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ABSTRACT
Data intensive iterative computations are a subset of distributed parallel computations that are suited for execution in cloud environments.  In most of these applications, individual iterations can be specified as MapReduce computations. In this paper, we present an Iterative MapReduce programming model and framework for efficient execution of data intensive iterative computations on Cloud Environments. We also identify three collective communication patterns that can optimize the data communication and data reductions in these applications. These patterns have the ability to improve the performance, while improving the ease of use for the users.
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1. INTRODUCTION

MapReduce is a framework for data intensive computing. MapReduce provides, easy/simple programming model, framework managed fault-tolerance, taking computation to data, good scaling on commodity hardware.
Iterative computations are at the core of the vast majority of scientific computations. Many important data intensive iterative scientific computations  can be implemented as iterative computation and communication steps, where computations inside an iteration are independent and are synchronized at the end of each iteration through reduce and communication steps, making it possible for individual iterations to be parallelized using technologies such as MapReduce. Examples of such applications include dimensional scaling, many clustering algorithms, many machine learning algorithms, expectation maximization applications and many more. The growth of such data intensive  iterative computations, in number as well as importance, is driven partly by the need to process massive amounts of data and the emergence of data intensive computational fields, such as bioinformatics, chemical informatics and web mining.
In this paper we are focusing on data intensive iterative MapReduce applications, which also encompass pleasingly parallel and MapReduce type applications. There are many problems that fall in to the iterative MapReduce category. Examples of some iterative data intensive applications implemented using iterative MapReduce include PageRank
, Multi-Dimensional Scaling
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[1, 2]
, KMeans Clustering, Descendent query[3[]
, LDA, Collaborative Filtering with ALS-WR, …

 These problems can be solved using traditional MapReduce frameworks like Hadoop, albeit in an un-optimized manner, by taking care of the iterative aspects in the client size.  However, many optimizations and programming model improvements can be performed to improve the performance and usability of the iterative MapReduce programs. These optimizations opportunities are highlighted by the development of many iterative MapReduce and similar frameworks such as, Twister4[]
, Haloop3[]
, Twister4Azure2[]
,Daytona5[]
, i-mapreduce, spark6[]
,  etc. 

In this paper we identify several common communication patterns among the iterative data intensive MapReduce computations. We propose collective communications primitives for such common patterns, while preserving the advantages of the MapReduce paradigm.  These collective communications primitives provide tri-fold advantages, 1. Easy programming model 2. Ability to provide framework managed environment aware optimizations 3. Avoid unnecessary overheads (processing steps and communication). The advantages are more visible in high-latency environments like Clouds. These
 patterns can be implemented on any of the current Iterative MapReduce frameworks as well as on traditional MapReduce frameworks like Hadoop. 

Current
  optimizations for iterative MapReduce include, caching of the loop-invariant data, cache aware scheduling of tasks, iterative aware programming models, direct memory streaming of intermediate data, iteration level fault-tolerance, caching of intermediate data (haloop reducer input cache),  dynamic modifications to cached data (eg: genetic algorithm), caching of output data (haloop for fixed point evaluation)..

.

2. Background

2.1 Iterative MapReduce
Many important scientific applications and algorithms can be implemented as iterative computation and communication steps, where computations inside an iteration are independent and are synchronized at the end of each iteration through reduce and communication steps. Often, each iteration is also amenable to parallelization. Many statistical applications fall in this category. Examples include clustering algorithms, data mining applications, machine learning algorithms, data visualization algorithms, and most of the expectation maximization algorithms. The growth of such iterative statistical applications, in importance and number, is driven partly by the need to process massive amounts of data, for which scientists rely on clustering, mining, and dimension-reduction to interpret the data. Emergence of computational fields, such as bioinformatics, and machine learning, have also contributed to an increased interest in this class of applications. 

