
SPIDAL: High Performance Data Analytics with Java and
MPI on Large Multicore HPC Clusters

Saliya Ekanayake
School of Informatics and

Computing
Indiana University,

Bloomington
sekanaya@indiana.edu

Supun Kamburugamuve
School of Informatics and

Computing
Indiana University,

Bloomington
skamburu@indiana.edu

Geoffrey C. Fox
School of Informatics and

Computing
Indiana University,

Bloomington
gcf@indiana.edu

ABSTRACT
High Performance Computing (HPC) cluster nodes with mul-
ticore chips offer a large number of parallel computing units
per node and are equipped with fast interconnects and large
memory. We identify a class of big data machine learning
problems that demands substantial communication, but find
that despite the rich ecosystem of big data frameworks - many
written in Java - it is challenging to achieve high performance
for reasons such as costly inter-process communication, sub-
optimal cache utilization, and higher memory footprint. Our
approach to solving this is written on Java to enable inte-
gration with existing big data software stacks such as those
from Apache. We employ MPI due to its proven high per-
formance and improves further by exploiting Java off heap
memory maps to avoid intra-node messaging. Also, we do
cache optimization and reduce memory reference costs. Fur-
ther, we utilize static arrays and other off heap data structures
to reduce memory usage and Garbage Collection (GC) costs.
We also investigate the hybrid use of threads and processes,
but find processes to outperform threads in all cases on our
current 24 core and 36 core Haswell nodes. We apply these
techniques to implement a high performance data analytics
library, SPIDAL, and present performance results of running
it on a latest Intel Haswell HPC cluster consisting 3456 cores
total.

Author Keywords
HPC; data analytics; Java; MPI; Multicore

ACM Classification Keywords
D.1.3 Concurrent Programming (e.g. Parallel Applications):
See: http://www.acm.org/about/class/1998/ for more in-
formation and the full list of ACM classifiers and descriptors.

1. INTRODUCTION
The past few years have witnessed a rise in big data problems
both in industry and academia. Unlike traditional HPC prob-
lems, which are mostly compute intensive, the nature of these
problems cannot be characterized along a single dimension.
Our previous work on Ogres [11] present a multidimensional

SpringSimSim-TMSDEVS 2015 July 21-26 Pasadena, CA, USA
c©2015 Society for Modeling & Simulation International (SCS)

and multifaceted classification scheme as a solution. One of
the axes in Ogres is the problem architecture, which identi-
fies the ”shape” of the problem and we identify six prominent
classes of big data problems shown in Figure 1

Figure 1. Six prominent problem architectures of big data

Figure 1 A to F represent pleasingly parallel, classic map-
reduce, map-collective, graph or point to point, shared mem-
ory, and streaming classes of applications. We focus on map-
collective architecture, which is common in many of the data
science problems [6] and is interesting for two reasons - mul-
tiple iterations and global communication. Let us consider
the parallelization of the k −means algorithm over a given
N points to illustrate these features of map-collective type.
Each parallel unit of computing starts with the same set of
k initial vectors (cluster centers) and assigns its points to the
nearest center. They collectively communicate the sum of
points (i.e. sum of vector components) for each center in the
next step. The average of global sums determines the new
cluster centers. If the difference between new and old centers
is larger than a given threshold the program continues to the
next iteration replacing initial centers with centers found in
the current iteration. The boldfaced words highlight the fact
that computations happen independently followed by a global
communication, the result of which is necessary to continue
next step of computing. A single or multiple of such map and

http://www.acm.org/about/class/1998/


collective phases will be iterated over until a stopping crite-
rion is met. This closely resembles the Bulk Synchronous
Parallel (BSP) model with the exceptions of global commu-
nication, and non-overlapping computations and communica-
tion.

We identify modern day HPC clusters as best suited for such
map-collective applications for reasons - 1. large number of
computing units per node and as a total, 2. memory per node
is high, and 3. high speed interconnect between nodes. How-
ever, even with these advanced hardware, we find it is chal-
lenging to develop high performance data analytic applica-
tions of map-collective nature. Namely, these issues are ex-
pensive and varying intra-node communication, suboptimal
cache and memory utilization, performance variation with
threads, large memory requirement per process, and Garbage
Collection (GC) cost and inefficient use of heap.

