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ABSTRACT 

Technology advances suggest that the data deluge, 
network bandwidth and computers performance will 
continue their exponential increase. Computers will 
exhibit 64-128 cores in some 5 years. Consequences 
include a growing importance of data mining and data 
analysis capabilities that need to perform well on both 
parallel and distributed Grid  systems. We discuss a 
class of such algorithms important in chemoinformatics, 
bioinformatics and demographic studies. We present a 
unified formalism and initial performance results for 
clustering and dimension reduction algorithm using 
annealing to avoid local minima. This uses a runtime 
CCR/DSS that combine the features of both MPI 
(parallel) and Grid workflow (distributed) paradigms. 
 
1 INTRODUCTION 

There are many important trends influencing scientific 
computing. One is the growing adoption of the eScience 
paradigm which emphasizes the growing importance of 
distributed resources and collaboration. Another is the 
data deluge with new instruments, sensors, and the 
Internet driving an exponential increase of data [1]. On 
the other hand, multicore chips are challenging because 
they require concurrency to exploit Moore’s law in 
contrast to the improved architectures and increasing 
clock speed of the last 15 years that has allowed 
dramatic performance increase within a well established 
fixed (sequential) programming paradigm [2-4]. Thus 
we suggest that it is important to look at data analysis 
and data mining and derive efficient multicore 
implementations. The data deluge, its management in a 
distributed environment and its analysis (mining) are 
relevant for both eScience and commodity applications. 
The former could involve data from high throughput 
instruments used in Life Sciences. The latter includes 
the analysis of environmental and surveillance monitors 
or the data fetched from the Internet that could 
characteristic a user’s interests. The RMS (Recognition, 
Mining, Synthesis) analysis from Intel [5, 6] identified 
data mining and gaming as critical applications for 
multicore chips. Scientific data is likely to be so 
voluminous that we need any implementation to work 

well on clusters of multicore chips with preferably the 
same programming model for the inter-chip as well as 
the intra-chip parallelism. On the other hand commodity 
applications might well not need cluster 
implementations but probably would choose thread-
based runtimes involving managed code – Java or C#. 
Data is inevitably distributed so the Grid capabilities are 
essential; data mining can be extremely computationally 
intense so parallel implementations will be necessary.  
The importance of Grids and multicore to both eScience 
(scientific computing) and commodity applications, 
motivates us to look at scientific data mining but in a 
programming model that is natural for related 
commodity applications. This motivates the SALSA 
(Service Aggregated Linked Sequential Activities) [7] 
research that we describe here. SALSA is implementing 
a set of data mining applications on multicore systems 
using managed code (C#) with parallel synchronization 
from a runtime CCR (Concurrency and Computation 
Runtime) developed at Microsoft Research [12, 13]. 
CCR supports both MPI style synchronization and the 
dynamic threading essential in many concurrent 
commodity applications. Further there is a service 
model DSS (Decentralized System Services) built on 
top of CCR [14]. CCR is a possible choice of runtime 
that could bridge between scientific and commodity 
applications as it supports the key concurrent primitives 
used in both of them. SALSA proposes that one builds 
applications as a suite of services [8] rather than 
traditional subroutine or class libraries. The service 
model allows one to support integration within grid, 
cluster and inter-chip environments. Thus SALSA is 
exploring a possible future application (data mining) on 
multicore chips using a programming model that could 
be used across a broad set of computer configurations 
and could be the basis of a programming model that 
links scientific computing to commodity applications. 
We note that we program in a low level style with user 
responsible for explicit synchronization in the fashion 
that is familiar from MPI. There certainly could be 
general or domain specific higher level environments 
such as variants of automatic compilation, OpenMP, 
PGAS or even the new languages from Darpa’s HPCS 
program [6, 15]. Our work can still be relevant here as it 
uses a runtime that is a natural target for such advanced 
high-level environments. 
Performance is a critical question for any system that 
spans multiple different domains; integration of 
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multiple paradigms requires that the performance is 
good in each paradigm. In previous papers [9-11], we 
have discussed the core performance of CCR and DSS 
and here we focus on  applications and discuss in more 
detail their structure and performance.  
The SALSA work is currently performed on a variety of 
two CPU multicore systems with a total of 4 or 8 cores 
and running variants of Linux and Windows operating 
systems. The results reported in this paper use a single 8 
core machine termed Intel8b. This is a Dell Precision 
PWS690, with 2 Intel Xeon CPUs x5355 at 2.66GHz, 
an L2 Cache 2X4M, 4GB Memory, and running Vista 
Ultimate 64bit. 
In the following section we briefly discuss our 
programming model and refer the reader to other papers 
[9-11] for more details. In section 3, we discuss the data 
mining algorithms investigated and give some overall 
performance results. In section 4, we summarize our 
results and identify the key features of the application 
structure and the implications for the parallel run time.  

