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Abstract—Scientific problems that depend on processing large
amounts of data require overcoming challenges in multiple areas:
managing large-scale data distribution, controlling co-placement
and scheduling of data with compute resources, and storing,
transferring, and managing large volumes of data. We analyze
the ecosystems of the two prominent paradigms for data-intensive
applications, hereafter referred to as the high-performance com-
puting (HPC) and the Apache Hadoop paradigm. We propose a
basis, common terminology and functional factors upon which to
analyze the two approaches of both paradigms. We discuss the
concept of “Big Data Ogres” as means of understanding and char-
acterizing the most common application workloads found across
the two paradigms. We then discuss the salient features of the
two paradigms, and compare and contrast the two approaches.
Specifically, we examine common implementation/approaches of
these paradigms, shed light upon the reasons for their current
“architecture” and discuss some typical workloads that utilize
them. In spite of the significant software distinctions, we believe
there is architectural similarity. We discuss the potential inte-
gration of different implementations, across the different levels
and components. Our comparison progresses from a fully qual-
itative examination of the two paradigms, to a semi-quantitative
methodology. We use a well understood K-means clustering ex-
emplar, and characterize its performance on a range of repre-
sentative platforms, covering several implementations from both
paradigms. Our experiments provide an insight into the relative
strengths of the two paradigms. Even though no single applica-
tion or metric of performance can be a universal determinant of
applicability and comparison between the two stacks, we provide
a careful generalization of the conclusions from our experiments.

I. INTRODUCTION

The growing importance of data-intensive applications is
generally recognized and has lead to a wide range of ap-
proaches and solutions for data distribution, management and
processing. These approaches are characterized by a broad set
of tools, software frameworks and implementations. Although
seemingly unrelated, the approaches can be better understood
by examining their use of common abstractions and simi-
lar architectures for data management and processing. Build-
ing upon this putative similarly, we examine and organize
many existing approaches to Big Data processing into two
primary paradigms — the scientific high-performance (HPC)
and Apache Hadoop paradigms, which we believe reflects and
captures the dominant historical, technical and social forces
that have shaped the landscape of Big Data analytics.

The HPC paradigm has its roots in supercomputing-class
computationally intensive scientific problems (e.g. Molecular
Dynamics of macromolecular systems, fluid dynamics at scales
to capture turbulence) and in managing large-scale distributed
problems (e. g. data analysis from the LHC). HPC paradigms
has been characterized by limited implementations, but cus-
tomized and tuned for performance along a narrow set of
requirements. In contrast, the Apache Hadoop paradigm has
seen a significant update in industry and recently also in scien-
tific environments. A vibrant, manifold open-source ecosystem
consisting of higher-level data stores, data processing/analyt-
ics and machine learning frameworks evolved around a stable,
non-monolithic kernel — the Hadoop Filesystem (HDFS).

With the continuing uptake of Hadoop/ABDS, the diver-
sity and heterogeneity of infrastructures will further increase
making it increasingly difficult for applications to utilize re-
sources in an interoperable way. The success and evolution
of Hadoop/ABDS into a widely deployed cluster computing
frameworks yields many opportunities for traditional scientific
applications; it also raises many important questions, viz., how
do typical data-intensive HPC and ABDS workloads differ?
what features of the Hadoop/ABDS are useful for traditional
scientific workloads? What features of Hadoop/ABDS stack
can be extended and integrated with the HPC implementa-
tions? Given the drastic and dynamic changes underway, we
believe it is premature to attempt closed-form and final an-
swers to these and many other questions. Thus it is the aim
of this paper to provide the conceptual framework and termi-
nology to begin addressing these questions.

Paper Outline: This paper can be divided into two logi-
cal parts: in the first part, we take a general approach to an-
alyzing the ecosystem of the two prominent approaches to
data-intensive applications. We first develop a common basis
upon which to analyze the two approaches by proposing com-
mon terminology and functional decomposition of the two ap-
proaches. which is highlighted as two specific realizations (as
shown in Fig 1), hereafter referred to as the high-performance
computing (HPC) paradigm and the Hadoop-based big data
stack, or for simplicity the Apache stack. We then discuss the
salient features of the two stacks, and building upon the under-
lying terminology compare and contrast the two approaches.
In the second part, we move from a fully qualitative exami-



nation of the two stacks, to a semi-quantitative methodology,
whereby we experimentally examine both hard performance
numbers (along different implementations of the two stacks)
and soft issues such as completeness, expressivity, extensibility
as well as software engineering considerations. Even though
no single application or metric of performance can be a univer-
sal determinant of applicability and comparison between the
two stacks, we provide a careful generalization of the conclu-
sions from our experiments.