Scalable, Parallel, and Inter-operable Data Analytics Library
(SPIDAL) is aimed at providing a highly optimized suite of
Global Machine Learning (GML) applications to analyze big
data problems; hence it is vital to overcome these challenges,
especially to leverage HPC infrastructure. In this paper we
present optimization techniques that yield significant perfor-
mance improvement in SPIDAL when run on large multicore
HPC clusters. The techniques we present are not specific to
SPIDAL applications and can be applied to other applications
requiring high performance on modern HPC clusters.

The rest of the paper is organized as follows. We intro-
duce the SPIDAL in Section 2, and elaborate our high perfor-
mance optimizations in Section 3 to overcome the above chal-
lenges. Section 4 presents experiment results of running the
weighted Deterministic Annealing (DA) Multidimensional
Scaling (MDS) algorithm [24] - in SPIDAL against real life
health data. We include speedup and scaling results for a
variety of data sizes and compute cores (up to 3072 cores).
Section 5 discuss open questions and possible improvements.
Section 6 reviews related work and we conclude this paper in
Section 7.

2. SPIDAL
SPIDAL applications are written in Java and uses memory
maps and Message Passing Interface (MPI) for inter-process
communication. There is a well established collection of
open big data software such as those available in Apache Big
Data Stack (ABDS) [9] and many of these are either written
in Java or support Java Application Program Interface (API).
We believe it is important to be able to integrate SPIDAL with
such solutions in the long run, hence the choice of Java to au-
thor SPIDAL.

We currently include the following GML applications in SP-
IDAL.

• DA-MDS implements an efficient weighted version of
Scaling by MAjorization of a COmplicated Function
(SMACOF) [1] that effectively runs in O(N2) compared
to the original O(N3) implementation [24]. Also, it uses
deterministic annealing optimization technique [23, 15] to
find the global optimum instead of local optima. Given an
NxN distance matrix for N high dimensional data items,

DA-MDS finds N lower dimensional (usually 3 for visual-
ization purposes) points such that the sum of error squared
is minimum. The error is defined as the difference between
mapped and original distances for a given pair of points.
DA-MDS also supports arbitrary weights and fixed points
- data points that already have the same low dimensional
mapping.

• DA-PWC is Deterministic Annealing Pairwise Clustering,
which too uses the concept of DA, but for clustering [10,
23]. Its time complexity is O(NlogN), which is better
than existing O(N2) implementations [7]. Similar to DA-
MDS, it accepts an NxN pairwise distance matrix and pro-
duces a mapping from point number to cluster number. It
can also find cluster centers based on the smallest mean
distance, i.e. the point with the smallest mean distance
to all other points in a given cluster. If provided with a
coordinate mapping for each point, it could also produce
centers based on the smallest mean Euclidean distance and
Euclidean center.

• DA-VS is Deterministic Annealing Vector Sponge, which
is a recent addition to SPIDAL. It can perform clustering
in both vector and metric spaces. Algorithmic details and
an application of this to Proteomics data is available at [8]

• MDSasChisq is a general MDS implementation based on
LevenbergMarquardt algorithm [16]. Similar to DA-MDS,
it supports arbitrary weights and fixed points. Additionally,
it supports scaling and rotation of MDS mappings, which
is useful when visually comparing 3D MDS outputs for the
same data, but with different distance measures.

In addition to GML application, SPIDAL also includes a Web
based interactive 3D data visualization tool - PlotViz [22]. A
real life use case on using DA-MDS, DA-PWC, and PlotViz
to analyze gene sequences is available at [18].

3. HIGH PERFORMANCE OPTIMIZATIONS
In our attempt to achieve high performance with SPIDAL, we
identified intra-node communication of a participating global
collective primitive poses the most overhead. Threads within
a node is a natural choice to overcome this, but we found
processes to perform better due to cache coherency issues
in threads. Cache and memory reference costs were bottle-
necks in general, so we discuss optimization techniques be-
low. Also, SPDIAL algorithms have O(N2) memory require-
ment, so keeping a minimal memory footprint without GC
costs was a challenge. Moreover, loading initial NxN dis-
tance matrices was costly and required techniques other than
the commonly used stream APIs in Java. We elaborate the de-
tails and our optimization techniques to overcome these chal-
lenges in SPIDAL below.