Main Routine for Exchange Pseudocode { 
      Create CCR dispatchers to control threads 
      Create a queue to hold tasks 
      Set up start ports with MPI initialization data such as thread 

number 
      Invoke handlers (MPI threads) on start ports  
} End Main Routine 
 
MPI logical thread Pseudocode (Arguments are start port 
contents) { 
      Calculate nearest neighbors for exchange collective 
      Loop over stages  { Post information to 2 ports that will be 

read by left and right neighbors 
 
          yield return on CCR MultipleItemReceive will wait till this 

thread’s information is available in its ports and continue 
execution after reading 2 ports 

 
          Do computation for this stage 
      } End loop over stages 
 

Each thread sends information to ending port 
and thread 0 only does yield return on CCR 
MultipleItemReceive to collect information from all threads to 
complete run after reading from one port for each thread 
(this is a reduction operation).  

} End MPI Thread 

 
2 PARALLEL RUNTIME: CCR AND DSS 
 
CCR provides a framework for building general 
collective communication where threads can write to a 
general set of ports and read one or more messages from 
one or more ports. The framework manages both ports 
and threads with optimized dispatchers that can 
efficiently iterate over multiple threads. All primitives 
result in a task construct being posted on one or more 
queues, associated with a dispatcher. The dispatcher 
uses OS threads to load balance tasks. The current 
applications and provided primitives support a dynamic 
threading model with capabilities that include: 
1) FromHandler: Spawn threads without reading ports 
2) Receive: Each handler reads one item from a single 

port 
3) MultipleItemReceive: Each handler reads a 

prescribed number of items of a given type from a 
given port. Note items in a port can be general 
structures but all must have same type. 

4) MultiplePortReceive: Each handler reads a one item 
of a given type from multiple ports. 

5) JoinedReceive: Each handler reads one item from 
each of two ports. The items can be of different 
type. 

6) Choice: Execute a choice of two or more port-
handler pairings 

7) Interleave: Consists of a set of arbiters (port -- 
handler pairs) of 3 types that are Concurrent, 
Exclusive or Teardown (called at end for clean up). 
Concurrent arbiters are run concurrently but 
exclusive handlers are not. 

 
One can spawn handlers that consume messages as is 
natural in a dynamic search application where handlers 
correspond to links in a tree. However one can also 
have long running handlers where messages are sent 
and consumed at a rendezvous points (yield points in 

CCR) as used in traditional MPI applications. Note that 
“active messages” correspond to the spawning model of 
CCR and can be straightforwardly supported. Further 
CCR takes care of all the needed queuing and 
asynchronous operations that avoid race conditions in 
complex messaging. CCR is attractive as it supports 
such a wide variety of messaging from dynamic 
threading, services (via DSS described in [9]) and MPI 
style collective operations.  
 
