

PARALLEL CLUSTERING AND DIMENSIONAL SCALING ON
MULTICORE SYSTEMS

Xiaohong Qiu Geoffrey C. Fox, Huapeng Yuan, Seung-Hee Bae
Research Computing UITS Community Grids Laboratory
Indiana University Bloomington Indiana University Bloomington
Email: xqiu@indiana.edu gcf@indiana.edu yuanh@indiana.edu sebae@indiana.edu

George Chrysanthakopoulos, Henrik Frystyk Nielsen
Microsoft Research Redmond WA

georgioc@microsoft.com henrikn@microsoft.com

KEYWORDS
Multicore, Grids, Data mining, Parallel Programming

ABSTRACT

Technology advances suggest that the data deluge,
network bandwidth and computers performance will
continue their exponential increase. Computers will
exhibit 64-128 cores in some 5 years. Consequences
include a growing importance of data mining and data
analysis capabilities that need to perform well on both
parallel and distributed Grid systems. We discuss a
class of such algorithms important in chemoinformatics,
bioinformatics and demographic studies. We present a
unified formalism and initial performance results for
clustering and dimension reduction algorithm using
annealing to avoid local minima. This uses a runtime
CCR/DSS that combine the features of both MPI
(parallel) and Grid workflow (distributed) paradigms.

1 INTRODUCTION

There are many important trends influencing scientific
computing. One is the growing adoption of the eScience
paradigm which emphasizes the growing importance of
distributed resources and collaboration. Another is the
data deluge with new instruments, sensors, and the
Internet driving an exponential increase of data [1]. On
the other hand, multicore chips are challenging because
they require concurrency to exploit Moore’s law in
contrast to the improved architectures and increasing
clock speed of the last 15 years that has allowed
dramatic performance increase within a well established
fixed (sequential) programming paradigm [2-4]. Thus
we suggest that it is important to look at data analysis
and data mining and derive efficient multicore
implementations. The data deluge, its management in a
distributed environment and its analysis (mining) are
relevant for both eScience and commodity applications.
The former could involve data from high throughput
instruments used in Life Sciences. The latter includes
the analysis of environmental and surveillance monitors
or the data fetched from the Internet that could
characteristic a user’s interests. The RMS (Recognition,
Mining, Synthesis) analysis from Intel [5, 6] identified
data mining and gaming as critical applications for
multicore chips. Scientific data is likely to be so
voluminous that we need any implementation to work

well on clusters of multicore chips with preferably the
same programming model for the inter-chip as well as
the intra-chip parallelism. On the other hand commodity
applications might well not need cluster
implementations but probably would choose thread-
based runtimes involving managed code – Java or C#.
Data is inevitably distributed so the Grid capabilities are
essential; data mining can be extremely computationally
intense so parallel implementations will be necessary.
The importance of Grids and multicore to both eScience
(scientific computing) and commodity applications,
motivates us to look at scientific data mining but in a
programming model that is natural for related
commodity applications. This motivates the SALSA
(Service Aggregated Linked Sequential Activities) [7]
research that we describe here. SALSA is implementing
a set of data mining applications on multicore systems
using managed code (C#) with parallel synchronization
from a runtime CCR (Concurrency and Computation
Runtime) developed at Microsoft Research [12, 13].
CCR supports both MPI style synchronization and the
dynamic threading essential in many concurrent
commodity applications. Further there is a service
model DSS (Decentralized System Services) built on
top of CCR [14]. CCR is a possible choice of runtime
that could bridge between scientific and commodity
applications as it supports the key concurrent primitives
used in both of them. SALSA proposes that one builds
applications as a suite of services [8] rather than
traditional subroutine or class libraries. The service
model allows one to support integration within grid,
cluster and inter-chip environments. Thus SALSA is
exploring a possible future application (data mining) on
multicore chips using a programming model that could
be used across a broad set of computer configurations
and could be the basis of a programming model that
links scientific computing to commodity applications.
We note that we program in a low level style with user
responsible for explicit synchronization in the fashion
that is familiar from MPI. There certainly could be
general or domain specific higher level environments
such as variants of automatic compilation, OpenMP,
PGAS or even the new languages from Darpa’s HPCS
program [6, 15]. Our work can still be relevant here as it
uses a runtime that is a natural target for such advanced
high-level environments.
Performance is a critical question for any system that
spans multiple different domains; integration of

