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Summary

Support Vector Machines (SVM) is a widely used machine learning algorithm. With 
the increasing amount of research data nowadays, understanding how to do efficient 
training is more important than ever. This paper discusses the performance opti-
mizations and benchmarks related to providing high-performance support for SVM 
training. In this research, we have focused on a highly scalable gradient descent-based 
approach to implementing the core SVM algorithm. In providing a scalable solution, 
we have designed optimized high-performance computing and dataflow-oriented 
SVM models. A high-performance computing approach means the algorithm is 
implemented with the bulk synchronous parallel (BSP) model. In addition, we anal-
ysed the language level optimizations and math kernel optimizations on a prominent 
HPC modelling programming language (C++) and dataflow m odelling program-
ming language (Java). In the experiments we compared the performance of classic 
HPC models, classic dataflow models, and hybrid models designed on classic HPC 
and dataflow programming models. Our research illustrates a scientific approach in 
designing the SVM algorithm at scale in classic HPC, dataflow and hybrid systems.
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1 INTRODUCTION

Support vector machines (SVM) are one of the most popular classification algorithms in the machine learning domain. Soft-
ware and hardware optimizations become non-trivial components in designing efficient machine learning systems. In designing
such efficient systems, one approach is to understand ways of designing such scalable systems. With the increase of data, the
dataflow model has become one of the most prominent ways to write scalable applications. Prior to this, high performance scal-
able solutions were widely available within the high performance computing community. Harnessing the advantages of high
performance systems can lead to better performance overall. Additionally, dataflow systems designed in the big data world are
strong in writing data transformation and processing workflows intuitively. Understanding high performance and dataflow sys-
tems and determining how improvements can be made by unifying both are vital factors in scaling a machine learning algorithm
like SVM.
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Along with high-performance computing and dataflow, there have been efforts made towards unifying the capabilities of HPC
and dataflow systems. In high performance application development, message passing interface (MPI1) is a prominent way to
write scalable high performance applications. Many standards in the dataflow model derive from the Apache software founda-
tion. Hadoop2, an extension to the original work on map-reduce3 architecture, is one of the earliest examples of developing
advanced dataflow systems. Extending from Hadoop are dataflow community-produced examples like Apache Spark4, Apache
Flink5, Apache Storm6, Twitter Heron7 and Google Dataflow8. HPC community-produced versions of MPI standards include
OpenMPI9, MPICH10 and MVAPICH11. Taking all this into account, our research has aimed towards designing a unified data
analytics platform. By harnessing the positives of both systems, Twister2:Net12 introduces a unified communication collective
API, along with a unified data analytics platform in Twister2 big data toolkit13 and Twister2 TSet14 APIs.

The main objective of our research is understanding and analyzing ways to design a scalable SVM algorithm in HPC, dataflow
and hybrid systems. With multiple software development approaches available in various research communities, investigating
and providing better solutions to scale SVM is a vital goal to enhance the scientific application development process. In
analysing this issue, there are a few areas that must be addressed before designing a system to support the SVM algorithm. This
includes the identification of issues in training the algorithm. Mini-batch training is one of the primary methods used in efficient
training for modern-day machine learning research. The classic SVM algorithm defined with a Lagrangian equation system is
a difficult algorithm to scale. This classical approach couples with the sequential minimal optimization (SMO). This algorithm
contains a classical approach of searching for suitable Lagrangian coefficients which can formulate the weight vector. But
with SMO this search always involves with two such coefficients. This search is an exhaustive search which couples with very
high accuracy. But as far as performance is considered it becomes a slow approach. But with the stochastic gradient descent
(SGD) or gradient descent becomes a far suitable approach due to two main reasons. SGD is a highly scalable algorithm and
also with some optimizations to learning rate it can be made as accurate as the SMO solution. Adding to why SGD becomes
a scalable algorithm, it’s parameter searching is based on a less constrained manner unlike SMO-based approach. In addition,
programming wise the number of program units which are highly synchronous are much lesser than that of SMO. Due to
the nature of the optimization problem, in order to scale well a stochastic gradient descent (SGD)-oriented method has been
adopted by many fields of research to improve the performance of SVM. The usage of SGD-based algorithm provides to create
a highly scalable SVM algorithm. So our main focus is to design a highly scalable SVM algorithm and we used the SGD-based
approach to continue with our research. With an SGD-based method, one of the most sensitive hyper-parameters in training is
the batch size. The batch size determines the number of elements considered when calculating the gradient or weight vector
update. Furthermore, the batch size is a very sensitive number, affecting the accuracy and execution time of the algorithm. In
a parallel algorithm, the batch size becomes even more sensitive, as the model synchronization or global gradient calculation
involves the communication overhead. For various use cases, it becomes necessary to design appropriate programming models
to support these requirements. Our earlier research15 thoroughly analysed how the batch size can influence the performance and
accuracy of the application. For this paper, our main purpose is to optimize the existing model and scale the training process on
a much higher scale in a cluster. We also investigate multiple application development disciplines to improve the analysis. To
achieve the best performance, we also consider the usage of math kernels, paying special attention to BLAS-level optimizations
and language-level optimizations. In application development for machine learning, another important consideration is the
nature of application development based on programming languages. We analyse how C++ and Java programming languages
can be used to design optimized applications. Performance improvement under optimized library usage and default compiler
optimization are also discussed in this paper.