CODE SAMPLE 1: MPI EXCHANGE  IN CCR 
For our data mining applications, we often need 
rendezvous semantics which are fully supported by 
CCR. We have [11] already compared CCR with MPI 
and note that posting to a port in CCR corresponds to a 

MPISEND and the matching MPIRECV is achieved 
from arguments of handler invoked to process the port. 
MPI has a much richer set than CCR of defined 
methods that describe different synchronicity options, 
various utilities and collectives. These include the 
multi-cast (broadcast, gather-scatter) of messages with 
the calculation of associative and commutative 
functions on the fly. It is not clear what primitives and 
indeed what implementation will be most effective on 
multicore systems and so we have not performed an 
exhaustive study of MPI collective patterns in CCR. In 
fact it is possible that SALSA’s results which suggest 
one can support in the same framework a set of 
execution models that is broader than today’s MPI, 
could motivate a new look at messaging standards for 
parallel computing. CCR only has built-in primitives to 
support MPI  shift and reduction operations but we 
exploited CCR’s ability to construct customized 
collectives sketched in Code Sample I to implement the 
MPI Exchange pattern [11]. An important innovation of 

 



 

the CCR is to allow sequential, asynchronous 
computation without forcing the programmer to write 
callbacks, or continuations, and at the same time not 
blocking an OS thread. This allows the CCR to scale to 
tens of millions of pending I/O operations, but with 
code that reads like synchronous, blocking operations.  
Note that all our work was for managed code in C# 
which is an important implementation language for 
commodity desktop applications although slower than 
C++. In this regard we note that there are plans for a 
C++ version of CCR which would be faster but prone to 
traditional un-managed code errors such as memory 
leaks, buffer overruns, memory corruption. The C++ 
version could be faster than the current CCR but 
eventually we expect that the C# CCR will be within 
20% of the performance of the C++ version. CCR has 
been extensively applied to the dynamic threading 
characteristic of today’s desktop application but its 
largest use is in the Robotics community. One 
interesting use is to add an efficient port-based 
implementation of “futures” to C#, since the CCR can 
easily express them with no modifications in the core 
runtime. CCR is very portable and runs on both CE 
(small devices) and desktop windows.  DSS sits on top 
of CCR and provides a lightweight, service oriented 
application model that is particularly suited for creating 
Web/Grid-style applications as compositions of services 
running in a distributed environment. Its use in SALSA 
is described in [9, 10] and section 4 of this paper. 
 
3. DATA MINING 
 
In this paper we consider data mining algorithms that 
analyse a set of N data points X(x) labeled by x in a D 
dimensional space. These algorithms have a common 
formalism corresponding to iterative minimization of 
the function F given by equations (1) and (2). 
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There are four useful algorithms covered by the above: 
Clustering with Deterministic Annealing (CDA) [16-
19]; Gaussian Mixture Models (GMM) [21]; Gaussian 
Mixture Models with DA (GMMDA) [22]; Generative 
Topographic Maps (GTM) [20]. We show how 
equations (1) and (2) cover each of these cases below. 
Note that for GMM and GTM, F is directly the cost 
function C (or negative of log likelihood) while for the 
annealing cases CDA and GMMDA, F is C-TS, the 
“free energy” where T is a temperature and S is the 
Shannon Entropy [18].  The sum over k corresponds to 
sum over clusters or mixture model components. A key 
characteristic of all these algorithms is “missing data” 
represented by the sum over clusters k in equation (2). 
We do not know a priori which value of k (e.g. which 
cluster) is associated with each data point X(x). This 
missing data characteristic also allows the applicability 
of the well known EM method [21] which is similar to 

steepest descent but can be shown to always decrease 
the objective F in all four cases. Steepest descent 
methods are prone to find local minima so DA is 
attractive as it mitigates the effect of local minima. 
In the annealing method one includes the entropy 
associated with these degree of freedom k and 
minimizes the Free Energy. The temperature is varied in 
an annealing schedule from high values (when F is 
dominated by entropy) to low values when the true cost 
C dominates. Unlike simulated annealing, DA involves 
no Monte Carlo but rather optimizes (1, 2) iteratively as 
temperature T is varied from high to low values. For 
clustering CDA improves on the well known K-means 
clustering algorithm [20]. In our cases the annealing can 
be interpreted as a multi-scale approach with T1/D as a 
distance scale. Now we define the four methods for 
which equations (1, 2) can be used and after that discuss 
their solution and our approach to parallelism. 
For the first example, CDA clustering, the variables in 
(1) are given by:  
 
a(x) = 1/N, g(k)=1, s(k) = 0.5                                   (3) 
and T is temperature decreased to 1 by some schedule. 
DA finds K cluster centers Y(k) where K is initially 1 
and is incremented by algorithm as T decreases. 
 