mailto:xqiu@indiana.edu
mailto:gcf@indiana.edu
mailto:yuanh@indiana.edu
mailto:sebae@indiana.edu
mailto:georgioc@microsoft.com
mailto:henrikn@microsoft.com

multiple paradigms requires that the performance is
good in each paradigm. In previous papers [9-11], we
have discussed the core performance of CCR and DSS
and here we focus on applications and discuss in more
detail their structure and performance.
The SALSA work is currently performed on a variety of
two CPU multicore systems with a total of 4 or 8 cores
and running variants of Linux and Windows operating
systems. The results reported in this paper use a single 8
core machine termed Intel8b. This is a Dell Precision
PWS690, with 2 Intel Xeon CPUs x5355 at 2.66GHz,
an L2 Cache 2X4M, 4GB Memory, and running Vista
Ultimate 64bit.
In the following section we briefly discuss our
programming model and refer the reader to other papers
[9-11] for more details. In section 3, we discuss the data
mining algorithms investigated and give some overall
performance results. In section 4, we summarize our
results and identify the key features of the application
structure and the implications for the parallel run time.

Main Routine for Exchange Pseudocode {
 Create CCR dispatchers to control threads
 Create a queue to hold tasks
 Set up start ports with MPI initialization data such as thread

number
 Invoke handlers (MPI threads) on start ports
} End Main Routine

MPI logical thread Pseudocode (Arguments are start port
contents) {
 Calculate nearest neighbors for exchange collective
 Loop over stages { Post information to 2 ports that will be

read by left and right neighbors

 yield return on CCR MultipleItemReceive will wait till this

thread’s information is available in its ports and continue
execution after reading 2 ports

 Do computation for this stage
 } End loop over stages

Each thread sends information to ending port
and thread 0 only does yield return on CCR
MultipleItemReceive to collect information from all threads to
complete run after reading from one port for each thread
(this is a reduction operation).

} End MPI Thread

2 PARALLEL RUNTIME: CCR AND DSS

CCR provides a framework for building general
collective communication where threads can write to a
general set of ports and read one or more messages from
one or more ports. The framework manages both ports
and threads with optimized dispatchers that can
efficiently iterate over multiple threads. All primitives
result in a task construct being posted on one or more
queues, associated with a dispatcher. The dispatcher
uses OS threads to load balance tasks. The current
applications and provided primitives support a dynamic
threading model with capabilities that include:
1) FromHandler: Spawn threads without reading ports
2) Receive: Each handler reads one item from a single

port
3) MultipleItemReceive: Each handler reads a

prescribed number of items of a given type from a
given port. Note items in a port can be general
structures but all must have same type.

4) MultiplePortReceive: Each handler reads a one item
of a given type from multiple ports.

5) JoinedReceive: Each handler reads one item from
each of two ports. The items can be of different
type.

6) Choice: Execute a choice of two or more port-
handler pairings

7) Interleave: Consists of a set of arbiters (port --
handler pairs) of 3 types that are Concurrent,
Exclusive or Teardown (called at end for clean up).
Concurrent arbiters are run concurrently but
exclusive handlers are not.

One can spawn handlers that consume messages as is
natural in a dynamic search application where handlers
correspond to links in a tree. However one can also
have long running handlers where messages are sent
and consumed at a rendezvous points (yield points in

CCR) as used in traditional MPI applications. Note that
“active messages” correspond to the spawning model of
CCR and can be straightforwardly supported. Further
CCR takes care of all the needed queuing and
asynchronous operations that avoid race conditions in
complex messaging. CCR is attractive as it supports
such a wide variety of messaging from dynamic
threading, services (via DSS described in [9]) and MPI
style collective operations.