II. OGRES FOR BIG DATA

Based upon an analysis of a large set of Big Data applica-
tions, including more than 50 use cases [?], we propose the
Big Data Ogres in analogy with parallel computing with the
Berkeley Dwarfs, NAS benchmarks and linear algebra tem-
plates. The purpose of Big Data Ogres is to discern common-
alities and patterns across a broad range of seemingly different
Big data applications, propose an initial structure to classify
them, and help cluster some commonly found applications
using structure. Note the Big Data Ogres, like the Berkeley
Dwarfs are not orthogonal, nor exclusive, and thus do not
constitute a formal taxonomy. Also we capture the richness
of Big data by including not just different parallel structures
(as in 5th ogre below) but also important overall patterns. Big
data is in its infancy without clear consensus as to important
issues and so we propose an inclusive set of Ogres expecting
that further discussion will refine them.

The first Ogre captures different analytical approaches
challenges. Some representative application classes are (i)
Pleasingly Parallel — as in Blast (over sequences), Protein
docking (over proteins and docking sites), imagery (ii) Local
Machine Learning — ML or filtering pleasingly parallel as-in
bio-imagery, radar (This contrasts with Global Machine Learn-
ing seen in LDA, Clustering etc. with parallel ML over nodes
of system) (iii) Fusion: Knowledge discovery often involves
fusion of multiple methods (ensemble methods one approach).

The second Ogre captures applications with important data
sources with distinctive features, representative examples of
the data sources include, (i) SQL based, (ii)) NOSQL based,
(iii) Set of Files (as managed in iRODS), (iv) Internet of
Things, (v) Streaming and (vi) HPC simulations.

The third Ogre contains Distinctive System features, and
includes (i) Agents, as in epidemiology (swarm approaches)
and (ii) GIS (Geographical Information Systems).

The forth Ogre builds upon the Problem Structure of Big
Data applications. For example, (i) Typical N points in a space;
important differences between metric and non-metric spaces
(i) Maximum Likelihood, (iii) Chi-squared distributions, and
(iv) Expectation Maximization (often method of Steepest de-
scent).

The fifth Ogre organizes structure of the core analytics
kernel with representative examples (i) Recommender Sys-
tems (Collaborative Filtering) (ii)) SVM and Linear Classifiers
(Bayes, Random Forests), (iii) Outlier Detection (iORCA) (iv)
Clustering (many methods), (v) PageRank, (vi) LDA (Latent

Dirichlet Allocation), (vii) PLSI (Probabilistic Latent Seman-
tic Indexing), (viii) SVD (Singular Value Decomposition), (ix)
MDS (Multidimensional Scaling), (x) Graph Algorithms (seen
in neural nets, search of RDF Triple stores), (xi) Neural Net-
works (Deep Learning), and (xii) Global Optimization (Vari-
ational Bayes).

III. APACHE HADOOP VERSUS HPC: WHAT CAN HPC
LEARN FROM HADOOP?

In this section we give an overview of the HPC and Hadoop
ecosystem. We will particularly analyze the different layers
and architectural design approaches depicted in Figure 1.

A. High Performance Computing

High Performance Computing (HPC) infrastructure were
traditionally built to provide high-end compute infrastructures
for scientific applications. HPC is typically aimed toward high-
end computing capabilities (small input, large output). Hadoop
in contrast was built to process large volumes of data (large
input, small output). The different origins resulted in different
software stacks.

Figure 1.compares the HPC and Big Data stack. In a typical
HPC cluster compute and data infrastructures are separated:
A high-end compute environment — typically a shared noth-
ing many-core environment (potentially adding GPUs or other
accelerators such as the Xeon Phi) — is complemented by a
storage cluster running Lustre [8] or GPFS [9] or another par-
allel filesystem connected by a high-bandwidth, low-latency
network. While this meets the need for compute-intensive ap-
plications, for data-intensive applications this means that data
needs to be moved across the network, which represents a po-
tential bottleneck.

Compute resources are a typically managed by a local re-
source management system such as SLURM, Torque or SGE.
Generally, these system have a focus on managing compute
slots (typically cores). Storage resources are typically shared
resources — typically a quota is applied on the data size, but not
on I/O. These systems have been particularly optimized with
respect to long-running batch jobs. Data locality and other
scheduling constraints are not considered.