We emphasize that unlike K-Means [19] or GMM, one 
need not specify the number of clusters K a priori in 
CDA. Rather K is determined by the annealing; as the 
distance scale decreases (see fig. 5 later), more clusters 
are determined. In the extreme limit T=0, all points x 
become clusters of size one and K=N. 
 
For the second example, Gaussian mixture Models 
GMM are defined by: 
 
a(x)=1, g(k)= Pk/(2πσ(k)2)D/2, s(k)= σ(k)2                    (4) 
The component probability Pk, the standard deviation 
σ(k) and component center Y(k) are varied with number 
of components K fixed a priori.  
 
Equation (3) specializes to a common case of spherical 
distributions. The general case has s(k) as a general 
symmetric DxD correlation matrix but this does not 
impact key ideas; it just makes formalism more 
complex. Of course the model components in GMM are 
“just” clusters but GMM is more natural than clustering 
when the components have very different sizes. 
Although GMM makes Pk and σ(k) as fitted variables, 
the formulae for their estimated values (using EM 
Method) are in fact identical to those from clustering. 
So CDA can find variable sized clusters although GMM 
could be a more precise approach. 
One can easily extend GMM to add annealing [22] 
although there is currently little practical experience. 
This leads to GMMDA, which is given by: 
 
a(x)=1, g(k)= {Pk/(2πσ(k)2)D/2}1/T, s(k)= σ(k)2            (5) 

 



 

and T is temperature decreased to 1 by some schedule. 
GMMDA finds K component probabilities Pk, standard 
deviations σ(k) and component centers Y(k) where K is 
initially 1 and is incremented by algorithm as T 
decreases. 
 
The final algorithm considered here has a very different 
goal; namely dimensional scaling or the derivation of a 
set of vectors vi in a metric space where the distance 
between vectors i and j is given by a known discrepancy 
function δij. Here δij may come from the distance 
between points i and j in another vector space or be a 
discrepancy derived from an algorithm like BLAST 
comparing sequences in bioinformatics. In particular, 
we look at a powerful algorithm GTM (Generative 
Topographic Mapping) developed in [20] and often 
used to map from high dimensional spaces to two or 
three dimensions for visualization. This is illustrated in 
fig. 1 showing the 2D GTM projection of a set of three 
Gaussians in a 5D space. Note that one could use the 
simple Principal Component Analysis (PCA) approach 
[23]. This gives an optimal linear projection but does 
not perform well on complex problems whereas GTM 
has a nonlinear algorithm that is broadly effective [20]. 
PCA gave poor results on many Cheminformatics 
problems in high dimensions as the top two 
eigenvectors (used by PCA for 2D projection) do not 
capture much of the structure. Fig. 2 shows a successful 
GTM projection of two clusters in a D=155 dimensional 
Cheminformatics case.  
GTM is defined in the syntax of Equation (1) by: 
 
a(x) = 1; g(k) = (1/K)(β /2π)D/2; s(k) = 1/ β; T = 1 and 
β and Wm are varied for fixed K, L(k), and M below. 
L(k), λ and μm are vectors in the latent (2D) space. 
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GTM has excellent scaling properties and works well 
on large problems. We are currently applying it to the 
over 10 million compounds in PubChem. GTM can 
used for both clustering and dimensional reduction but 
we use DA for clustering and GTM just for the 
projection to 2D. The clusters found in GTM are 
viewed as a convenient averaging of the high 
dimensional space. For example in figs. 1 and 2 with 3 
or 2 “real” clusters respectively, our GTM used K=225 
averaging clusters. This large number of clusters used in 
averaging for projection leads to exceptional parallel 
performance for GTM given below. As discussed 
above, GTM and DA clustering are essentially the same 
algorithm with different optimizations; one for mapping 
and the other for robust clustering. Note GTM is closely 
related to SOM (Self Organizing Maps) but there are 
other important dimensional scaling methods whose 
parallel implementation we are also working on. The 

