, we may identify several important components, which we review in more detail 
below.  First, the GPS station network is an example of a Geographical Information System (GIS).   It 
requires a diverse set of services for such tasks as accessing archival data, accessing streaming data, 
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querying metadata that describes various members of the GPS network, and so on.  These may be 
coupled to more traditional science Grid services for running and managing applications.  Second, we 
have a diverse set of messages and services in the system: GPS stations provide streaming data, but we 
must also manage a) metadata services that describe individual stations in the network, b) less frequent 
messages (change events) that indicate a station has changed modes (which may occur only a few times 
per year),  c) other GIS services for generating maps used for user interfaces; and d) services for 
managing application codes (such as RDAHMM) that are in the loop. 
 

8.2 Geographic Information Systems and GIS Grids 
Advances in Internet and distributed systems helped academia, governments and businesses to provide 
access to a substantial amount of geospatial data.  The GIS community must face the following 
challenges:  

1. Adoption of universal standards: Over the years organizations have produced geospatial data in 
proprietary formats and developed services by adhering to differing methodologies; 

2. Distributed nature of geospatial data: Because the data sources are owned and operated by 
individual groups or organizations, geospatial data is in vastly distributed repositories, 

3. Service interoperability: Computational resources used to analyze geospatial data are also 
distributed and require the ability to be integrated when necessary. 

The Open Geospatial Consortium, Inc (OGC) represents a major effort to address some of these problems. 
The OGC is an international industry consortium of more than 270 companies, government agencies and 
universities participating in a consensus process to develop publicly available interface specifications. 
OGC Specifications support interoperable solutions that "geo-enable" the Web, wireless and location-
based services, and mainstream IT. OGC has produced many specifications for web based GIS 
applications such as Web Feature Service (WFS) [38] and the Web Map Service (WMS) [39]. Geography 
Markup Language (GML) [40] is widely accepted as the universal encoding for geo-referenced data.   In 
addition to the more traditional HTTP request/response style services, the OGC is also defining the 
SensorML family of services [41].   
 
The GIS community quite obviously represents a major sub-domain in the “Grid of Grids” picture.  By 
architecting GIS services using Web Services, and be placing these services within a SOA messaging 
substrate, we may integrate GIS Grid Services with other applications.  Our work on GIS services as Web 
Services is described in more detail in [4, 5].  
 
GIS applications developed by various vendors and academic institutions have become more complex as 
they are required to process larger data sets, utilize more computing power and in some cases need to 
collect data from distributed sources. Traditionally GIS applications are data centric: they deal with 
archived data.  However, with sensor-based applications gaining momentum the need of integrating real-
time data sources such as sensors, radars, or satellites with high end computing platforms such as 
simulation, visualization or data mining applications introduces several important distributed computing 
challenges to GIS community.  
 
Although commercial GIS applications provide various solutions to these problems, most of the solutions 
are based on more traditional distributed computing paradigms such as static server-client approaches. 
Traditional point to point communication approaches tend to result in more centralized, tightly coupled 
and synchronous applications which results in harder management practices for large scale systems. 
Modern large scale systems on the other hand require more flexible asynchronous communication 
models to cope with the high number of participants and transfer of larger data sets between them.  
 
Defining a Common Data Format  



 14

The first step for building such services is to decide appropriate encodings for describing the data. The 
importance of the data format lies in the fact that it becomes the basic building block of the system which 
in turn determines the level of interoperability. Use of a universal standard like XML greatly increases the 
number of users from different backgrounds and platforms who can easily incorporate our data products 
into their systems. Furthermore, services and applications are built to parse, understand and use this 
format to support various operations on data. So in a sense the type and variety of the tools being used in 
the development and data assimilation processes depend on the format initially agreed.  
 
For these reasons we use GML, a commonly accepted XML based encoding for geospatial data, as our 
data format in GIS-related applications. One important fact about GML is that, although it offers 
particular complex types for various geospatial phenomena, users can employ a variety of XML Schema 
development techniques to describe their data using GML types. This provides a certain degree of 
flexibility both in the development process and in the resulting data products. For instance, depending on 
the capability of the environment schema developers may exclusively use certain XML Schema types and 
choose not to incorporate more obscure ones because of incompatibility issues. As a result a particular 
geospatial phenomenon can be described by different valid GML schemas. 
 