CODE SAMPLE 1: MPI EXCHANGE IN CCR
For our data mining applications, we often need
rendezvous semantics which are fully supported by
CCR. We have [11] already compared CCR with MPI
and note that posting to a port in CCR corresponds to a

MPISEND and the matching MPIRECV is achieved
from arguments of handler invoked to process the port.
MPI has a much richer set than CCR of defined
methods that describe different synchronicity options,
various utilities and collectives. These include the
multi-cast (broadcast, gather-scatter) of messages with
the calculation of associative and commutative
functions on the fly. It is not clear what primitives and
indeed what implementation will be most effective on
multicore systems and so we have not performed an
exhaustive study of MPI collective patterns in CCR. In
fact it is possible that SALSA’s results which suggest
one can support in the same framework a set of
execution models that is broader than today’s MPI,
could motivate a new look at messaging standards for
parallel computing. CCR only has built-in primitives to
support MPI shift and reduction operations but we
exploited CCR’s ability to construct customized
collectives sketched in Code Sample I to implement the
MPI Exchange pattern [11]. An important innovation of

the CCR is to allow sequential, asynchronous
computation without forcing the programmer to write
callbacks, or continuations, and at the same time not
blocking an OS thread. This allows the CCR to scale to
tens of millions of pending I/O operations, but with
code that reads like synchronous, blocking operations.
Note that all our work was for managed code in C#
which is an important implementation language for
commodity desktop applications although slower than
C++. In this regard we note that there are plans for a
C++ version of CCR which would be faster but prone to
traditional un-managed code errors such as memory
leaks, buffer overruns, memory corruption. The C++
version could be faster than the current CCR but
eventually we expect that the C# CCR will be within
20% of the performance of the C++ version. CCR has
been extensively applied to the dynamic threading
characteristic of today’s desktop application but its
largest use is in the Robotics community. One
interesting use is to add an efficient port-based
implementation of “futures” to C#, since the CCR can
easily express them with no modifications in the core
runtime. CCR is very portable and runs on both CE
(small devices) and desktop windows. DSS sits on top
of CCR and provides a lightweight, service oriented
application model that is particularly suited for creating
Web/Grid-style applications as compositions of services
running in a distributed environment. Its use in SALSA
is described in [9, 10] and section 4 of this paper.

3. DATA MINING

In this paper we consider data mining algorithms that
analyse a set of N data points X(x) labeled by x in a D
dimensional space. These algorithms have a common
formalism corresponding to iterative minimization of
the function F given by equations (1) and (2).

1

2
1

() ln () where (1)

() () exp[0.5(() ()) / (())] (2)

N

x
K

k

F T a x Z x

Z x g k X x Y k Ts k
=

=

= −

= − −

∑

∑

There are four useful algorithms covered by the above:
Clustering with Deterministic Annealing (CDA) [16-
19]; Gaussian Mixture Models (GMM) [21]; Gaussian
Mixture Models with DA (GMMDA) [22]; Generative
Topographic Maps (GTM) [20]. We show how
equations (1) and (2) cover each of these cases below.
Note that for GMM and GTM, F is directly the cost
function C (or negative of log likelihood) while for the
annealing cases CDA and GMMDA, F is C-TS, the
“free energy” where T is a temperature and S is the
Shannon Entropy [18]. The sum over k corresponds to
sum over clusters or mixture model components. A key
characteristic of all these algorithms is “missing data”
represented by the sum over clusters k in equation (2).
We do not know a priori which value of k (e.g. which
cluster) is associated with each data point X(x). This
missing data characteristic also allows the applicability
of the well known EM method [21] which is similar to

steepest descent but can be shown to always decrease
the objective F in all four cases. Steepest descent
methods are prone to find local minima so DA is
attractive as it mitigates the effect of local minima.
In the annealing method one includes the entropy
associated with these degree of freedom k and
minimizes the Free Energy. The temperature is varied in
an annealing schedule from high values (when F is
dominated by entropy) to low values when the true cost
C dominates. Unlike simulated annealing, DA involves
no Monte Carlo but rather optimizes (1, 2) iteratively as
temperature T is varied from high to low values. For
clustering CDA improves on the well known K-means
clustering algorithm [20]. In our cases the annealing can
be interpreted as a multi-scale approach with T1/D as a
distance scale. Now we define the four methods for
which equations (1, 2) can be used and after that discuss
their solution and our approach to parallelism.
For the first example, CDA clustering, the variables in
(1) are given by:

a(x) = 1/N, g(k)=1, s(k) = 0.5 (3)
and T is temperature decreased to 1 by some schedule.
DA finds K cluster centers Y(k) where K is initially 1
and is incremented by algorithm as T decreases.