classic MDS (Multi Dimensional Scaling) approach 
using the SMACOF algorithm [23] has the advantage 
that it preserves distances δij and not just the spatial 
topology mapped by GTM. Further it does not need 
vectors in the original space but just their discrepancies 
δij. Other interesting methods with this property include 
random projection [24] and quadratic programming 
methods [25]. We will report on the multicore 
implementation of these other projection methods 
elsewhere. Here we just look at GTM which is a 
powerful efficient tool when the original vectors X(x) 
are known. We note that one could add annealing to 
GTM but we have not explored this yet. 
For the four algorithms defined in equations (3-6),  

solution of (1, 2) is implemented by a variation of the 
Expectation Maximization (EM) algorithm [21]: 

Figure 1: GTM Projection of a simple test problem 
with three Gaussians in a D=5 dimensional space 

Figure 2. GTM Projection for 2 clusters found by 
DA in space of 155 Chemical Properties labeled as . 
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2
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written for the case of DA clustering where new values 
of cluster centers Y(k) are calculated iteratively from 
probabilities  of x belonging to cluster C(k). GTM, 
GMM and GMMDA have similar formulae with more 
quantities being calculatedly but always as averages 
with probabilities that a point X(x) belongs to a 
component/cluster k. 
Realistic implementations must support both 
conventional real valued quantities in the above 
equations and also binary variables (for chemical 

 



 

fingerprints) and profiles in bioinformatics where the 
variables are the frequencies with which features occur. 

 
Initial results on the parallel performance of DA 
clustering are shown in fig. 3 for runs on the 8 core 
Intel machine Intel8b used in all results presented in this 
paper. The figure shows that DA has a parallel overhead 
[26, 27] that decreases asymptotically like 1/grain size 
as the data set increases. Here grain size n is the dataset 
size N divided by the number of processors (cores) 
which is here 8. Putting T(P) as the execution time on P 

 interference between 
cores in the memory subsystem.  

cores, we can define: 
Overhead f = (PT(P)-T(1))/T(1)                           (9) 
Efficiency ε = 1/(1+f)  =   Speed up S(P)/P       (10) 
Thus the overhead of 0.05 seen for large n (small 1/n) in 
fig. 3 corresponds to an excellent speedup of 7.6. The 
results for GTM in fig. 4 show even smaller overheads 
even at small grain size due to the substantial additional 
computation (matrix multiplication and equation 
solving) in this case. We emphasize that much of the 
critical overhead in multicore parallel code is not 
synchronization but rather due to

Tables 1, 2 and 3 study the parallel overhead for GTM 
as a function of the variables N (number of points), K 
(number of averaging clusters), M (number of mapping 
functions). The overhead lies between .01 (speedup of 
7.9) and .05 (speedup of 7.6) except for the “small 
problem” N=1000 data points where the overhead rises 
to 18% for the smallest problem. These results 
emphasize the excellent parallel efficiency and that 
large problems run well! 
 
Table 1: Parallel Overhead for GTM as function of M 
M= 128 256 512 768 1024 1280 
K=16384 
N=20000 

- 0.014 0.013 0.014 0.016 0.022 

K=900 
N=1000 

0.18 0.17 0.16 0.09 - - 

Table 2: Parallel Overhead for GTM as function of K 
K= 1024 2304 4096 6400 9216 12544 
N=20000 
M=256 

0.026 0.023 0.018 0.017 0.028 0.015 
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Figure 3. 8 core Parallel Overhead for GIS 2D DA 
Clustering on Intel8b for three values (10, 20,30) of 
the number of clusters and plotted against 10000/N

Table 3: Parallel Overhead for GTM as function of N 
N= 4000 8000 12000 16000 20000 
K=4096 
M=256 