The SVM algorithm is based on distributed batch data processing. For batch processing, the bulk synchronous parallel model
(BSP) has been used with great success for decades. BSP models are widely designed with various MPI implementations. This
application development process is mostly focused on program execution design using threads, MPI processes and MPI collec-
tives. In referring to the dataflow model, the programming logic is written by just considering the flow of the data in different
segments of the data pipeline. This programming logic is bounded towards data loading, data partition, data transformation and
data analytics. When it is compared to conventional HPC implementations, programming logic is much simpler in the dataflow
model. When considering both HPC and dataflow models, understanding the overheads involved with big data processing
allows one to design efficient and effective systems. Most of these BSP models are associated with C++ or Fortran program-
ming interfaces. But there are some extensions developed to support Java virtual machine (JVM)-oriented languages as well. In
fashioning scalable application development strategies, focusing on efficient programmable interfaces or languages is essential.
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Modern-day big data systems deal mainly with JVM-based programming languages due to the efficient programmable interface
provided with these languages. In addition, dataflow modelling frameworks offer an efficient programming interface with rich
APIs. Understanding the strengths of both systems can lead to efficient machine learning algorithms.

The best approach in designing scalable machine learning algorithms is to make use of the advantages of both HPC and dataflow
models. Twister2 is one such framework created by unifying strong attributes from each model. In Twister2, there are two
methods of writing programs. The first uses the dataflow programming model and writes conventional dataflow programs like
with similar state-of-the-art dataflow systems. The other methodology is to use a BSP-oriented programming model supported
with an MPI backend. Both have a common API abstraction to handle data and design tasks. To enable streamlined program-
ming in Twister2, data management APIs, task management APIs, communication APIs and task scheduling APIs are included,
providing a unified API collection to handle both dataflow and BSP applications with or without MPI capability. The objective
of our research is to undergo a deeper analysis of scaling SVM algorithms in a broader application development paradigm.

This paper will focus on analysing major aspects in designing efficient applications for multi-discipline programming develop-
ment associated with HPC and dataflow communities. The paper’s layout is organized as follows: Section 2 will analyse work
related to this field. Section 3 reveals the methodology adopted for the research. This includes a discussion on both HPC and
dataflow model-oriented SVM algorithm design. In Section 4, the experiment configurations and details are explained. Section
5 relates the results obtained in the experiments, and in Section 6, the conclusions of our research will be discussed.