We emphasize that unlike K-Means [19] or GMM, one
need not specify the number of clusters K a priori in
CDA. Rather K is determined by the annealing; as the
distance scale decreases (see fig. 5 later), more clusters
are determined. In the extreme limit T=0, all points x
become clusters of size one and K=N.

For the second example, Gaussian mixture Models
GMM are defined by:

a(x)=1, g(k)= Pk/(2πσ(k)2)D/2, s(k)= σ(k)2 (4)
The component probability Pk, the standard deviation
σ(k) and component center Y(k) are varied with number
of components K fixed a priori.

Equation (3) specializes to a common case of spherical
distributions. The general case has s(k) as a general
symmetric DxD correlation matrix but this does not
impact key ideas; it just makes formalism more
complex. Of course the model components in GMM are
“just” clusters but GMM is more natural than clustering
when the components have very different sizes.
Although GMM makes Pk and σ(k) as fitted variables,
the formulae for their estimated values (using EM
Method) are in fact identical to those from clustering.
So CDA can find variable sized clusters although GMM
could be a more precise approach.
One can easily extend GMM to add annealing [22]
although there is currently little practical experience.
This leads to GMMDA, which is given by:

a(x)=1, g(k)= {Pk/(2πσ(k)2)D/2}1/T, s(k)= σ(k)2 (5)

and T is temperature decreased to 1 by some schedule.
GMMDA finds K component probabilities Pk, standard
deviations σ(k) and component centers Y(k) where K is
initially 1 and is incremented by algorithm as T
decreases.

The final algorithm considered here has a very different
goal; namely dimensional scaling or the derivation of a
set of vectors vi in a metric space where the distance
between vectors i and j is given by a known discrepancy
function δij. Here δij may come from the distance
between points i and j in another vector space or be a
discrepancy derived from an algorithm like BLAST
comparing sequences in bioinformatics. In particular,
we look at a powerful algorithm GTM (Generative
Topographic Mapping) developed in [20] and often
used to map from high dimensional spaces to two or
three dimensions for visualization. This is illustrated in
fig. 1 showing the 2D GTM projection of a set of three
Gaussians in a 5D space. Note that one could use the
simple Principal Component Analysis (PCA) approach
[23]. This gives an optimal linear projection but does
not perform well on complex problems whereas GTM
has a nonlinear algorithm that is broadly effective [20].
PCA gave poor results on many Cheminformatics
problems in high dimensions as the top two
eigenvectors (used by PCA for 2D projection) do not
capture much of the structure. Fig. 2 shows a successful
GTM projection of two clusters in a D=155 dimensional
Cheminformatics case.
GTM is defined in the syntax of Equation (1) by:

a(x) = 1; g(k) = (1/K)(β /2π)D/2; s(k) = 1/ β; T = 1 and
β and Wm are varied for fixed K, L(k), and M below.
L(k), λ and μm are vectors in the latent (2D) space.

1
2 2

() (()) with fixed (6)

() exp(0.5() /)

M

m m
m

m m

Y k W L kφ

φ λ λ μ σ
=

=

= − −

∑

GTM has excellent scaling properties and works well
on large problems. We are currently applying it to the
over 10 million compounds in PubChem. GTM can
used for both clustering and dimensional reduction but
we use DA for clustering and GTM just for the
projection to 2D. The clusters found in GTM are
viewed as a convenient averaging of the high
dimensional space. For example in figs. 1 and 2 with 3
or 2 “real” clusters respectively, our GTM used K=225
averaging clusters. This large number of clusters used in
averaging for projection leads to exceptional parallel
performance for GTM given below. As discussed
above, GTM and DA clustering are essentially the same
algorithm with different optimizations; one for mapping
and the other for robust clustering. Note GTM is closely
related to SOM (Self Organizing Maps) but there are
other important dimensional scaling methods whose
parallel implementation we are also working on. The