0.045 0.036 0.020 0.018 0.017 

 
In fig. 5, we illustrate the multi scale aspect of DA 
clustering with results from the clustering of the State of 
Indiana Census data for two temperatures in the 
annealing schedule. The value of the temperature is 
represented by a distance T0.5 on figures 5(a) and 5(b). 
At the higher temperature in fig. 5(a), one finds 10 
clusters. The larger cities in Indiana (such as the Capital 
Indianapolis) are identified but some other 
municipalities are averaged together and not found. As 
we lower resolution in fig. 5(b), there are 30 clusters 
and most of the major towns in Indiana are identified. 
This figure shows possible studies one can perform as it 
looks at total population as well as three different 
groupings: Hispanics, Asians and renters with 
somewhat different clustering. 
 
4 PARALLEL PROGRAMMING 

The algorithms illustrated in equations (1-8) have a 
structure familiar from many scientific computing areas 
[6, 26, 27]. There is an iteration – in this case over the 
annealing schedule for T and the steps needed for the 
EM method to converge. Synchronization is needed at 
the end of each iteration. Further looking into more 
detail, we find that the iteration consists of sums like 
Equations (7) and (8) calculating vector and matrix 
elements combined with linear algebra. The latter is 
identification of principal directions for CDA and 
GMMDA. There is no significant linear algebra for 
GMM while GTM needs matrix multiplication and 
linear equation solution. The sums themselves are first 
calculated in the memory of thread and then after 
synchronization, accumulated into “global” variables. 
This strategy assures good use of cache with negligible 
interference that occurs when two cores write to 
different memory locations that share the L1 cache. 

Figure 4. 8 core Parallel Overhead on Intel8b plotted 
against 8/N for GTM using M=256 and K=4096
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r: Renters

Thus we see that all these algorithms have a “loosely 
synchronous” structure where the parallel algorithm 
consists of “compute-synchronize” stages where 
synchronization typically implies all cores reach a 
barrier [6, 27]. CCR supports the loosely synchronous 
paradigm with modest overheads analyzed in detail in 
earlier papers. Although CCR supports messaging like 
MPI, we only need CCR for synchronization in the 
applications considered in section 3. Data 
communication is achieved by accessing it in the 
memory shared by the threads. This is attractive as read 
access to shared information does not incur cache 
interference penalties. Further communicating data in 
traditional MPI style would actually send the “wrong” 
data. One does not need to put in thread memory the 
“edges” of regions typically communicated. Rather one 
needs cache-sized blocks of data copied into thread 
memory; that is performed by the thread itself and not 
by the communicating threads. The critical source of 
overhead on a multicore chip is the memory subsystem. 
Comparing our multicore implementations with 
traditional parallel programming, we see that we are 
using essentially the same programming model with 
domain decomposition breaking up the application into 
parallel components that execute in a loosely 
synchronous fashion. We use threads not processes in 
each core which allows us to optimize data connection 
between the decomposed components. Note we do need 
to link our thread based model inside a multicore system 
with a traditional distributed memory model if our 

algorithm needs parallelism across a cluster. The model 
for parallelism is identical inside and outside the 
multicore system but the data connection is different. 
The fine grain parallelism is handled by CCR but this is 
not a complete software engineering model as it does 
not provide the desired modularity. Here we are using 
services as the building block. Services are attractive as 
they allow linkage to the distributed (Grid) 
programming model. We have successfully used DSS in 
in our early work. This is a Grid compatible service 
model which runs with high performance inside a chip. 
Further DSS is built on top of CCR which we use for 
synchronization inside the multicore and will use for 
linking to MPI for cluster operations. DSS has latencies 
of around 35 μs which corresponds to  between 0.25 
and 0.5 (floating point) million operations on an 8 core 
system achieving 1-2 Gflops per core. This implies that 
for example linear algebra on 100x100 matrices can be 
packaged as services without significant overhead. We 
have used DSS to encapsulate data reading, 
manipulation and visualization and will extend to break 
up the data mining itself in later work. 
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