3.1 Zero Intra-node Communication
The Haswell cluster we use consists up to 36 cores available
per node for computation, but when spawned that many pro-
cesses, the global communication primitives produced non-
negligible performance degrade. We found this to be true
across different MPI implementations and language bindings
as shown in Figure 2.



Figure 2. Allgatherv performance with different MPI implementations and
varying intra-node parallelisms

We plot arithmetic average (hereafter referred simply as
average) running times of the MPI allgatherv collective
against varying intra-node parallelism over 48 nodes in Fig-
ure 2. Note, all MPI implementations were run with their
default settings, except were using Infiniband transport. This
was a micro-benchmark based on the popular OSU Micro-
Benchmarks (OMB) suite [21] and we implemented two sep-
arate programs - one in C and the other in Java using Open-
MPI Java binding. The native C code was compiled and run
against two standard MPI implementations - OpenMPI and
MVAPICH2 [12]. The total number of bytes was kept con-
stant at 24 million bytes (or 3 million double values) across
different patterns. This was because we wanted to mimic the
communication of DA-MDS, which uses allgatherv heav-
ily, for large data. The experiment shows the communication
cost becomes significant with increasing processes per node
and the effect is independent of the choice of MPI implemen-
tation and the use of Java binding in OpenMPI. However,
the encouraging discovery is that all implementations pro-
duce nearly identical performance for the single process per
node case. While it is computationally efficient exploit more
processes, reducing the communication to a single process
per node was hence further studied and successfully achieved
with Java shared memory maps as discussed below.

We note that shared memory collectives support is limited
in OpenMPI and does not implement any variant of the
allgather. Also, we found our implementation performed
better even over existing ones such as allreduce. Previous
work on shared memory collectives [3] and [17] suggest good
performance, but they do not support a Java binding, hence
could not be used for SPIDAL.

Figure 3. Intra-node message passing with Java shared memory maps

Our solution exploits Java shared memory maps to perform
inter-process communication for processes within a node,
thus eliminating any intra-node MPI calls. The standard MPI
programming would require O(R2) of communications in a
collective call, where R is the number of processes. In our
implementation, we have effectively reduced this to O(N̂2),
where N̂ is the number of nodes. Note, this is an application
level optimization rather than an improvement to a particu-
lar MPI implementation. This will make it possible for SPI-
DAL to be ported for future MPI Java bindings with minimal
changes.

Figure 3 shows the general architecture of this optimization
where two nodes, each with three processes, are shown as an
example. Processes are ranked from P0 to P5 and they be-
long to MPI COMM WORLD. One process from each node
is designated as the communication leader - C0 and C1. We
group them into a separate MPI communicator called COL-
LECTIVE COMM. Similarly, processes within a node are
put into MMAP COMM. These are shown as M00 to M02

for node 0 and M10 to M12 for node 1. Also, all processes
within a node, map the same memory region as an off heap
buffer in Java and compute necessary offsets at the beginning
of the program. With this setup, a typical call to an MPI col-
lective is carried out with reduced communication using the
following steps.

1. All processes, P0 to P5, write their partial data to the
mapped memory region offset by their rank and node. See
downward blue arrows for node 0 and gray arrows for node
1 in the figure.

2. Communication leaders, C0 and C1, wait for the peers,
{M01,M02} and {M10,M11} to finish writing. Note lead-
ers wait only for their peers in the same node.

3. Once the partial data is written, the leaders participate in
the MPI collective call with partial data from its peers -
upward blue arrow for node 0 and gray arrow for node 1.
Also, the leaders may perform the collective operation lo-
cally on the partial data and use its results for the MPI com-
munication depending on the type of collective required.
MPI allgatherv, for example, will not have any local op-
eration to be performed, but something like allreduce may
benefit from doing the reduction locally. Note, the peers
wait while their leader performs MPI communication.

4. At the end of the MPI communication, the leaders write
the results the respective memory maps - downward gray
arrow for node 0 and blue arrow for node 1. This data is
then immediately available to their peers without requiring
further communications - upward gray arrows for node 0
and blue arrows for node 1.