classic MDS (Multi Dimensional Scaling) approach
using the SMACOF algorithm [23] has the advantage
that it preserves distances δij and not just the spatial
topology mapped by GTM. Further it does not need
vectors in the original space but just their discrepancies
δij. Other interesting methods with this property include
random projection [24] and quadratic programming
methods [25]. We will report on the multicore
implementation of these other projection methods
elsewhere. Here we just look at GTM which is a
powerful efficient tool when the original vectors X(x)
are known. We note that one could add annealing to
GTM but we have not explored this yet.
For the four algorithms defined in equations (3-6),

solution of (1, 2) is implemented by a variation of the
Expectation Maximization (EM) algorithm [21]:

Figure 1: GTM Projection of a simple test problem
with three Gaussians in a D=5 dimensional space

Figure 2. GTM Projection for 2 clusters found by
DA in space of 155 Chemical Properties labeled as .

1 1

2

() () Pr[() ()] / Pr[() ()] (7)

Pr[() ()] exp[0.5(() ()) /] / () (8)

N N

x x
Y k X x X x C k X x C k

X x C k X x Y k T Z x
= =

= ∈ ∈

∈ = − −

∑ ∑

written for the case of DA clustering where new values
of cluster centers Y(k) are calculated iteratively from
probabilities of x belonging to cluster C(k). GTM,
GMM and GMMDA have similar formulae with more
quantities being calculatedly but always as averages
with probabilities that a point X(x) belongs to a
component/cluster k.
Realistic implementations must support both
conventional real valued quantities in the above
equations and also binary variables (for chemical

fingerprints) and profiles in bioinformatics where the
variables are the frequencies with which features occur.

Initial results on the parallel performance of DA
clustering are shown in fig. 3 for runs on the 8 core
Intel machine Intel8b used in all results presented in this
paper. The figure shows that DA has a parallel overhead
[26, 27] that decreases asymptotically like 1/grain size
as the data set increases. Here grain size n is the dataset
size N divided by the number of processors (cores)
which is here 8. Putting T(P) as the execution time on P

 interference between
cores in the memory subsystem.

cores, we can define:
Overhead f = (PT(P)-T(1))/T(1) (9)
Efficiency ε = 1/(1+f) = Speed up S(P)/P (10)
Thus the overhead of 0.05 seen for large n (small 1/n) in
fig. 3 corresponds to an excellent speedup of 7.6. The
results for GTM in fig. 4 show even smaller overheads
even at small grain size due to the substantial additional
computation (matrix multiplication and equation
solving) in this case. We emphasize that much of the
critical overhead in multicore parallel code is not
synchronization but rather due to

Tables 1, 2 and 3 study the parallel overhead for GTM
as a function of the variables N (number of points), K
(number of averaging clusters), M (number of mapping
functions). The overhead lies between .01 (speedup of
7.9) and .05 (speedup of 7.6) except for the “small
problem” N=1000 data points where the overhead rises
to 18% for the smallest problem. These results
emphasize the excellent parallel efficiency and that
large problems run well!

Table 1: Parallel Overhead for GTM as function of M
M= 128 256 512 768 1024 1280
K=16384
N=20000

- 0.014 0.013 0.014 0.016 0.022

K=900
N=1000

0.18 0.17 0.16 0.09 - -

Table 2: Parallel Overhead for GTM as function of K
K= 1024 2304 4096 6400 9216 12544
N=20000
M=256

0.026 0.023 0.018 0.017 0.028 0.015

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2 2.5 3 3.5 4

Parallel Overhead 10 Clusters

20 Clusters

10000/Grain Size

30 Clusters

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2 2.5 3 3.5 4

Parallel Overhead 10 Clusters

20 Clusters

10000/Grain Size

30 Clusters

Figure 3. 8 core Parallel Overhead for GIS 2D DA
Clustering on Intel8b for three values (10, 20,30) of
the number of clusters and plotted against 10000/N