2 RELATEDWORK

SVM is one of the lightweight algorithms in the machine learning domain for supervised learning-based classification prob-
lems. In the machine learning domain, SVM by Cortes and Vapnik16 can be considered the groundwork for developing a
far successful classification algorithm. Libsvm17 was initial work done on developing a complete software library for SVM.
LibSVM-based SVM library collection includes numerous programming languages and dataflow frameworks. It also supports
multiple kernels and optimization algorithms. One of the most important works done on optimizing the sequential SVM
algorithm is the sequential minimal optimization-based SVM by Platt18, as it is a prominent sequential optimization for SVM.
A simplified version of SMO19 has also been widely used to develop a lightweight version of this algorithm, but low-accuracy
is a notable drawback in such implementations. Through improving performance by means of sequential optimization, DC-
SVM20, a divide and conquer-based sequential model, was developed with K-Means clustering. Sequential level optimization
can provide performance improvement to a certain extent. When the data size increases, a distributed version of this algorithm
is necessary to provide the required performance. PSVM21 22 is one of the most prominent examples done on a parallel version
of SVM algorithm. However with PSVM-based implementation, the traditional Lagrangian multiplier-based optimization is
not used. Instead a matrix-based decomposition method for factorization can find the solution to the optimization problem.
Furthermore, SMO-based parallel applications have also been developed by Keerthi et al23.

The stochastic gradient descent-based approach for SVM optimization is heavily discussed in the work of Shai et al24 where
they use an adaptive learning rate to provide an efficient training model. For distributed SVM with an SGD-based approach,
P-PackSVM25 and parallel stochastic gradient descent26 can be considered prominent research done to influence optimized
distributed models. In addition, fast feature extraction-based SVMmodels have also been developed to provide efficient training
to SVM algorithms27. In a distributed application, the main goal is to make sure the communication overhead caused by model
synchronization is less than the performance gained by the computation workload distribution. Distributed application devel-
opment addresses multiple ways to solve this problem. MPI9 model is the prominent solution when adopting high-performance
computing. In application development with MPI, collective communications like reduce, allreduce, gather, allgather, broadcast
and scatter can be used to synchronize models in a distributed environment. MPI programming model supports distributed data
and does a process-level performance improvement. It is vital to improving performance within a process. In order to obtain a
performance boost within a process, BLAS28 29 30 31 32 level operators are required to perform vector-based calculations in an
efficient manner. BLAS operations have been used in previous research for improving SMO-based SVM, as well as33. On the
other hand, it is very important to see how compiler level optimization provides performance improvement.
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Referring to language level optimizations, Java-related JIT(Just-In-Time)34 is a runtime performance-improving compiler.
Similarly, compile-time optimization is used in C++ (in some implementations it is recognized using -O3, -O2 and -Ofast level
optimization35). Dataflow frameworks like Apache Spark4, Apache Flink5, Google Dataflow8, Apache Storm6, Storm @Twit-
ter36, and Heron7 have dataflow-based solutions to solve big data-related problems in both streaming and batch mode datasets.
Each of these frameworks sports a well-defined data pipeline for application users to develop big data applications on distributed
environments. Twister237,13 is a big data toolkit designed to provide a variety of functionalities to both HPC and dataflow
application developers. Twister2: Net12 is an optimized communication library that contains an MPI-like communication style
with TCP-based communication. Application development abstractions are important for creating applications with efficiency.
TSet14 API in Twister2 is another big data programming abstraction geared towards fashioning optimized applications similar
to Spark RDD format.

3 METHODOLOGY

The current section discusses the methodologies needed to scale SVM in HPC and dataflow systems. Here we consider these
methodologies under two sections. HPC-stack based implementations and related implementation improvements. The next
section focuses on state of the tools in the big-data stack. HPC-related application development and optimization deal with
the language-level optimizations on Java and C++, BLAS routine-based optimizations and single-node multi-core parallel pro-
grams. The first step for implementation is understanding the anatomy of the SVM algorithm (3.1). The methodology adopted
in this research is divided into two main components. The first is HPC model-based performance analysis (3.2) with and with-
out BLAS routines3.2.1. The second conducts experiments on distributed dataflow models on the big data stack (3.3). In the
HPC model, we discuss how MPI-based parallel processing improves performance. We observe how process performance can
be improved with BLAS operations. Following this, we scale the application from single-node multi-core to multiple-node
multi-core. For the distributed dataflow model, we consider an ensemble model of the distributed algorithm using the same core
algorithm but only focusing on model design and scale-up. Spark-RDD, Twister2-Task and Twister2-TSet frameworks are used
to develop the application. We also fashion the same ensemble model with MPI designed with OpenMPI 3.1.2 and compare
HPC vs. dataflow model performance on a distributed scale.