[image: image1]
As mentioned in section 1.3.3, there exists a significant amount of data analysis, data mining and scientific computation algorithms that rely on iterative computations, where we can easily specify each iterative step as a MapReduce computation. Typical data-intensive iterative computations follow the structure given in Code 1 and in figure Figure 3 Structure of a typical data intensive iterative application. We can identify two main types of data in these computations, the loop invariant input data and the loop variant delta values. Delta values are the result or a representation of the result of processing the input data in each iteration. These delta values are used in the computation of the next iteration. One example of such delta values would be the centroids in a KMeans Clustering computation. Single iterations of such computations are easy to parallelize by processing the data points or blocks of data points independently in parallel and performing synchronization between the iterations through communication steps.
2.2 Current Iterative MapReduce implementations
2.2.1 Twister4Azure

Twister4Azure is a distributed decentralized iterative MapReduce runtime for Windows Azure Cloud that was developed utilizing Azure cloud infrastructure services as part of my PhD research. Twister4Azure extends the familiar, easy-to-use MapReduce programming model with iterative extensions and with novel communications primitives, enabling a wide array of large scale iterative as well as non-iterative data analysis and scientific applications to utilize Azure platform easily and efficiently in a fault-tolerant manner. Twister4Azure utilize the eventually-consistent, high-latency Azure cloud services effectively to deliver performance comparable to (non-iterative) and outperforming (for iterative computing) traditional MapReduce runtimes. Twister4Azure has minimal management & maintenance overheads and provides users with the capability to dynamically scale up or down the amount of compute resources
. 
2.2.2 Twister

The Twister7[]
 iterative MapReduce framework is an expansion of the traditional MapReduce programming model, which supports traditional as well as iterative MapReduce data-intensive computations. Twister supports MapReduce in the manner of “configure once, and run many time”. Twister configures and loads static data into Map or Reduce tasks during the configuration stage, and then reuses the loaded data through the iterations. In each iteration, the data is first mapped in the compute nodes, and reduced, then combined back to the driver node (control node). Twister supports direct intermediate data communication, using direct TCP as well as using messaging middleware, across the workers without persisting the intermediate data products to the disks. With these features, Twister supports iterative MapReduce computations efficiently when compared to other traditional MapReduce runtimes such as Hadoop8[]
. Fault detection and recovery are supported between the iterations. In this paper, we use the java implementation of Twister and identify it as Java HPC Twister.
Java HPC Twister uses a master driver node for management and controlling of the computations. The Map and Reduce tasks are implemented as worker threads managed by daemon processes on each worker node. Daemons communicate with the driver node and with each other through messages. For command, communication and data transfers, Twister uses a Publish/Subscribe messaging middleware system and ActiveMQ9[]
 is used for the current experiments. Twister performs optimized broadcasting operations by using chain method5[]
 and uses minimum spanning tree method10[]
 for efficiently sending Map data from the driver node to the daemon nodes . Twister supports data distribution and management through a set of scripts as well as through the HDFS11[]
.

2.2.3 Microsoft Daytona
Microsoft Daytona5[]
 is a recently announced iterative MapReduce runtime developed by Microsoft Research for Microsoft Azure Cloud Platform. It builds on some of the ideas of the earlier Twister system.  Daytona utilizes Azure Blob Storage for storing intermediate data and final output data enabling data backup and easier failure recovery. Daytona supports caching of static data between iterations. Daytona combines the output data of the Reducers to form the output of each iteration. Once the application has completed, the output can be retrieved from Azure Blob storage or can be continually processed by using other applications. In addition to the above features, which are similar to Twister4Azure, Daytona also provides automatic environment deployment and data splitting for MapReduce computations and claims to support a variety of data broadcast patterns between the iterations. However, as oppose to Twister4Azure, Daytona uses a single master node based controller to drive and manage the computation.  This centralized controller substitute the ‘Merge’ step of Twister4Azure, but makes Daytona prone to single point of failures. 

Currently Excel DataScope is presented as an application of Daytona. Users can upload data in their Excel spreadsheet to the DataScope service or select a data set already in the cloud, and then select an analysis model from our Excel DataScope research ribbon to run against the selected data. The results can be returned to the Excel client or remain in the cloud for further processing and/or visualization. Daytona is available as a “Community Technology Preview” for academic and non-commercial usage.

2.2.4 Haloop
Haloop3[]
 extends Apache Hadoop to support iterative applications and supports caching of loop-invariant data as well as loop-aware scheduling. Similar to Java HPC Twister and Twister4Azure, Haloop also provides a new programming model, which includes several APIs that can be used for expressing iteration related operations in the application code. 

However Haloop doesn’t have an explicit Combine operation to get the output to the master node and uses a separate MapReduce job to do the calculation (called Fixpoint evaluation) for terminal condition evaluation. HaLoop provides a high-level query language, which is not available in either Java HPC Twister or Twister4Azure.