Table 3: Parallel Overhead for GTM as function of N
N= 4000 8000 12000 16000 20000
K=4096
M=256

0.045 0.036 0.020 0.018 0.017

In fig. 5, we illustrate the multi scale aspect of DA
clustering with results from the clustering of the State of
Indiana Census data for two temperatures in the
annealing schedule. The value of the temperature is
represented by a distance T0.5 on figures 5(a) and 5(b).
At the higher temperature in fig. 5(a), one finds 10
clusters. The larger cities in Indiana (such as the Capital
Indianapolis) are identified but some other
municipalities are averaged together and not found. As
we lower resolution in fig. 5(b), there are 30 clusters
and most of the major towns in Indiana are identified.
This figure shows possible studies one can perform as it
looks at total population as well as three different
groupings: Hispanics, Asians and renters with
somewhat different clustering.

4 PARALLEL PROGRAMMING

The algorithms illustrated in equations (1-8) have a
structure familiar from many scientific computing areas
[6, 26, 27]. There is an iteration – in this case over the
annealing schedule for T and the steps needed for the
EM method to converge. Synchronization is needed at
the end of each iteration. Further looking into more
detail, we find that the iteration consists of sums like
Equations (7) and (8) calculating vector and matrix
elements combined with linear algebra. The latter is
identification of principal directions for CDA and
GMMDA. There is no significant linear algebra for
GMM while GTM needs matrix multiplication and
linear equation solution. The sums themselves are first
calculated in the memory of thread and then after
synchronization, accumulated into “global” variables.
This strategy assures good use of cache with negligible
interference that occurs when two cores write to
different memory locations that share the L1 cache.

Figure 4. 8 core Parallel Overhead on Intel8b plotted
against 8/N for GTM using M=256 and K=4096

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1/Grain Size n

n = 500 50100

Parallel Overhead

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1/Grain Size n

n = 500 50100

Parallel Overhead

r: Renters

Thus we see that all these algorithms have a “loosely
synchronous” structure where the parallel algorithm
consists of “compute-synchronize” stages where
synchronization typically implies all cores reach a
barrier [6, 27]. CCR supports the loosely synchronous
paradigm with modest overheads analyzed in detail in
earlier papers. Although CCR supports messaging like
MPI, we only need CCR for synchronization in the
applications considered in section 3. Data
communication is achieved by accessing it in the
memory shared by the threads. This is attractive as read
access to shared information does not incur cache
interference penalties. Further communicating data in
traditional MPI style would actually send the “wrong”
data. One does not need to put in thread memory the
“edges” of regions typically communicated. Rather one
needs cache-sized blocks of data copied into thread
memory; that is performed by the thread itself and not
by the communicating threads. The critical source of
overhead on a multicore chip is the memory subsystem.
Comparing our multicore implementations with
traditional parallel programming, we see that we are
using essentially the same programming model with
domain decomposition breaking up the application into
parallel components that execute in a loosely
synchronous fashion. We use threads not processes in
each core which allows us to optimize data connection
between the decomposed components. Note we do need
to link our thread based model inside a multicore system
with a traditional distributed memory model if our

algorithm needs parallelism across a cluster. The model
for parallelism is identical inside and outside the
multicore system but the data connection is different.
The fine grain parallelism is handled by CCR but this is
not a complete software engineering model as it does
not provide the desired modularity. Here we are using
services as the building block. Services are attractive as
they allow linkage to the distributed (Grid)
programming model. We have successfully used DSS in
in our early work. This is a Grid compatible service
model which runs with high performance inside a chip.
Further DSS is built on top of CCR which we use for
synchronization inside the multicore and will use for
linking to MPI for cluster operations. DSS has latencies
of around 35 μs which corresponds to between 0.25
and 0.5 (floating point) million operations on an 8 core
system achieving 1-2 Gflops per core. This implies that
for example linear algebra on 100x100 matrices can be
packaged as services without significant overhead. We
have used DSS to encapsulate data reading,
manipulation and visualization and will extend to break
up the data mining itself in later work.