By incorporating GML in our systems as de facto data format we gain several advantages: 
1. It allows us to unify different data formats. For instance, various organizations offer different formats 

for position information collected from GPS stations. GML provides suitable geospatial and temporal 
types for this information, and by using these types a common GML schema can be produced. (See 
http://www.crisisgrid.org/html/servo.html for sample GML schemas for GPS and Seismic data)  

2. As more GIS vendors are releasing compatible products and more academic institutions use OGC 
standards in their research and implementations, OGC specifications are becoming de facto standards 
in GIS community and GML is rapidly emerging as the standard XML encoding for geographic 
information. By using GML we open the door of interoperability to this growing community.  

3. GML and related technologies allow us to build general set of tools to access and manipulate data. 
Since GML is an XML dialect, any XML related technology can be utilized for application 
development purposes. Considering the fact that in most cases the technologies for collecting data 
and consecutively the nature of the collected data product would stay the same for a long period of 
time the interfaces we create for sharing data won’t change either. This ensures having stable 
interfaces and libraries. 

 
8.2.1 Data Binding 
Establishing XML or some flavor of it as the default message/data format for the global system requires 
consideration of a Data Binding Framework (DBF) for generating, parsing, marshalling and un-
marshalling XML messages.   Marshalling and un-marshalling operations convert between XML-encoded 
formats and (typically Java) binding classes that can be used to simplify data manipulation. 
 
Being able to generate XML instances and parsing them in a tolerable amount of time is one of the criteria 
while choosing such a framework, because message processing time would affect overall system 
performance as well as the performance of the individual XML processing component.  
 
Another criterion to consider is the ability of the binding framework to successfully generate valid 
instances according to the Schema definitions. This is a major problem for DBFs since not all of the XML 
Schema types can be directly mapped to Object Oriented Programming constructs. Some of the XML 
Schema types (such as Substitution Groups which are heavily used in GML Schemas) do not correspond 
to types in Object Oriented world and this causes difficulties while processing the XML documents. 
Various Data Binding Frameworks offer different solutions, some of which are more elaborate than the 
other and depending of the nature of the data a suitable framework must be chosen.   
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8.2.2 Data Services 
GIS systems are supposed to provide data access tools to the users as well as manipulation tools to the 
administrators. In principle the process of serving data in a particular format is pretty simple when it is 
made accessible as files on an HTTP or FTP server. But additional features like query capabilities on data 
or real-time access in a streaming fashion require more complicated services. As the complexity of the 
services grows, the client’s chance of easily accessing data products decreases, because every proprietary 
application developed for some type of data require its own specialized clients. Web Services help us 
overcome this difficulty by providing standard interfaces to the tools or applications we develop. 
 
No matter how complex the application itself, its WSDL interface will have standard elements and 
attributes, and the clients using this interface can easily generate methods for invoking the service and 
receiving the results. This method allows providers to make their applications available to others in a 
standard way. 
 
The usefulness of Web Services is constrained by several factors. They can be used in several cases such 
as 
• The volume of data transferred between the server and the client is not high. Actual amount of data 

can be transferred depends on a number of factors like the protocol being used to communicate or 
maximum allowed size by HTTP;  

• Time is not a determining factor. Despite the obvious advantages, current HTTP-based 
implementations do not provide desirable results for systems that require fast response and high 
performance. This is simply due to the delays caused by data transfer over network, network 
constraints, and HTTP request-response overhead.  

 
Most scientific applications that couple high performance computing, simulation or visualization codes 
with databases or real-time data sources require more than mere remote procedure call message patterns. 
These applications are sometimes composite systems where some of the components require output from 
others and they are asynchronous, it may take hours or days to complete. Such properties require 
additional layers of control and capabilities from Web Services which introduces the necessity for a 
messaging substrate that can provide these extra features.  
 

9. SOPAC GPS Services: Real Time Streaming Support for Position Messages 
To demonstrate the use of technologies discussed earlier we describe GPS Services developed for the 
Scripps Orbit and Permanent Array Center (SOPAC) GPS data networks. Two of SOPAC’s GPS networks 
are distributed in San Diego Counties and Riverside/Imperial Counties, respectively, and provide 
publicly available data. Raw data from the GPS stations are continuously collected by a Common Link 
proxy (RTD server) and archived in RINEX files.  
 
The data collected from the GPS stations are served in 3 formats: 

• RAW: For archiving and record purposes, not interesting for scientific applications, not available 
in real-time. 