Lustre and GPFS storage resources are typically exposed as
shared filesystem on the compute nodes. In addition several
higher-level storage management services, such as SRM [10],
iRODS [11] or GFFS, emerged. iRODS is a comprehen-
sive distributed data management solution designed to op-
erate across geographically distributed, federated storage re-
sources. iIRODS combines storage services with services for
metadata, replica, transfer management and scheduling. Cen-
tral to iRODS are the so called micro-services, i.e. the user
defined control logic. Micro-services are automatically trig-
gered and handle pre-defined tasks, e.g. the replication of a
data set to a set of resources.

Various other approaches for supporting data-intensive
applications on the HPC infrastructures emerged. For ex-
ample, different MapReduce implementations for HPC have
been proposed: MPI-based MapReduce implementations,
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HPC and Apache Hadoop Stack: While HPC infrastructures historically separated data and compute, Apache Hadoop co-locates compute and data.

The YARN resource manager heavily utilizes multi-level, data-aware scheduling and provides the basis for a vibrant ecosystem of data processing, analytics
and machine learning frameworks. Pilot-Jobs introduced the multi-level scheduling approach to HPC environments and serve as basis for many kinds of

workloads.

such as MapReduce-MPI [48], can efficiently utilize HPC
features, such as low-latency interconnects and one-sided
and non-blocking communications [49]. Further, various
non-MPI MapReduce implementations have been proposed:
Twister/Salsa [25] to support iterative machine learning
workloads, Pilot-MapReduce [50] to support geographically
distributed data, etc.

Further, more general approaches for managing larger num-
ber of heterogeneous workloads comprising of short-/long-
running, data-/non-data intensive, parallel-/non-parallel tasks,
have been proposed: Pilot-Jobs [3], many tasks [4], work-
flows [5] and HTC [6]. Pilot-Jobs e. g. generalize the concept
of a placeholder to provide multi-level and/or application-level
scheduling on top of the system-provided schedulers. With the
increasing importance of data, Pilot-Jobs are increasingly used
to process and analyze large amounts of data [54], [3]. In gen-
eral, one can distinguish two kinds of data management: (i) the
ability to stage-in/stage-out files from another compute node
or a storage backend, such as SRM and (ii) the provisioning
of integrated data/compute management mechanisms. An ex-
ample for (i) is Condor-G/Glide-in, which provides a basic
mechanism for file staging and also supports access to SRM.
Another example is Swift [55], which provides a data manage-
ment component called Collective Data Management (CDM).
DIANE provides in-band data transfer functionality over its
CORBA channel. DIRAC [56] is an example of a type (ii) sys-
tem and integrates with SRM storage resources. A disadvan-
tage of these systems compared to the Apache Hadoop stack is
while Pilot-Job support dynamic execution, data-management
is typically done using files and not using higher level abstrac-
tions as found in the Hadoop ecosystem.

B. Hadoop Ecosystem

Hadoop was originally developed in the enterprise space (by
Yahoo!) and introducing an integrated compute and data in-
frastructure. Hadoop provides an open source implementation
of the MapReduce programming model originally proposed
by Google [13]. Hadoop is designed for cheap commodity
hardware (which potentially can fail), co-places compute and
data on the same node and is highly optimized for sequential
reads workloads. With the uptake of Hadoop in the commer-
cial space, scientific applications and infrastructure providers
started to evaluate Hadoop for their purposes. At the same
time, Hadoop evolved with increasing requirements (e. g. the
support for very heterogeneous workloads) into a general pur-
pose cluster framework borrowing concepts existing in HPC.

Hadoop 1 had two primary components (i) the Hadoop
Filesystem [?] — an open source implementation of the Google
Filesystem architecture [?] — and the MapReduce framework
which was the primary way of processing data stored in HDFS.
However, Hadoop saw a broad uptake and the MapReduce
model as sole processing model proofed insufficient. Thus,
the tight coupling between HDFS, resource management and
the MapReduce programming model proofed to be too inflex-
ible for the usage modes that emerged in the Hadoop ecosys-
tem. An examples of such a deficit is the lack of support
for efficient iterative computations (as often found in machine
learning). With the introduction of Hadoop 2 and YARN [35]
as central resource manager, Hadoop clusters can now ac-
commodate any application or framework. Figure 1 (right)
depicts a Big Data stack based on Hadoop 2’s HDFS and
YARN. Based on the resource fabric and management layer a
vibrant ecosystem of higher-level runtime systems, data pro-
cessing and machine learning libraries emerged. Historically,