REFERENCES

[1] Tony Hey and Anne Trefethen, The data deluge: an e-

Science perspective in “Grid Computing: Making the
Global Infrastructure a Reality” edited by Fran Berman,
Geoffrey Fox and Tony Hey, John Wiley & Sons,
Chicester, England, ISBN 0-470-85319-0, February 2003

Resolution T0.5

(a)

Resolution T0.5

(a) (b)

a:Asian

h: Hispanic

p: Total

Resolution T0.5

(b)

p: Total

a:Asian

r: Renters

h: Hispanic

Resolution T0.5

[2] Jack Dongarra Editor The Promise and Perils of the
Coming Multicore Revolution and Its Impact, CTWatch
Quarterly Vol 3 No. 1 February 07,
http://www.ctwatch.org/quarterly/archives/february-2007

[3] David Patterson The Landscape of Parallel Computing
Research: A View from Berkeley 2.0 Presentation at
Manycore Computing 2007 Seattle June 20 2007
http://science.officeisp.net/ManycoreComputingWorksho
p07/Presentations/David%20Patterson.pdf

[4] Annotated list of multicore Internet sites
http://www.connotea.org/user/crmc/

[5] Pradeep Dubey Teraflops for the Masses: Killer Apps of
Tomorrow Workshop on Edge Computing Using New
Commodity Architectures, UNC 23 May 2006
http://gamma.cs.unc.edu/EDGE/SLIDES/dubey.pdf

[6] Geoffrey Fox tutorial at Microsoft Research Parallel
Computing 2007: Lessons for a Multicore Future from
the Past February 26 to March 1 2007
http://grids.ucs.indiana.edu/ptliupages/presentations/PC2
007/index.html

[7] Home Page for SALSA Project at Indiana University
http://www.infomall.org/salsa

[8] Dennis Gannon and Geoffrey Fox, Workflow in Grid
Systems Concurrency and Computation: Practice &
Experience 18 (10), 1009-19 (Aug 2006), Editorial of
special issue prepared from GGF10 Berlin
http://grids.ucs.indiana.edu/ptliupages/publications/Work
flow-overview.pdf

[9] Xiaohong Qiu, Geoffrey Fox, and Alex Ho Analysis of
Concurrency and Coordination Runtime CCR and DSS,
Technical Report January 21 2007
http://grids.ucs.indiana.edu/ptliupages/publications/CCR
DSSanalysis_jan21-07.pdf

[10] Xiaohong Qiu, Geoffrey Fox, H. Yuan, Seung-Hee Bae,
George Chrysanthakopoulos, Henrik Frystyk Nielsen
High Performance Multi-Paradigm Messaging Runtime
Integrating Grids and Multicore Systems, published in
proceedings of eScience 2007 Conference Bangalore
India December 10-13 2007
http://grids.ucs.indiana.edu/ptliupages/publications/CCR
Sept23-07eScience07.pdf

[11] Xiaohong Qiu, Geoffrey C. Fox, Huapeng Yuan, Seung-
Hee Bae, George Chrysanthakopoulos, Henrik Frystyk
Nielsen Performance of Multicore Systems on Parallel
Data mining Services Technical report November 19
2007,
http://grids.ucs.indiana.edu/ptliupages/publications/CCR
PerformanceNov19-07.pdf

[12] Microsoft Robotics Studio is a Windows-based
environment that includes end-to-end Robotics
Development Platform, lightweight service-oriented
runtime, and a scalable and extensible platform. For
details, see http://msdn.microsoft.com/robotics/

[13] Georgio Chrysanthakopoulos and Satnam Singh
“An Asynchronous Messaging Library for C#”,
Synchronization and Concurrency in Object-
Oriented Languages (SCOOL) at OOPSLA
October 2005 Workshop, San Diego, CA.
http://urresearch.rochester.edu/handle/1802/2105

[14] Henrik Frystyk Nielsen, George Chrysanthakopoulos,
“Decentralized Software Services Protocol – DSSP”
http://msdn.microsoft.com/robotics/media/DSSP.pdf

[15] Internet Resource for HPCS Languages
http://crd.lbl.gov/~parry/hpcs_resources.html