• RTCM: Published real-time and no records are kept. This is useful for RTCM capable GPS 
receivers as reference. 

• Positions: Positions of the stations. Updated and presented every second. GPS Time Series can be 
produced using these positions and they can be in different epochs such as hourly, daily, etc. 

 
Position information is used by RDAHMM and other applications. The RTD server however outputs the 
position messages in a binary format called RYO. This introduces another level of complexity on the 
client side because the messages have to be converted from binary RYO format. 
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To receive station positions, clients are expected to open a socket connection to the RTD server. An 
obvious downside of this approach is the extensive load this might introduce to the server when multiple 
clients are connected. 
 
After the RTD server receives raw data from the stations it applies filters and for each network generates 
a message. This message contains a collection of position information for every individual station from 
which the position data has been collected in that particular instant. In addition to the position 
information there are other measurements in a message such as quality of the measurement, variances 
etc.  For each GPS network, the RTD server broadcasts one position message per second through a port in 
RYO format.   This is depicted on the left hand sides of Figures 5 and 6. 
 
As we discuss below, to make the position information available to the clients in a real-time streaming 
fashion we are using the NaradaBrokering messaging system. Additionally we developed applications to 
serve position messages in ASCII and GML formats.  This allows applications to choose the format that 
they want for applications will additionally allow us to implement more finely grained network 
subscriptions: users and applications don’t have to process an entire network’s stream to receive the 
subset of GPS stations that they want.  RDAHMM provides a specific example for this: we need to apply 
RDAHMM change detection to individual GPS station signals. 
 
9.1.1 Decoding RYO Messages 
As shown in Figures 5 and 6, the incoming data streams must be converted into various formats.  This is 
done by using developed specialized services that subscribe to specific topics and republish the decoded 
data to topics associated with the new format. 
 
For example, the RYO Message Type 1 starts with a 5-byte Header which is followed by a 47-byte GPS 
Position message. Three types of optional blocks may follow the Position Message and a 2-byte checksum 
is located at the end of the message. 
 

 
 

A non-blocking Java Socket connection is made to RTP server to collect RYO messages. We use thread 
programming techniques for this purpose. An RYO Decoder application which uses binary conversion 
tools converts RYO messages into text messages.  Furthermore since we do not expect clients to know 
about the GPS time format we convert GPSWeek and GPSmsOfWeek values to Gregorian calendar 
format (i.e. 2005-19-07/04:19:44PM-EST). Additionally since we anticipate some clients to expect position 
information in terms of Latitude and Longitude, we calculate Latitude, Longitude and Height values 
from XYZT Position. 
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9.1.2 GML Schema for Position Messages and Data Binding  
We have developed a GML conformant Schema to describe Position Messages. The Schema is based on 
RichObservation type which is an extended version of GML 3’s Observation model. This model supports 
Observation Array and Observation Collection types which are useful in describing SOPAC Position 
messages since they are collections of multiple individual station positions. We follow strong naming 
conventions for naming the elements to make the Schema more understandable to the clients.  
 
We used Apache XML Beans for data binding purposes: these convert ASCII data streams into XML.   
SOPAC GML Schema and sample instances are available here: http://www.crisisgrid.org/schemas  

 
9.1.3 Integrating NaradaBrokering with Streaming GPS Measurements 
After we have services for decoding position information into three different formats we may integrate 
these services with NaradaBrokering to provide real-time access to data.  The following figures depict the 
use of NaradaBrokering topics in the system.  Figure 5 depicts the flow of data to interested subscribers: 
applications like RDAHMM, databases for permanent storage, and portal systems (such as QuakeSim) for 
human interaction.  To support these various consumers, we must provide different versions of the data 
stream.   
 

 
Figure 5 GPS streams are delivered to interested end clients. 
 
Figure 6 expands Figure 5 to illustrate the basic routing techniques.  The GPS network data streams are 
collectively made available by Scripps through ports 7010 and 7011.  These two ports serve all the data 
from two distinct networks, each with 15 stations.  The data is published in RYO format.  We intercept 
this data through Java proxies that act as publishers on the topics RYO1 and RYO2 to a NaradaBrokering 
node.   Subscribers to this topic may be any number of applications capable of handling these binary 
formats, including translation programs.  As shown in Figure 6, these streams are translated into ASCII 
text formats by RYO Decoders.  These decoders then publish the data back to the broker network on new 
topics, Positions/Text1 and Positions/Text2 in the figure.  Any number of listening applications may 
receive this data, including (as shown in the figure), GML Converters that transform the ASCII streams 
into GML suitable for GIS applications. 
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Figure 6 GPS network integrated with NaradaBrokering. 
 