3.1 Anatomy of the Algorithm
The core optimizer iterates through the data points and does the optimization to calculate the weights. The distributed algorithm
shows how iterative training is done for a considered amount of iterations (or iterations until convergence).

S = {xi, yi}
where i = [1, 2, 3, ..., n], xi ∈ Rd , yi ∈ [+1,−1] (1)

� ∈ (0, 1) (2)
g(w; (x, y)) = max(0, 1 − y⟨w|x⟩) (3)

J t = min
w∈Rd

1
2
w2 + C

∑

x,y∈S
g(w; (x, y)) (4)

We implemented the SVM using a SGD-based optimization. The classification algorithm considered in this research is focused
on binary classification. In Equation (1), the sample space S is defined with x with feature vector and y with the label. Each
data point xi contains a set of d features with an associated label being +1 or −1. In Equation (2), the learning rate used in the
stochastic gradient descent is denoted. The learning rate is a floating point value which in generally chosen between 0 < � < 1.
Equation (3) denotes the conditional statement which selects the gradient update function in 1. In equation 4, the constant C
is a hyper-parameter in the objective function. Additionally, this objective function generally has a regularization part and a
hinge loss part. We omitted the hinge loss section as in this paper we are mostly focused on the implementation performance
improvement rather than convergence. Also in 2, we use the term K to refer the number of machines/processes involved in the
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FIGURE 1 SGD SVM Algorithm FIGURE 2 PSGD SVM Algorithm

distributed setting. Here we use the allreduce operator to synchronize the weights across the K machines using the sum operator
in MPI. Here we divide the weight vector w by K to get the average of the summation. Also b in the distributed algorithm refers
to the batch size. If the stochastic approach is used b = 1 and in batch gradient descent approach b > 1.

3.2 HPC Model Implementation
The framework we chose in designing an HPC model is the MPI standard. We selected the MPI implementation OpenMPI
3.1.2 as the backend in writing BSP models. The first step was developing a methodology to test the performance of Java
and C++ applications made to solve the SVM optimization problem. An important point to note is OpenMPI supports Java-
enabled compilation to provide a Java programming abstraction on top of the core C++OpenMPI implementation. The compiler-
level optimization-based performance tuning is the first aspect that is evaluated on MPI-based C++ and Java applications.
Along with this, we also research how each language is sensitive to providing performance boost with BLAS on variable data
sizes and feature sizes. With the conclusions obtained from researching the parallel stochastic gradient descent with model
synchronization15, the algorithm in Figure 2 was designed using the core optimizer algorithm in Figure 1.

3.2.1 BLAS Optimization
When considering the core algorithm 1, to optimize the dot products and vector scalar multiplications, the BLAS level routines
can be applied. For this research we selected the OpenBlas implementation on Red Hat Enterprise Linux Server 7.6 (Maipo)
operating system. The mathematical equation and corresponding BLAS operation mappings for implementation of BLAS level
operations are shown in Equations (5), (6), (7) and (8).

g(w; (x, y)) ⇐⇒ max(0, 1 − y⟨w|x⟩) ⇐⇒ max(0, 1 − ddot(d, x, incx, w, incy)); (5)

⟨Xj , yi⟩ ⇐⇒ daxpy(d, yi, Xj , incx, xiyi, incy); (6)

w = w − �CXiyi ⇐⇒ daxpy(d, �C, xiyi, incx, w, incy) (7)

w = w − �w ⇐⇒ daxpy(d, �,w, incx, w, incy); (8)
In equation 5, the ddot signature refers to a BLAS operation which performs dot product of two vectors38. In equations 6, 7

and 8 refers to daxpy BLAS operation which performs constant times a vector plus a vector39. Additionally, the incx and incy
refers to the storage space between the elements in the x and y arguments of the daxpy notation. Where x and y refers to two
vectors of similar length.