HaLoop performs loop aware task scheduling to accelerate iterative MapReduce executions. Haloop enables data reuse across iterations, by physically co-locating tasks that process the same data in different iterations. In HaLoop, the first iteration is scheduled with similar to traditional Hadoop. After that, the master node remembers the association between data and node and the scheduler tries to retain previous data-node associations in the following iterations. If the associations can no longer hold due to the load, the master node will associate the data with another node.  HaLoop also provides several mechanisms of on disk data caching such as reducer input cache and mapper input cache. In addition to these two, there is another cache called reducer output cache, which is specially designed to support Fixpoint Evaluations. HaLoop can also cache intermediate data (reducer input/output cache) generated by the first iteration., iMapReduce..
2.3 Collective Communications in MPI

3. Collective communications primitives for iterative MapReduce
3.1 Motivation

[image: image2]
We introduce novel collective communications primitives, inspired by the MPI collective communications primitives, to the iterative MapReduce programming model. These primitives support higher-level communication patterns that occur frequently in the applications, while also substituting certain steps of the computation as well. These primitive operations make the life easier for the users by giving them the option to use such high level constructs rather than implementing these functionalities for each application. These primitives also have the capability to make the applications more efficient by overlapping communication with computation and skipping or overlapping certain steps of the typical computational flow. Another advantage is the ability of the frameworks to optimize these operations transparently to the users, even giving the possibility to provide different optimizations (poly-algorithm) for different use cases and environments. We propose four primitive implementations, MergeBroadcast, AllGather, OpReduce and Scatter.
3.1.1 Performance

Framework can optimize the operations transparently to the users.

Frameworks can follow a Multi-algorithm approach providing optimized implementations for different platforms. 
Having patterns that are more natural avoids unnecessary steps in traditional MR and iterative MR.
3.1.2 Ease of use

More natural for many computations.

Users do not have to manually implement these logic  (eg: Reduce and Merge tasks)

Preserves the Map & Reduce API’s
3.1.3 Programming model

Iterative MapReduce collective communication primitives can be specified as an outside configuration option without changing the programming model of the MapReduce. 

3.1.4 Scheduling with iterative primitives

Task for the new iteration will be scheduled through the iterative primitives.
3.2 MergeBroadcast Primitive
Twister has MapReduce-Combine.. 

MapReduceMerge.. Haloop performs a fixed point evaluation.. IMaPReduce… Twister4Azure, MapReduceMerge.

3.2.1 Model

All the above models can be summarized as Map->Reduce->Merge. In here we define the Merge step as the Single task that runs after all the Reduce tasks are done..
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In some frameworks, the Merge steps runs on the driver.

Twister4Azure programming model extends the map and reduce functions of traditional MapReduce to include the broadcast data (delta values) as an input parameter. Twister4Azure provides the broadcast data to the Map and Reduce tasks as a list of key-value pairs. 

Reduce(<key>, list_of <value>, list_of <key,value>)

Map(<key>, <value>, list_of <key,value>)

Reduce(<key>, list_of <value>, list_of <key,value>)

Merge(list_of <key,list_of<value>>,list_of <key,value>)

Twister4Azure programming model introduces Merge as a new step to the MapReduce programming model to support iterative applications; it executes after the Reduce step. Merge Task receives all the Reduce outputs and the broadcast data for the current iteration as the inputs.  There can only be one merge task for a MapReduce job. With merge, the overall flow of the iterative MapReduce computation flow would look as follows.
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The Merge step serves as the “loop-test” that evaluates the loops condition in the Twister4Azure programming model. Users can add a new iteration, finish the job or schedule a new MapReduce job from the Merge task. These decisions can be made based on the number of iterations or on comparisons of the results from the previous iteration and the current iteration, such as the k-value difference between iterations for KMeansClustering.  Users can use the results of the current iteration and the broadcast data to make these decisions. It is possible to specify the output of merge task as the broadcast data of the next iteration.

Merge(list_of <key,list_of<value>>,list_of <key,value>)
3.2.2 Analysis
KMeans..