[16] Geoff M. Downs, John M. Barnard Clustering Methods
and Their Uses in Computational Chemistry, Reviews in
Computational Chemistry, Volume 18, 1-40 2003

[17] Kenneth Rose, Eitan Gurewitz, and Geoffrey C. Fox
Statistical mechanics and phase transitions in clustering
Phys. Rev. Lett. 65, 945 - 948 (1990)
http://dx.doi.org/10.1103/PhysRevLett.65.945

[18] Rose, K. Deterministic annealing for clustering,
compression, classification, regression, and related
optimization problems, Proceedings of the IEEE Vol. 86,
pages 2210-2239, Nov 1998

[19] K-means algorithm at Wikipedia
http://en.wikipedia.org/wiki/K-means_algorithm

[20] Bishop, C. M., Svensen, M., Williams, C. K. I. GTM:
The generative topographic mapping. Neural Comput.
1998, 10, 215-234.

[21] Dempster, A.P., Laird, N.M., & Rubin, D.B. (1977).
Maximum-likelihood from incomplete data via the EM
algorithm. J. R. Statist. Soc. Ser. B (methodological), 39,
1–38.

[22] Naonori Ueda and Ryohei Nakano Deterministic
annealing EM algorithm Neural Networks Volume 11,
Issue 2, 31 March 1998, Pages 271-282
http://dx.doi.org/10.1016/S0893-6080(97)00133-0

[23] Ingwer Borg, Patrick J. F. Groenen Modern
Multidimensional Scaling: Theory and Applications
Springer August 2005 ISBN-10: 0387251502

[24] Golan Yona Methods for Global Organization of the
Protein Sequence Space PhD Thesis Hebrew University
1999 http://www.cs.cornell.edu/golan/Thesis/thesis.ps.gz

[25] E. Halperin, J. Buhler, R. Karp, R. Krauthgamer and B.
Westover Detecting protein sequence conservation via
metric embeddings Bioinformatics Vol. 19 Suppl. 1 2003
Pages i122-i129

[26] “The Sourcebook of Parallel Computing” edited by Jack
Dongarra, Ian Foster, Geoffrey Fox, William Gropp, Ken
Kennedy, Linda Torczon, and Andy White, Morgan
Kaufmann, November 2002.

[27] Fox, G. C., Messina, P., Williams, R., “Parallel
Computing Works!”, Morgan Kaufmann, San Mateo Ca,
1994.

http://www.ctwatch.org/quarterly/archives/february-2007
http://science.officeisp.net/ManycoreComputingWorkshop07/Presentations/David%20Patterson.pdf
http://science.officeisp.net/ManycoreComputingWorkshop07/Presentations/David%20Patterson.pdf
http://www.connotea.org/user/crmc/
http://gamma.cs.unc.edu/EDGE/SLIDES/dubey.pdf
http://grids.ucs.indiana.edu/ptliupages/presentations/PC2007/index.html
http://grids.ucs.indiana.edu/ptliupages/presentations/PC2007/index.html
http://www.infomall.org/salsa
http://grids.ucs.indiana.edu/ptliupages/publications/Workflow-overview.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/Workflow-overview.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CCRDSSanalysis_jan21-07.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CCRDSSanalysis_jan21-07.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CCRSept23-07eScience07.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CCRSept23-07eScience07.pdf
http://www.escience2007.org/index.asp
http://grids.ucs.indiana.edu/ptliupages/publications/CCRSept23-07eScience07.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CCRSept23-07eScience07.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CCRPerformanceNov19-07.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CCRPerformanceNov19-07.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CCRPerformanceNov19-07.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/CCRPerformanceNov19-07.pdf
http://msdn.microsoft.com/robotics/
http://urresearch.rochester.edu/handle/1802/2105
http://msdn.microsoft.com/robotics/media/DSSP.pdf
http://crd.lbl.gov/%7Eparry/hpcs_resources.html
http://dx.doi.org/10.1103/PhysRevLett.65.945
http://en.wikipedia.org/wiki/K-means_algorithm
http://dx.doi.org/10.1016/S0893-6080(97)00133-0
http://www.cs.cornell.edu/golan/Thesis/thesis.ps.gz