We reduce MPI communication to just 2 processes, in con-
trast to a typical MPI program, where 6 processes would be
communicating with each other. Also, the two wait opera-
tions mentioned above can be implemented using memory
mapped variables. One could also use an MPI barrier on
the MMAP COMM, which even though will cause intra-node
messaging, we found it to incur negligible costs compared to
actual data communication.



Figure 4. Heterogeneous shared memory intra-node messaging

Figure 3 shows uniform rank distribution across nodes and a
single memory map group per node. While this is the optimal
pattern we would recommend, SPIDAL supports two hetero-
geneous settings as shown in Figure 4. These are described
below.

Non-uniform rank distribution - Our production HPC clus-
ter, for example, has two groups of nodes with different core
counts (24 and 36) per node. In such situations, we support
running different process counts per node. SPIDAL automat-
ically detects such heterogeneous configurations and adjust
its shared memory buffers accordingly.

Multiple memory groups per node - If more than 1 mem-
ory maps per node (M ) is specified, SPIDAL will select one
communication leader per group even for groups within the
same node. Figure 4 shows 2 memory maps per node. Note,
O(N̂2) communication is now changed to O((N̂M)2), so we
highly recommend using a smaller M , ideally M = 1.

3.2 Cache and Memory Optimization
We employ 3 classic techniques from the linear algebra do-
main to improve cache and memory costs - blocked loops,
1D arrays, and loop ordering.

Blocked loops - We block the parts of code that access matrix
structures in nested loops such that the chunks of data will fit
in cache and reside there for the duration of its use.

1D arrays for 2D data - 2D data represented as 2D arrays
costs 2 indirect memory references to get an element. This
is significant with increasing data sizes, so have reduced all
such arrays to 1D arrays, so with 1 memory reference and
computed indices we can access 2D data efficiently. Also,
this improve cache utilization as 1D arrays are contiguous in
memory.

Loop ordering - Data decomposition in SPIDAL algorithms
blocks full data into rectangular matrices, so we have restruc-
tured nested loops that access these to go along the longest
dimension within the inner loop to efficiently use cache.

3.3 MPI Over Threads
All SPIDAL applications supports the hybrid approach of
threads within MPI. Threads are used to create parallel for
regions. While it is not complicated to implement parallel
loops with Java thread constructs, We use an OpenMP [4] like
alternative in Java - Habanero Java library [13] - from Rice
University for productivity and performance. Note, threads
perform computations only and do not invoke MPI opera-
tions. The results from threads are locally aggregated as ap-
propriate before the parent process use it in collective com-
munications. Note, with our previous zero intra-node mes-

Figure 5. The architecture of utilizing threads for intra-process parallelism

saging optimization a further local aggregation happens even
within processes of the same node to reduce communication.
The architecture of utilizing threads is shown in Figure 5

Data decomposition is done at the process level first and split-
ting further for threads initially. This guarantees that threads
operate on non conflicting data arrays; however, false sharing
is still possible and we find this to be a significant bottleneck
with increasing number of threads per process as shown in
Figure 6 and Figure 7. While the communication bottleneck
with default MPI implementations favored the use of threads,
with our zero-intra node messaging we find threads offer no
advantage due to this behavior, hence we recommend the use
of all MPI over threads in SPIDAL. Also, techniques such as
padding to avoid false sharing increase the memory require-
ment per process, which is not affordable with SPIDAL ap-
plications.

3.4 Minimal Memory and Zero Full GC
Maintaining a minimal memory footprint and reducing mem-
ory management costs are two aspects critical to performance
sensitive applications with large memory requirements such
as those in SPIDAL. Java Virutal Machine (JVM) automati-
cally manges memory allocations and performs GC to reduce
memory growth by deallocating unused objects. It does so by
segmenting the program’s heap into regions - called genera-
tions - and moving objects between these regions depending
on their longevity. Every object starts in Young Generation
(YG) and gets promoted to Old Generation (OG) if they have
lived long enough. Minor garbage collections happen in YG
frequently and short lived objects are removed without GC
going through the entire Heap. Also, long lived objects are
moved to the OG. When OG has reached its maximum ca-
pacity, a full GC happens, which is an expensive operation
depending on the size of the heap and can take a considerable
time. Also, both minor and major collections have to stop all
the threads running in the process while moving the objects.
Such GC pauses incur significant delays, especially for GML
applications where slowness in one process affects all others
as they have to synchronize on global communications.