MapReduce was the Hadoop runtime layer for processing data;
but, meet the application requirements runtimes for record-
based, random-access data (HBase [?]), iterative processing
(Spark [15], TEZ [37], Twister [25]), stream (Spark Stream-
ing) and graph processing (Apache Giraph [?]) emerged. A key
enable for these frameworks is the YARN support for multi-
level scheduling, which enables the application to deploy there
own application-level scheduling routines on top of Hadoop-
managed storage and compute resources. While YARN man-
ages the lower resources, the higher-level runtimes typically
an application-level scheduler to optimize resource usage for
the application. In contrast to HPC, the resource manager, run-
time system and application are much more tighter integrated.
Typically, an application uses the abstraction provided by the
runtime system (e. g. MapReduce) and does not directly inter-
act with resource management.

Spark e. g. is a runtime for iterative processing; it is based
on a Scala-based API for expressing parallel dataflow on top of
in-memory, distributed datasets. For this purpose, Spark intro-
duces resilient distributed datasets (RDD) as higher-level API
that enables application to load a dataset into the memory of a
set of cluster nodes. The runtime of Spark automatically par-
titions the data and manages data locality during runtime. As
shown in section IV Spark provides a powerful abstraction for
expression iterative algorithms, such as KMeans while show-
ing a good performance compared to earlier approaches such
as Apache Mahout [22].

Many analytical applications — in particular in enterprise
environments — rely on SQL as primary data query language.
This lead to the development of several SQL-based analytic
engines: Google’s Dremel [16], Hive [17], HAWQ [?], Im-
pala [18] and Shark [19] are prominent examples of such
SQL engines. While Hive was originally implemented based
on the MapReduce model, the latest version relies on TEZ
as runtime layer. Similarly, Shark relies on Spark as runtime.
Other SQL engines, such as Impala and HAWQ, provide their
own runtime environment and do not rely on MapReduce or
Spark. In addition, hybrid relational database/HDFS environ-
ments have been proposed. HadoopDB [?] e. g. deploys a Post-
greSQL database on every node on which it distributes the
data using hash partition. Further, the system can access data
from HDEFS via external tables. Further, several commercial
approaches with a similar exist, e. g. Polybase [?].

Higher up in the stack are machine learning applications; in
contrast to typical SQL-queries, these typically require multi-
ple iterations on the data. While traditional in-memory, single-
node tools, such R [20] or Scikit-Learn[21] provide a powerful
implementations of many machine learning algorithms, they
are mostly constrained to a single machine. To overcome this
limitation, several approaches for using Hadoop/MapReduce
for ML implementations have been proposed, e.g. Apache
Mahout [22] or RHadoop [24]. There are several, well-known
limitations of Hadoop 1 with respect to support for iterative
MapReduce applications [25]. Thus, increasingly, these itera-
tive runtimes are deployed. MLBase [26] is a machine learn-
ing framework based on Spark as lower-level data processing

framework. SparkR [?] allows R applications to utilize Spark.

C. Hadoop Resource Management

Historically, many scientific applications comprises of large,
monolithic simulations spawning a large number of cores
running on High Performance Computing (HPC) infrastruc-
tures. These applications typically utilize fine-grained, tightly-
coupled parallelism (often based MPI). Such applications typ-
ically allocate a static space of the HPC system and need to be
scheduled in a way that they simultaneously execute on a sys-
tem they, e. g. using Gang scheduling. Typically workloads in
such environments are rigid: MPI jobs e. g. comprise of a set
of tightly coupled highly latency sensitive tasks with fixed re-
source demands, which do not change during a jobs lifetime.
Typically, the amount of resources and walltime is defined at
submission time and does not change during runtime. Data lo-
cality is not a first order concern: most HPC are write heavy,
while data-intensive applications (e. g. analytics applications)
are more read heavy.

Data-intensive workloads can easily be decomposed into
multiple, very fine-grained parallel tasks. One hypothesis is
that by using many small tasks the utilization of resources and
fairness<can be improved [38], [28]. Also, this type of fine-
grained parallelism forms the basis for supporting interactive
workloads on top-of distributed infrastructure. Scheduling het-
erogeneous workload consisting of small, short-running tasks
and longer running more batch oriented tasks represents a chal-
lenge for traditional monolithic, centralized cluster scheduling
systems. In addition the resources dynamisms introduced by
the multi-tenant nature of such cluster systems increases the
difficulty.