3.3 AllGather Primitive
There are many data intensive iterative applications where the “reduce” step is a simple aggregation operation that simply assembles the outputs of the Map Tasks together in order, followed by “merge” and broadcast steps that broadcast the assembled output to all the workers. We developed an AllGather iterative MapReduce primitive similar to the MPI AllGather12[]
 communication primitive to support the above mentioned scenario.   AllGather primitive broadcasts the Map Task outputs to all the computational nodes, and assembles them together in the recipient nodes and schedules the next iteration or the application. Usage of the AllGather primitive in an iterative MapReduce computation eliminates the need for reduce, merge and the broadcasting steps in that particular computation. In addition to improving the performance, this primitive also improves the usability of the system as it eliminates the overhead of implementing reduce and/or merge functions. 
3.3.1 Model (diagram)
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The reduce step of MDS BCCalc computation is a simple aggregation operation, where the reduction simply assembles the outputs of the Map Tasks together in order. We developed an AllGather iterative MapReduce primitive similar to the MPI AllGather[13] communication primitive. AllGather primitive broadcasts the Map Task outputs to all the computational nodes, and assembles them together in the recipient nodes and schedules the next iteration or the application. Usage of the AllGather primitive in MDS BCCalc computation eliminates the need for reduce, merge and the broadcasting steps in that particular computatation. In addition to improving the performance, this primitive also improves the usability of the system as it eliminates the overhead of implementing reduce and/or merge functions. Communication primitives also allow us to optimize the given operation transparently to the users. Currently the AllGather primitive is implemented in Twister4Azure using the Windows Communication Foundation (WCF) based Azure TCP inter-role communication mechanism of Azure platform, while using the Azure table storage as a persistent backup. Last row of Table 2 shows a result of this improvement and the bottom row of Figure 12 presents an execution trace of a computation that utilized the AllGather primitive.
Description  

3.3.2 Analysis (communication and performance)

Cost of Gather without All gather,

Time to transfer 1 unit of data – D

Latency of data transfer – L

Time = Map to reduce + Reduce Execution + Reduce to Merge + Merge Execution + Broadcast

m(L+D)/m  + rTr/r + r(L+mD/r)/r + g + n(L+mD)/n

(L+D) + Tr + L+(mD/r) + g + L+mD
We assume there is no receiving bottlenecks. Single Map wave. 
m’ – the bottleneck of the num reduce tasks

With all gather

(L+D) 

3.4 OpReduce

Many data intensive iterative applications use the sum of outputs of the map tasks as the loop condition. In these cases, the Reduce tasks simply aggregates the outputs of the Map tasks and the Merge task sum the outputs of the Reduce tasks. Then the Merge Task will evaluate the loop condition comparing the summation result to a pre-calculated value. We propose Twister4Azure-SumReduce primitive that will aggregate the results of the Map Tasks, use the result to decide the loop condition broadcast the results and schedule the next iteration if needed. This primitive will reduce the work user has to perform in implementing Reduce and Merge tasks. This also removes the overhead of Reduce and Merge tasks from the computations and allows the framework to perform the summation and the loop conditional evaluation in the network.

[image: image7]
Generalized reduce with operator passed? (eg: multiply).. only for commutative or associative?
Eg: MDS stresscalc, PageRank (with out-links matrix)
Hierarchical summing... First in the local node.. final in the destination nodes.. (intermediate steps based on the size of cluster). The iteration check happens in the destination nodes and can be specified as a custom function or as a maximum number of iterations.
Output is constant size.. aggregation Tree for larger computations...
avoid merge-sort-reduce task -merge task steps.
· How to handle duplicate tasks... 
· Keep an array of map indexes?
3.4.1 ReduceSum for multiple values? and then broadcast? (LDA - gibs sampling.. PageRank...)

multiple operation types for the reduction..
· Just one.. (eg: descendent query..)
Sum (eg: page rank inverted..)
min, max, count, sum, avg, var
· http://dcg.ethz.ch/publications/dissthomasl09.pdf (page 21)
3.4.2 Analysis (communication and performance)

3.5 Scatter
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Eg:PageRank (with out-links matrix)
Scheduling from collective communications patterns…
3.5.1 Analysis (communication and performance)

4. Implementation and Performance

We implemented these primitives in Twister4Azure cloud iterative MapReduce framework.
Scheudling. Fault tolerance
MergeBroadcast

Currently the AllGather primitive is implemented in Twister4Azure using the Windows Communication Foundation (WCF) based Azure TCP inter-role communication mechanism of Azure platform, while using the Azure table storage as a persistent backup.
4.1 OpReduce Performance
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[image: image12]
OpReduce Benchmark application. 10 iterations on 128, 256 and 512 cores.  Each Map tasks of this application takes 5 seconds to execute. 
5. Conclusion and future works
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