Initial versions of SPIDAL followed the standard Object Ori-
ented Programming (OOP) of Java, where objects were cre-
ated as and when necessary, while letting GC take care of
the heap. The performance results with this, however,showed
inconsistent behavior, and detailed GC log analysis revealed
processes were paused most of the time to perform GC. Also,
we noticed the max heap required (JVM -Xmx setting) to get
reasonable timing quickly surpassed the physical memory in



our cluster with increasing data sizes. After careful analysis
of the code we observed that total memory allocation required
for a given data size could be computed and allocated ahead
of time. Also, we changed the code to make the memory
required the minimum by reusing arrays used computations,
and doing communications with static off-heap buffers (see
next optimization). We achieved the following improvements
with these techniques.

Zero GC - Objects are placed in the OG and no transfer of
objects from YG to OG happens in run-time, which avoids
full GC

Predictable performance - With GC out of the way, the per-
formance numbers agreed with expected behavior of increas-
ing data and parallelism.

Reduction in memory footprint - A DA-MDS run of 200K
points running with 1152 way parallelism required about 5GB
heap per process or 120 GB per node (24 processes on 1
node), which hits the maximum memory per node in our clus-
ter, which is 128GB. The improved version required less than
1GB per process for the same parallelism giving about 5X
improvement on memory footprint.

3.5 Off Heap Data Structures
Java off-heap data structures, as the name implies, are allo-
cated outside the GC managed heap and are represented as
Java direct buffers. With traditional heap allocated buffers,
the JVM has to make extra copies whenever a native oper-
ation is performed on it. One reason for this is that JVM
cannot guarantee the memory reference to a buffer will stay
intact during a native call because it is possible for a GC com-
paction to happen and move the buffer to a different place in
heap. Direct buffers, being outside of heap, overcomes this
problem, thus letting JVM to perform fast native operations
without data copying.

We use off-heap buffers efficiently for the following 3 tasks
in SPIDAL algorithms.

Initial data loading - Input data in SPIDAL are NxN binary
matrices stored 16-byte (short) big-endian or little-endian for-
mat. we found the use of Java stream APIs such as the typi-
cal DataInputStream class was very inefficient in loading
these matrices. Instead, we memory map these matrices (each
process maps only the chunk it operates on) as Java direct
buffers.

Intra-node messaging - We use memory mapped buffers to
do intra-node process to process communication, thus avoid-
ing MPI within a node. While Java memory maps allow
multiple processes to map the same memory region, it does
not guarantee writes from one process will be visible to the
other immediately. Therefore, we use OpenHFT Java Lang
Bytes [20], which is an efficient off-heap buffer implementa-
tion with guarantees on write consistency.

MPI communications - While OpenMPI supports both on
and off heap buffers for communication, we use statically al-
located direct buffers, which greatly reduce the cost of MPI
communication calls.

4. TECHNICAL EVALUATION
Here we present our experimental results to demonstrate the
performance advantages of previously discussed optimiza-
tion techniques. We tested these on a production grade Intel
Haswell HPC cluster, Juliet, which has 128 nodes total, where
96 nodes has 24 cores (2 sockets x 12 cores each) and 32
nodes has 36 cores (2 sockets x 18 cores each) per node.Each
node consists 128GB of main memoryand 56Gbps Infiniband
interconnect. Note. the total core count of the cluster is 3456,
which we can utilize with SPIDAL’s heterogeneous support,
but for performance testing we did uniform rank distribution
of 24x128 - 3072 cores.

Figures 6, 7, and 8 show the results for 3 full DA-MDS
runs with 100K, 200K, and 400K data points. The red line
is with zero intra-node messaging, zero GC, and cache op-
timization. The blue is with zero intra-node messaging and
zero GC, but no cache optimization. The green is with no
optimizations. Note, the default implementation could not
handle 400K points on 48 nodes, hence not shown in Figure
8.