Different architectures for resource management in HPC and
Apache Hadoop environments have been proposed: central-
ized, multi-level and decentralized. Table I summarizes differ-
ent architectures. HPC schedulers were designed for very rigid
applications and frameworks with constant resource require-
ments during their runtime, such as parallel applications based
on MPI. Multi-level schedulers (such as Mesos [7]) emerged
to address the need to efficiently support data-intensive work-
loads and allow the dynamic allocation and usage of resource
through application-level scheduling. To overcome scalability
bottlenecks in the centralized and even multi-level approach
when running a large number of short running tasks, some
decentral scheduler architectures have been proposed, e.g.
Google’s Omega [27] and Sparrow [28], an application-level
scheduler of Spark.

Hadoop 1 utilizes a centralized scheduling approach using
the Job Tracker as resource manager. Not only represented
the Job Tracker a scalability bottleneck, it also tightly coupled
the MapReduce framework to resource and cluster manage-
ment service significantly constraining flexibility. However, in
particular in the early days this was not an issue: Hadoop
was often used on traditional HPC clusters using Hadoop
on Demand [29], SAGA Hadoop [30] or MyHadoop [31],
the native Hadoop support in schedulers such as SLURM or
in clouds (Amazon’s Elastic MapReduce [32] or Microsofts



Centralized Multi-Level Decentralized

Examples Torque, YARN, Mesos, Pi- | Omega, Sparrow
SLURM lots

‘Workloads large, parallel | medium-sized fine-grained tasks
jobs tasks

Latency high medium - low low

Application | Submission High High

Integration | only (Application- (Application-

Level Scheduling) | Level Scheduling)
TABLE I

SCHEDULER ARCHITECTURES: INCREASINGLY, CENTRALIZED AND
MONOLITHIC SCHEDULING SYSTEMS ARE BEING REPLACED TO SUPPORT
HIGH-VOLUME, SHORT-RUNNING TASKS IN COMPUTE/DATA CLUSTER
RESOURCES.

HDInsight [33] on Azure). A main limitation of these ap-
proaches is the fact that data has to be initially moved to the
HDFS filesystem before running the computation, i. e. data lo-
cality can generally not exploited.

Despite the limitations of Hadoop 1, many different re-
sources usage modes for Hadoop clusters emerged. Histori-
cally, higher-level frameworks, such as HBase or Spark, were
deployed next to the core Hadoop daemons making it increas-
ingly difficult to predict resource usage and thus, performance.
YARN [35], [34] the core of Hadoop 2 was designed to ad-
dress the need to efficiently support heterogeneous workloads
in larger Hadoop cluster environments. One design objective
is to provide effective support for the fine-grained task-level
parallelism exhibited by data-intensive applications. With the
increasing size of these Hadoop cluster and the greater variety
of Hadoop-based frameworks and applications, the require-
ments with respect to resource management increased, e. g. it
became a necessity to support batch, streaming and interactive
data processing. While YARN solves some of these problems,
it has some limitations: it provides e. g. only a very low-level
abstraction for resource management; data locality needs to be
manually managed by the application by requesting resources
at the location of an file chunk. Mesos [7]; Mesos is a two-
level scheduler that tightly integrates application and resource
management system.

YARN provides the basis for application-level scheduling.
As shown in Figure 1 applications frameworks typically rely
on a runtime system that embeds an application-level sched-
uler; this is e.g. the case for MapReduce, Spark and HBase.
Another observation is the fact that increasingly the common
application runtime requirements are integrated into higher-
level runtime systems frameworks, e. g. the support for long-
running applications or multi-stage applications using DAGs
(directed acyclic graph). For example, Llama [36] offers a
long-running application master for YARN application de-
signed for the Impala SQL engine. Similar capabilities for
Mesos are provided by Chronos [40] and Marathon [41]. In
the HPC world similar capabilities exists via Pilot-Jobs [3].
TEZ [37] is a DAG processing engine primarily designed to
support the Hive SQL engine.