3.3 Dataflow Model Implementation
Considering the dataflow model, specifically for batch data processing, our analysis has been focused on using Apache Spark
and Twister212,13,14. Apache Spark is one of the most prominent tools for dataflow frameworks used by many data scientists
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TABLE 1 Datasets

DataSet Training Data (80%) Testing Data (80%) Sparsity Features
Ijcnn1 39992 9998 40.91 22
Webspam 280000 70000 99.9 254
Epsilon 320000 80000 44.9 2000

and big data application developers4,40,41,42,43. In big data application stack, the problem we are trying to optimize comes under
the iterative batch applications. To do iterative computations, Spark provides a data level abstraction called resilient distributed
data (RDD). For the purpose of improving dataflow models, the Digital Science Center in Indiana University Bloomington has
produced a framework called Twister2. This big data toolkit supports both HPC and big data stack application development on a
task-level API and a TSet-level API. The task-level API in Twister2 refers to a higher level abstraction on top of communication
level API, while TSet is a data-level abstraction on top of task API which is similar to the RDD API in Spark. TSet14 is a
programming abstraction which allows the users to create data transformations in a chained manner. This involves the use of
map, filter, for each, and many other custom transformations, which facilitates developing applications in a much easier way.
Apache Spark RDD is an equivalent data API to write dataflow programs. Here we have developed the SVM algorithm in an
ensemble way in MPI using Java, Spark RDD, Twister2 Task API and Twister2 TSet API. Referring to the ensemble method,
here what we do is initially models are being trained in parallel processes without doing synchronization till the end of all epochs
(or convergence of the algorithm). Then we call an allreduce to take the sum of the weights and calculate a mean from that
vector summation.

4 EXPERIMENTS

The experiments in this research were conducted in the Victor and Juliet cluster group in the FutureSystems cluster at Indiana
University Bloomington. For the single node experiments, we used a maximum of 32 processes in a node, and for distributed
mode experiments we used an equal number of processes per machine over a group of 16 nodes. For instance, when the expected
parallelism is 32, each node will run two processes (configured using OpenMPI). Victor cluster nodes are comprised of Intel(R)
Xeon(R) Platinum 8160 CPU @ 2.10GHz configuration. Juliet cluster nodes include Intel(R) Xeon(R) CPU E5-2670 v3 @
2.30GHz configuration. For the single node experiments, we considered a range of parallelisms from 2 to 32 with powers of 2.
In distributed experiments, parallelism from 2 to 256 was used among 16 nodes such that for every parallelism each machine
gets an equal number of processes. For the parallelisms in the range 2 to 8, a single process was scheduled in one machine. For
example, 4 parallelisms were designed such that they were scheduled in 4 machines. For parallelisms in the range 16 to 256,
each machine gets an equal number of processes among all 16 machines. For the C++/Java based experiments on single node
and distributed modes we used the Juliet cluster. For C++ oriented experiments we used the g++ (GCC) 4.8.5 20150623 (Red
Hat 4.8.5-39) compiler version and we used the following Java configuration java version "1.8.0_221", Java(TM) SE Runtime
Environment (build 1.8.0_221-b11),Java HotSpot(TM) 64-Bit Server VM (build 25.221-b11, mixed mode). For the big data
stack-based applications, we considered the processor affinity and configured Twister2 and Spark in such a way that a single
process is run per core in the distributed mode experiments. The affinity here refers to the idea that when we schedule a job with
M processes among K nodes, we make sure equal number of cores are used in each machine. For these experiments we used the
Victor cluster.

4.1 Dataset Configuration
For the following experiments, we used 3 datasets considering the features in terms of data point, sparsity and data size as shown
in Table 1. This table contains information on training data size, testing data size, the sparsity of the dataset and number of
features per data point. The reasoning behind selecting these three datasets is due to the nature of variable feature size with 10×
scale-up, variable sparsity and variable data size. The feature size variation allows us to conduct experiments including a clear
communication overhead in scaling the applications.
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4.2 HPC Benchmark Configurations
HPC benchmarks were designed for both Java and C++ languages with the OpenMPI backend. These implementations employed
the compiler level optimizations. C++ uses the 03 level optimization while Java uses compiler level optimization along with JIT
compiler optimization at runtime. The purpose of this experiment is to see how the same algorithm developed for each language
performs with the scaling done within a node or single machine. Here we carried out two sets of experiments. The first uses
compiler optimization from each language. In the second, each language uses the BLAS routines-based optimization for vector
vs. vector and vector vs. scalar multiplications. In these settings, we analysed how the implementations behave for three datasets
with varying sparsity, features and size.