Patterns on the X-axis of the graphs show the combination of
threads (T ), processes (P ), and number of nodes. The total
number of cores per node was 24 (12 on each socket), so we
tested all possible combinations that give 24-way parallelism
per node. We use process pinning to avoid the Operating Sys-
tem (OS) from moving processes within a node, which would
diminish data locality benefits of allocated buffers. The num-
ber of cores pinned to a process was 24/P and any threads
within a process is also pinned to a separate core. We use
OpenHFT Thread Affinity [14] library to bind Java threads
to cores. OpenMPI has a number of allgather implemen-
tations and we used the linear ring implementation of MPI
allgatherv as it gave the best performance. The Bruck [2] al-
gorithm, which is an efficient algorithm for all-to-all commu-
nications, performed similarly, but was slightly slower than
linear ring in this case.

Ideally, all these patterns should perform the same as we keep
constant data size per experiment. However, we see default
MPI based implementation significantly degrades in perfor-
mance with large process counts per node (green-line). Also,
increasing the number of threads, though reduce the commu-
nication cost, does not improve performance. The SPDIAL
memory mapped implementation surpasses default MPI by a
factor of 11X and 7X for 100K and 200K tests respectively
for all process (leftmost 24x48) case. Cache optimization fur-
ther improves performance significantly across all patterns,
especially with large data as can be seen from the blue line to
the red line. we achieved similar performance for other data
sizes, 800K and 1 million, but are not shown in here to save
space.

The DA-MDS implementation in SPIDAL, for example, has
two call sites to MPI allgatherv collective, BCComm and
MMComm, written using OpenMPI Java binding [25]. They
both communicate identical number of data elements, except
one routine is called more times than the other. Figures 9 and
10 show the average times in log scale for both of these calls
during the 100K and 200K runs.



Figure 6. DA-MDS 100K performance with varying intra-node parallelism Figure 7. DA-MDS 200K performance with varying intra-node parallelism

Figure 8. DA-MDS 400K performance with varying intra-node parallelism
Figure 9. DA-MDS 100K Allgatherv performance with varying intra-node
parallelism

Figure 10. DA-MDS 200K Allgatherv performance with varying intra-node
parallelism Figure 11. DA-MDS speedup with varying data sizes

We note the flat communication across different patterns with
SPDIAL’s shared memory based intra-node messaging in
contrast to the drastic variation in default MPI. Also, the im-
proved communication is now predictable and acts as a lin-
ear function of total points (roughly 1ms to 2ms when data
size increased from 100k to 200k). This is as expected and
is due to the number of communicating processes being con-
stant and 1 per node.

Figure 11 shows speedup for varying core counts for three
data sizes - 100K, 200K, and 400K. These were run as all
processes because threads did not result in good performance.
Neither of the three data sizes was small enough to have a
serial base case, so we used the 48 core as the base, which
was run as 1x48 - 1 process per node times 48 nodes. SPI-
DAL computations grow O(N2) while communications grow
O(N), which intuitively suggests larger data sizes should

yield better speedup than smaller ones and we see our results
agree with it.

We also tested the speedup with different optimization tech-
niques for both MPI and threads within a node for 200K data
as shown in Figure 12. Total cores used range from 48 to
3072. We used the 48 core case of all optimized (red line)
version as the base case for all other implementations. The
bottom green line is the default MPI implementation with no
optimizations. We add Java shared memory (JavaSM), zero
GC, and cache optimizations on top of it. We find JavaSM
with zero GC (blue line) and all processes surpass all other
thread variations. This is further improved with cache opti-
mization (red line) and gives the best performance overall.

5. FUTURE WORK



Figure 12. DA-MDS speedup for 200K with different optimization tech-
niques

The current data decomposition in SPIDAL assumes a pro-
cess would have enough memory to contain the partial input
matrx and intermediate data it operates on. This sets an upper
bound on the theoretical maximum data size we could handle
that is equal to the physical memory in a node. We could,
however, improve on this with a multi-step computing ap-
proach, where a computation step is split into multiple com-
pute and communication steps. This will increase the number
of communications, but will be worthwhile to investigate fur-
ther.

6. RELATED WORK
Le Chai’s PhD [3] work present similar content to our im-
provements, but done on MVAPICH2. It identifies the bottle-
neck in intra-node communication with the traditional share-
nothing approach of MPI and presents two approaches to ex-
ploit shared memory based message passing. First is to use
a user level shared memory map similar to what we do in
SPIDAL. Second is to get kernel assistance to directly copy
messages from one process’s memory to the other. It also dis-
cusses how cache optimizations help in communication and
how to address Non Uniform Memory Access (NUMA) en-
vironments.