YARN and Mesos expose a much more dynamic resource
model to the application than typical HPC schedulers. Gen-

erally, these workloads consisting of short-running tasks; this
enables the scheduler e. g. to easily remove resources from an
application (by simply waiting until task completion). Thus,
the overall system can better exploit a dynamically expanding
or shrinking resource pool and improve the overall cluster uti-
lization. For short-running jobs the scheduler often represents
a bottleneck, e. g. the startup of a YARN application typically
requires several seconds. However, to enable this form of dy-
namic resource usage, both Mesos or YARN require a tighter
integration of the application and the resource management
system. In YARN, the application needs to register a so called
Application Master with YARN. As part of this process the
Application Master subscribes to a set of callbacks. The unit
of scheduling is referred to as a container. Containers are re-
quested from the so called Resource Manager. The manager
does not necessarily returns the requested number of resources,
i. e. the application is required to elastically utilize the assigned
resources; Also, YARN can request the de-allocation of con-
tainers. Thus, the application needs to carefully keep track of
resources allocated and de-allocated. Similarly, in Mesos e. g.
the application-level scheduler is required to register with the
Mesos master and needs to respond to various callbacks, such
as resource offers and/or revocations.

D. High-Performance Big Data System (HPBDS): A Conver-
gence of Paradigms?

While HPC and Hadoop were originally designed to sup-
port different kinds of workloads: high-end, parallel comput-
ing in the HPC case vs. cheap data storage and retrieval
in the Hadoop case, a convergence of both worlds can be
observed. Increasingly, more compute-demanding workloads
are deployed on Hadoop cluster, while more data-parallel
tasks and workflows are executed on HPC infrastructures. The
Hadoop ecosystem matured to support a wide range of hetero-
geneous workloads particularly with the introduction of YARN
and Mesos. At the same time a proliferation of tools (e.g.
Pilot-Jobs) to support loosely coupled, data-intensive work-
loads on HPC infrastructures emerged. However, these tools
often focus on supporting large number of compute tasks or
are constraint to specific domains; thus, they do not reach the
scalability and diversity of the Hadoop ecosystem.

A particular advantage of Hadoop is that the ecosystem pro-
vides a wide-range of higher-level abstraction for data storage
and processing/analytics (MapReduce, iterative MapReduce,
graph analytics, machine learning etc.) all built on top of an
extensible kernel, the Hadoop Filesystem and YARN. In con-
trast to HPC schedulers, YARN has first-order design objec-
tive is the support for heterogeneous workloads using multi-
level, data-aware scheduling. For this purpose, YARN requires
a higher degree of integration between the application/frame-
work and the system-level scheduler than typical HPC sched-
ulers. Instead of a static resource request prior to the run,
YARN applications continuously request and return resources
in a very fine-grained way, i. e. applications can optimize their
resource usage and the overall cluster utilization is improved.
For MapReduce e.g. an application can request a different



Implementation | Execution Data Model Intermediate Resource Language Hardware
Unit Data Handling Management
(A.1) Hadoop Process Key, Value pairs | Disc/Local (and | YARN Java HPC Madrid: 16 cores/n-
(Java Object) network) ode, 16 GB memory, GE
(A.2) Mahout Process Mahout Vectors Disc (and net- | Hadoop Job | Java EC2: ccl.4xlarge, 16 cores,
work) Tracker 23 GB memory, 10GE)
(B) MPI Process (long | Primitive Types, | Message Passing | Amazon/ C EC2:  ccl.4xlarge, 16
running) Arrays (network) mpiexec cores/node, 23GB mem-
ory, 10GE)
(C.1) Python- | Process Key/Value (Text) Disk/Lustre Pilots, Python, HPC Stampede: 16
Script SLURM Java cores/node, 32 GB mem-
(Pilot-KMeans) ory, Infiniband
(C.2) HARP Thread (long | Key/Value (Java | Collectives (net- | YARN Java HPC Madrid: 16 cores/n-
running) Object) work) ode, 16 GB memory, GE
(C.3) Spark Thread Key/Value (RDD) | Spark Collectives | YARN Java, Scala | EC2:  ccl.4xlarge, 16
(network) cores/node, 23GB mem-
ory, 10GE
TABLE 11

KMEANS — COMPARISON OF DIFFERENT ARCHITECTURES AND APPROACHES

number of slots for the map and the reduce phase.