4.2.1 BLAS Configurations
For BLAS optimizations, we used OpenBLAS as the BLAS standard for our experiments. C++ applications have complied
with the support of this version directly. To provide support to Java applications, we use netlib-java library which supports
BLAS-level operations on a BLAS-installed system.

4.3 Dataflow Benchmark Configurations
For the experiments in Java, Java(TM) SE Runtime Environment (build 1.8.0_101-b13) was used, and for C++ OpenMPI 3.1.2
was used for Java and C++ comparisons. In big data stack related benchmarks, for Twister2 experiments, OpenMPI 3.1.2 was
used as it is a required dependency for Twister2. For Apache Spark, 2.4.0 version was used while OpenMPI 3.1.2 was assigned
for Java-based MPI applications.

5 RESULTS

This section details the results from our experiments conducted in Section 4. We discuss the results obtained from dataflow
benchmarks and compare them with the corresponding HPC benchmarks.

5.1 HPC Benchmarks
We determine the performance of HPC-based implementations under the following categories. First we analyse the single node
experiments with and without BLAS routines for Java and C++ implementations. Then we expand the experiments to multi-
node experiments with and without BLAS routines for Java and C++ implementations. Finally we discuss the reasoning behind
the observations made with these experiments.

5.1.1 Single Node Experiments
Figure 3 and Figure 4 show the experiments conducted on Java and C++ implementations. The plots contain log scale train-
ing time to showcase the training time loss with scale-up for all three datasets. These experiments explore implementations
with and without BLAS routines. The suffix with BLAS in the legend shows the experiments with BLAS routines, while NO
BLAS shows the experiments without BLAS routines. From the observations in Figure 3, it is clear that the scaling of the
SVM algorithm is much better with the usage of BLAS routines for C++ implementation. But even without BLAS routines
the application scales well. For the Epsilon dataset with the highest amount of dataset for training and the highest number of
features per data point, the scale-up can be observed. The speedup obtained from 32× parallelism vs 2× parallelism is 11 when
it is compared to the ideal speedup of 16. This was recorded with BLAS routines and MPI-based parallelism obtained with
allreduce collective communication.

In referring to the Java-based implementation, the observations in 4 show that the BLAS routines do better only with Epsilon
dataset, performing on average with Webspam dataset and relatively slow on Ijcnn1 dataset. In order to understand this perfor-
mance drop with Java-based BLAS routines, we conducted a micro-benchmark on variable feature size on sequential training
time of the SVM algorithm. Figure 9 shows the average training time on the sequential version of the SVM implementation
on fixed data size and variable feature size. This shows that the BLAS routine support for Java using Netlib provides better
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FIGURE 3 C++ Single Node Experiments FIGURE 4 Java Single Node Experiments

performance on higher feature sizes.

Java cannot directly obtain the BLAS optimization from the BLAS routines. The reason is these optimization libraries are writ-
ten in C++/C by accessing native operating system level functionality, while Java runs on a virtual machine called JVM (Java
Virtual Machine). To access the library functionality written in C++/C, Java needs to use an interface called JNI (Java Native
Interface) which provides the ability to call a native function or library or to be called by such. For this to happen, the manner in
which JNI works has to be understood. JNI native functions are implemented in C++/C medium. When JVM invokes a native
function, a JNIEnv pointer is passed along with a jobject pointer and any Java arguments declared by the corresponding Java
method. The env pointer holds interface to JVM. In these function calls going from either side, JNI functions are converting
native arrays to and from Java arrays when the vector vs. vector or scalar vs. vector computations are called in BLAS-level
operations. To gain a performance improvement, the data conversion time and the computation time all together must be less
than the compiler optimized code in Java. For smaller datasets the conversion time with computation time is smaller as the
array size involved in dataset Ijcnn1 is 22 and in the dataset Webspam it is 254. But in dataset epsilon, the array size is 2000
and the computation is 100 to 10 times higher than earlier scenarios. So the computation advantage obtained with BLAS-level
operations provides better performance. From this observation, we decided to carry out the distributed experiments with BLAS
support in both Java and C++ applications.