Currently the system is being tested for San Diego Counties and Riverside/Imperial Counties GPS 
networks. The following tables show the current information for NaradaBrokering Server and topic 
names: 
 

NaradaBrokering Server address: xsopac.ucsd.edu:3045 
 

Format Topic Name 
RYO SOPAC/GPS/Positions/SanDiego/RYO 
Text  SOPAC/GPS/Positions/SanDiego/Text 
GML SOPAC/GPS/Positions/SanDiego/GML 

San Diego County 
 

Format Topic Name 
RYO SOPAC/GPS/Positions/Riverside/RYO 
Text  SOPAC/GPS/Positions/Riverside/Text 
GML SOPAC/GPS/Positions/Riverside/GML 

Riverside/Imperial County 
 

 
We may add more filters to the data and develop more finely grained topics.  For example, after decoding 
the binary stream, we may publish the individual GPS station data streams to individual topics.  

9.2 Building a Sensor Grid 
We are developing a Service Oriented Architecture to support real-time integration of sensor data with 
scientific applications such as simulation, visualization or data mining software.  



 19

 
Scientific applications that require processing of huge data sets are increasing in number with the 
evolution of computing resources, network bandwidth, and storage capabilities etc. At the same time 
some of the applications are being designed to run on real-time data to provide near-real time results; 
such applications are gaining ground in systems like Crisis Management or Early Warning Systems 
because they allow authorities to take action on time. Earthquake data assimilation tools are good 
examples of this group since they use data from Seismic or GPS sensors. However, in SERVO Grid, most 
of these tools currently consume data from repositories and they do not have access to real-time data due 
to several reasons. 
 

 
Figure 7Sensor Grid services integrated with streaming data sources. 
 
A Sensor Grid architecture will couple data assimilation tools with real-time data using GIS standards 
and Web Services methodologies. The system will use NaradaBrokering as the messaging substrate and 
this will allow high performance data transfer between data sources and the client applications. The 
Standard GIS interfaces and encodings like GML will allow data products to be available to the larger GIS 
community.  
 
Figure 7 shows the major components of Sensor Grid using SensorML components. The client discovers 
the related Sensor Collection Service (SCS) information by using search interfaces provided by 
Information Service (IS). IS returns a handler which contains the WSDL address of the SCS that has access 
to the particular sensor client requests. The client then sends a getData query to SCS. Depending on the 
nature of the query SCS may take two actions; if the query is for archived sensor data then it requests 
data from the Observation Archives and returns it to the client. But if the client wants to access real-time 
data then it returns a data handler which contains the broker information and topic name for the sensor. 
Also depending on the size of the archived data SCS may choose one of two options for data transfer; if 
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the result size is relatively small then it is returned via SOAP message, otherwise NaradaBrokering is 
used. SCS also keeps information about the sensors themselves. This information is encoded in 
SensorML. After receiving the broker address and the topic name, client may subscribe to the 
NaradaBrokering server to receive real-time data. 
 

10. Conclusions 
As standards such as SOAP 1.2, WSDL 2.0, and WS-Addressing become widely implemented and 
deployed, the initial concepts and implementations of Web Services as “remote procedure calls for the 
Web” are giving way to a more message-oriented, service-oriented approach.  Such systems place an 
emphasis on managing secure, reliable messages that may be delivered in any number of ways across 
multiple routing SOAP intermediaries.    
 
As we have discussed in this article, all communications in SOA-based systems are messages.  Further, 
the correct way to implement these systems is to place the service “islands” on a software-level 
messaging substrate that implements efficient routing, security, reliability and other qualities of service.  
As we have shown, such systems support messages of all types, from infrequent update notification 
events to continuous streams. 
 
Many important Grid applications in real-time data mining involve all of these message types.  We have 
discussed a GIS example from our SERVOGrid work that uses the NaradaBrokering messaging system 
for managing data streams from GPS stations.  We are in the process of connecting these to RDAHMM, a 
time series data analysis program useful for mode change detection.  These streaming services are part of 
a more comprehensive system involving code execution services and information/metadata services.   
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