While HPC typically do not deploy YARN as primary
scheduler, the uptake of Hadoop has lead to various proposals
for integrating Hadoop/YARN into HPC environments. HPC
environments typically decouple compute and storage and con-
nect both with high-bandwidth, low-latency networks. The fol-
lowing integration aspects need to be addressed: (i) the inte-
gration with the local resource management level system, (ii)
the integration with HPC storage resources (i.e. the shared,
parallel filesystem) and (iii) the usage of high-end network
features such as RDMA as well as the implementation of effi-
cient abstractions (e. g. collective operations) on top of these.

Resource Management Integration: To achieve integration
with the native, system-level resource management system (i),
the Hadoop-level scheduler can be deployed on top of the
system-level scheduler. Resource managers, such as Condor
and SLURM, provide Hadoop support. Further, various third-
party systems, such as SAGA-Hadoop [30], JUMMP [42] or
MyHadoop [31], exist. A main disadvantage with this ap-
proach is the loss of data-locality, which the system-level
scheduler is typically not aware of. Also, if HDFS is used,
data first needs to be copied into HDFS before it can be pro-
cessed, which represents a significant overhead. Further, these
systems typically deploy Hadoop in a single user mode; thus,
cluster resources are not used in an optimal way.

Storage Integration: Hadoop provides a pluggable filesys-
tem abstraction that interoperates with anywhere Posix com-
pliant filesystem. Thus, most parallel filesystems can easily
be used in conjunction with Hadoop (ii)- however, in these
cases the Hadoop layer will not be aware of the data locality
maintained on the parallel filesystem level. Intel e. g. supports
Hadoop on top of Lustre [43], IBM on top of GPFS [44]. An-
other optimization concerns the MapReduce shuffling phase
that is carried out via the shared filesystem [45]. Also, the
scalability of these filesystem is usually constraint compared
HDFS where much of the data processing is done local to the
compute avoiding data movements across the network. Thus,
HDEFS is less reliant on fast interconnects.

IV. EXPERIMENTS

In the following we run different KMeans implementa-
tion on different kinds of infrastructures. Table II summa-
rizes the different implementations of the KMeans algorithm.
We categorize these into three categories: (A) Hadoop, (B)
HPC and (C) hybrid implementations. For (A) we investi-
gate (A.1) an Hadoop MapReduce implementation and (A.2)
Apache Mahout [22], for (B) an MPI-based KMeans imple-
mentation [63]. Further, we examine the following hybrid ap-
proaches: (C.1) Python Scripting implementation using Pi-
lots [50] (Pilot-KMeans), (C.2) a Spark KMeans [64] and (C.3)
a HARP implementation [65]. While (C.1) provides an in-
teroperable implementation of the MapReduce programming
model particularly for HPC environments, (C.2) and (C.3) en-
hance Hadoop for efficient iterative computations and intro-
duce collective operations to Hadoop environments.

We use three different infrastructures: Amazon EC2, the
Madrid YARN/Hadoop cluster and the Stampede clusters
(which is part of XSEDE [?]). On EC2 we utilize the clus-
ter compute instance type, which provides a HPC-style envi-
ronment. We utilize Elastic MapReduce [?] for managing the
Hadoop cluster in scenario (A.1) and the spark-ec2 tool
for scenario (C.3). Madrid uses YARN as resource manager,
Stampede is deploying SLURM.

We run three different KMeans scenarios: (i) 1,000,000
points and 50,000 clusters, (ii) 10,000,000 points and 5,000
clusters and (iii) 100,000,000 points and 500 clusters. Each
KMeans iterations comprises of two phases that naturally map
to the MapReduce programming model: in the map phase the



closest centroid for each point is computed; in the reduce phase
the new centroids are computed as the average of all points
assigned to this centroid. While the computational complex-
ity defined by the number of points x number of clusters, the
amount of data that needs to be exchanged during the shuffle
phase increases gradually from scenario (i) to (iii) proportion-
ally to the number of points.

Figure 2 shows the results of this experiment. Both Hadoop
implementations of KMeans (Hadoop MR (A.1)/Mahout
(A.2)) perform significantly worse than the HPC imple-
mentation based on MPI. The Map Reduce model — the
predominant usage mode of Hadoop 1.0 — has several disad-
vantages with respect to supporting iterative machine learning
algorithms: The shuffle phase, i.e. the sorting of the output
keys and the movement of the data to the reduce task, is op-
timized for use cases, such as data grouping, but introduces
a significant overhead where sorting is not needed. In par-
ticular in case of larger amounts of shuffle data, data needs
to be spilled to disks. For KMeans for e.g. a sorting is not
essential. In addition to the inefficiency with each MapRe-
duce, for every iteration a new job needs to be started, which
means that in addition to the job launching overhead, data
needs to be persisted and re-read to/from HDFS. The MPI
implementation in contrast only loads all points into memory
once. For communication the efficient collective layer from
MPI (MPI_Allreduce) is used.