Hybrid MPI (HMPI) [26] presents a similar idea to the zero
intra-node messaging in SPIDAL. It implements a custom
memory allocation layer that enables MPI ranks running
within a node to have a shared heap space and thereby making
it possible to copy messages directly within memory without
external communication. HMPI optimizes for point to point
messages only, but provides seamless support over Xeon Phi
accelerators.

An extension to HMPI that provides an efficient MPI collec-
tive implementation is discussed in [17]. It provides details on
different techniques to implement collective primitives and
how to select the best algorithm for a given collective in a
NUMA setting. Also, it provides a comparison for reductions
within a node against the popular OpenMP [5] library.

NCCL (pronounced ”Nickel”) [19] is a recent attempt from
NVIDIA to provide an MPI like collective library to use with
multiple Graphical Processing Units (GPU) within a node.
Traditional data transfer between GPUs involve communica-
tion with the host and NCCL avoids it and uses their GPUDi-

rect implementation to copy data directly from one GPU to
another. This is similar to our approach of data transfer be-
tween processes, except it happens between GPU nodes.

Project Tungsten from databricks company is a series of opti-
mization techniques targeting Apache Spark [27] to bring its
performance closer to native level. It includes several con-
cepts similar to our work on SPIDAL such as off-heap data
structures, in memory data transfer, and cache aware comput-
ing.

7. CONCLUSION
Our results show that the SPIDAL applications scale and per-
form well in large HPC clusters. Also, with our optimizations
we could execute SPIDAL applications on much larger data
sets than what we could in the past and still achieve excel-
lent scaling results. Our improved intra-node communication
is pivotal to the gains we have made and with the developer
friendly Java interface, we believe SPIDAL applications will
help us in the future to work with other big data data plat-
forms such as Apache Hadoop, Spark, and Storm.

ACKNOWLEDGMENTS
This work was partially supported by NSF CIF21 DIBBS
1443054 and AFOSR FA9550-13-1-0225 awards. We also
like to express our gratitude to the staff and system adminis-
trators at Digital Science Center (DSC) at Indiana University
for supporting us on this work.

REFERENCES
1. Borg, I., and Groenen, P. Modern Multidimensional

Scaling: Theory and Applications. Springer, 2005.

2. Bruck, J., Ho, C.-T., Upfal, E., Kipnis, S., and
Weathersby, D. Efficient algorithms for all-to-all
communications in multiport message-passing systems.
IEEE Trans. Parallel Distrib. Syst. 8, 11 (Nov. 1997),
1143–1156.

3. Chai, L. High Performance and Scalable MPI
Intra-Node Communication Middleware for Multi-Core
Clusters. PhD thesis, Graduate School of The Ohio State
University, 2009.

4. Dagum, L., and Enon, R. OpenMP: an industry standard
API for shared-memory programming. Computational
Science & Engineering, IEEE 5, 1 (1998), 46–55.

5. Dagum, L., and Menon, R. Openmp: An
industry-standard api for shared-memory programming.
IEEE Comput. Sci. Eng. 5, 1 (Jan. 1998), 46–55.

6. Ekanayake, J. Architecture and Performance of Runtime
Environments for Data Intensive Scalable Computing.
PhD thesis, Indianapolis, IN, USA, 2010. AAI3439561.

7. Fox, G. Robust scalable visualized clustering in vector
and non vector semi-metric spaces. Parallel Processing
Letters 23, 2 (2013).

8. Fox, G., Mani, D., and Pyne, S. Parallel deterministic
annealing clustering and its application to lc-ms data
analysis. In Big Data, 2013 IEEE International
Conference on (Oct 2013), 665–673.



9. Fox, G., Qiu, J., Kamburugamuve, S., Jha, S., and
Luckow, A. Hpc-abds high performance computing
enhanced apache big data stack. In Cluster, Cloud and
Grid Computing (CCGrid), 2015 15th IEEE/ACM
International Symposium on (May 2015), 1057–1066.

10. Fox, G. C. Deterministic annealing and robust scalable
data mining for the data deluge. In Proceedings of the
2Nd International Workshop on Petascal Data
Analytics: Challenges and Opportunities, PDAC ’11,
ACM (New York, NY, USA, 2011), 39–40.