The Python Scripting implementation (Pilot-KMeans) (C.1)
is based on the Pilot-MapReduce framework, which is an in-
teroperable implementation of the MapReduce programming
model for HPC, cloud and Hadoop environments. The frame-
work utilizes Pilots for resource managements. For each map
and reduce task, a CU inside the Pilot is spawned. For data-
exchange between the tasks the shared filesystem (the Lus-
tre scratch directory on Stampede) is used. While the Python
implementation outperforms Mahout, it performs significantly
worse than MPI or other hybrid approaches. In particular for
larger amounts of shuffle traffic (scenario (ii) and (iii)), the
Hadoop shuffle implementation is faster. Also, Spark by de-
fault compresses the shuffle data, which improves the perfor-
mance.

Both Spark and HARP are designed to efficiently sup-
port iterative workloads such as KMeans. While these ap-
proaches cannot entirely reach the performance of MPI, they
introduce a unique way of combining the advantages of MPI
with Hadoop/MapReduce. Spark performs slightly worse than
HARP. However, it must be noted that Spark operates on a
higher-level of abstraction and do not require to operate on
low-level data structures and communication primitives. The
RDD abstraction provides a consistent key/value-based pro-
gramming model and provides flexible API for manipulating
these. However, since RDD are designed as immutable enti-
ties, data often needs to be copied in-memory - in each iter-
ation our KMeans implementation generates two intermediate
RDDs. For MPI in contrast only a single copy of the data is
stored in memory and manipulated there.

V. CONCLUSION AND FUTURE WORK

A vibrant ecosystem of framework and tools evolved on
top of the Hadoop Filesystem and YARN. While the primary
design objective of Apache Hadoop was affordable, scale-out
storage/compute on commodity hardware, with the increas-
ing compute requirements both the HPC and Hadoop stack
converge. Compute-intensive, parallel workloads on both HPC
and Hadoop significantly benefit from high-end CPUs, mem-
ory and interconnects. Also, there is a potential role for accel-
erators (e.g. Nvidia GPGPUs or Intel MICs) in the Hadoop
stack.

YARN enables users to run HPC-style applications e.g.
based on MPI, as well as data-intensive applications on
Hadoop clusters. However, YARN has been primarily designed
to address data-intensive requirements, such as data local-
ity, fine-grained parallelism with many short-running compute
units and support for heterogeneous workloads. Hadoop ap-
plications are typically written on a higher level of abstrac-
tion (MapReduce, SQL, Spark) without resource specifics in
mind. If desired, the user can modify some parameters, e. g.
the HDFS or RDD chunk size, which also controls the paral-
lelisms. MPI applications in contrast operate on low-level data
types and communication operations.

While our micro-benchmark shows that MPI outperforms
the Hadoop-based implementation, it must be noted that the
second generation Hadoop frameworks, such as Spark, sig-
nificantly improved performance by adopting technique pre-
viously only found in HPC, such as effective collective op-
erations. At the same time these frameworks still maintain-
ing a very high and accessible level of abstraction, such as
data objects, collections etc. HPC applications operate on
low-level, application-specific files that often lack a common
runtime system for efficiently processing these data objects.
The Apache stack demonstrates the power of application-
level scheduling that lead to the development of many vertical
frameworks that provide powerful abstractions for data pro-
cessing, analytics and machine learning to the end-user while
hiding low-level issues, such resource management, data orga-
nization, parallelism, etc. The functionalities available in the
Apache Hadoop stack clearly exceeds the ones available in the
HPC stack.

Several approaches for combining HPC and Hadoop have
been proposed. Often, these focus on running Hadoop on top
of a standard HPC stack consisting of a resource manager
as SLURM and a parallel filesystem as Lustre. However, a
lot of the benefits of Hadoop are lost in these approaches,
such as data locality aware scheduling, higher cluster utiliza-
tion etc. Thus, we believe that this is not the right path to
interoperability. A possible approach for interoperability that
we will investigate in the future are Pilot-Jobs. By extending
HPC Pilot-Jobs to YARN and the usage of Pilot-Data [54]
for data locality aware scheduling a promising approach for

combining both worlds can be achieved.
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