11. Geoffrey C. Fox, S. J. J. Q. S. E., and Luckow, A.
Towards a comprehensive set of big data benchmarks.
Tech. rep., 2015.

12. Huang, W., Santhanaraman, G., Jin, H., Gao, Q., and
Panda, D. Design of high performance mvapich2: Mpi2
over infiniband. In Cluster Computing and the Grid,
2006. CCGRID 06. Sixth IEEE International Symposium
on, vol. 1 (May 2006), 43–48.

13. Imam, S., and Sarkar, V. Habanero-java library: A java 8
framework for multicore programming. In Proceedings
of the 2014 International Conference on Principles and
Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools, PPPJ ’14, ACM (New
York, NY, USA, 2014), 75–86.

14. OpenHFT Java Thread Affinity. https:
//github.com/OpenHFT/Java-Thread-Affinity.

15. Klock, H., and Buhmann, J. M. Multidimensional
scaling by deterministic annealing. In Proceedings of the
First International Workshop on Energy Minimization
Methods in Computer Vision and Pattern Recognition,
EMMCVPR ’97, Springer-Verlag (London, UK, UK,
1997), 245–260.

16. Levenberg, K. A method for the solution of certain
non-linear problems in least squares. Quarterly Journal
of Applied Mathmatics II, 2 (1944), 164–168.

17. Li, S., Hoefler, T., and Snir, M. Numa-aware
shared-memory collective communication for mpi. In

Proceedings of the 22Nd International Symposium on
High-performance Parallel and Distributed Computing,
HPDC ’13, ACM (New York, NY, USA, 2013), 85–96.

18. The Million Sequence Clustering Project.
http://salsahpc.indiana.edu/millionseq/.

19. NVIDIA NCCL. https://github.com/NVIDIA/nccl.

20. OpenHFT JavaLang Project.
https://github.com/OpenHFT/Java-Lang.

21. OSU Micro-Benchmarks.
http://mvapich.cse.ohio-state.edu/benchmarks/.

22. PlotViz on Web.
https://github.com/DSC-SPIDAL/WebPViz.

23. Rose, K., Gurewwitz, E., and Fox, G. A deterministic
annealing approach to clustering. Pattern Recogn. Lett.
11, 9 (Sept. 1990), 589–594.

24. Ruan, Y., and Fox, G. A robust and scalable solution for
interpolative multidimensional scaling with weighting.
In 9th IEEE International Conference on eScience,
eScience 2013, Beijing, China, October 22-25, 2013
(2013), 61–69.

25. Vega-Gisbert, O., Roman, J. E., Groß, S., and Squyres,
J. M. Towards the availability of java bindings in open
mpi. In Proceedings of the 20th European MPI Users’
Group Meeting, EuroMPI ’13, ACM (New York, NY,
USA, 2013), 141–142.

26. Wickramasinghe, U. S., Bronevetsky, G., Lumsdaine,
A., and Friedley, A. Hybrid mpi: A case study on the
xeon phi platform. In Proceedings of the 4th
International Workshop on Runtime and Operating
Systems for Supercomputers, ROSS ’14, ACM (New
York, NY, USA, 2014), 6:1–6:8.

27. Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker,
S., and Stoica, I. Spark: Cluster computing with working
sets. In Proceedings of the 2Nd USENIX Conference on
Hot Topics in Cloud Computing, HotCloud’10, USENIX
Association (Berkeley, CA, USA, 2010), 10–10.

https://github.com/OpenHFT/Java-Thread-Affinity
https://github.com/OpenHFT/Java-Thread-Affinity
http://salsahpc.indiana.edu/millionseq/
https://github.com/NVIDIA/nccl
https://github.com/OpenHFT/Java-Lang
http://mvapich.cse.ohio-state.edu/benchmarks/
https://github.com/DSC-SPIDAL/WebPViz

	1 Introduction
	2 SPIDAL
	3 High Performance Optimizations
	3.1 Zero Intra-node Communication
	3.2 Cache and Memory Optimization
	3.3 MPI Over Threads
	3.4 Minimal Memory and Zero Full GC
	3.5 Off Heap Data Structures

	4 Technical Evaluation
	5 Future Work
	6 Related Work
	7 Conclusion