5.1.2 Multi-Node Experiments
With the results of the single node experiments to go by, we focused on the scalability of the multi-node experiments. Here
we used two categories of experiments, one with BLAS optimizations and the other with the compiler optimizations. Figure 7
shows the performance comparisons obtained in the BLAS routine-enabled multi-node experiments. Here the C++ implemen-
tation shows a slightly better performance than Java implementation. Figure 8 shows the performance comparisons obtained
with compiler level optimizations in the multi-node experiments. The observation from this result set is that Java implementa-
tion outperforms C++. With the improvement of JIT compiler and many other optimizations in Java, the compiler level analysis
is a possible result. But this result set does not harness the maximum capability of both languages under the vectorization and
optimized math kernel usage. So understanding the results with the best optimization possible guarantees the highest scalability
of distributed SVM algorithm. Additionally, the most important observation is that our SVM implementation scales well up to
256 parallelisms for Webspam and Epsilon datasets. Ijcnn1 scales only up to 128 parallelisms as it has less data in the training
dataset. This shows a similar scale-up compared to single node experiments.

To better understand the results in-depth, we conducted two other experiments for both single-node and multi-node experi-
ments. The purpose was to observe the scalability of the algorithm with and without inter-node communication overhead. We
used this approach because it can provide a better understanding of the results. Figure 5 and 6 show the performance evaluation
with Java and C++ with BLAS optimizations in single-node and multi-node experiments. Here the 5 refers to the C++ and Java
based single node experiments for variable parallelisms and it records the performance improvement of blas-based approach
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FIGURE 5 Performance Improvement on Single Node Exper-
iments with Epsilon Dataset

FIGURE 6 Performance Improvement on Distributed Node
Experiments with Epsilon Dataset

FIGURE 7 Java and C++ Distributed Node Experiments with
BLAS

FIGURE 8 Java vs. C++ Compiler Level Optimization-Based
Performance

over non-blas-based approach. The 6 refers to the corresponding distributed node experiments. The y-axis in both figures shows
the performance improvement factor (PIF). PIF was evaluated as shown in (9).

PIF =
Training Time with BLAS

Training Time without BLAS
(9)

We selected this metric because BLAS always provided a performance boost for all implementations in Java and C++. The
results from these experiments show that the BLAS optimization on C++ offered a higher speed-up on the specific hardware. As
explained in the single node experiments in Section 5.1.1, the overheads associated with obtaining BLAS performance with Java
lead to a performance lag when compared to the pure native implementation in C++. The PIF factor on C++ is approximately
7.0, while it is approximately 1.3 for Java. In analyzing this further, a clear comparison can be seen with the Epsilon dataset. It has
the highest number of features and the highest number of data for training. This includes a larger communication overhead and
a higher number of iterative computations. The main reason for Java implementation low performance from BLAS operations is
that the BLAS optimization improvement is diluted by the data conversion to either side from native-to-Java and Java-to-native
due to the iterative nature of the application over a large dataset. This observation is further supported by the observations we
made in Figure 9. With the increasing array size of feature size per data point, Java can obtain better performance. We observed
this in-depth in the single-node experiment discussion5.1.1. For obtaining the highest performance, as C++ and associated
kernels work well with BLAS, the data pre-processing logic can be handled in the Java end and high-performance code can be
implemented by calling kernels designed with C++ implementations. So in high iterative models with higher communication
overhead, the Java-based applications can be improved by optimizing JNI function calls with the usage of C++ kernels.

5.2 Dataflow Benchmarks
In expanding the benchmarks towards dataflow-oriented SVM implementation, we formulate a set of experiments in comparing
HPC implementations along with the state-of-the-art dataflow models. For this experiment set, we include Spark-RDD-oriented
implementation, Twister2-task implementation, Twister2-TSet implementation and corresponding HPC implementation with
OpenMPI backend. For the big data domain and HPC domain performance comparison with distributed SGD-based SVM
algorithms, we used parallelism 16 to 256 among 16 nodes in Juliet cluster such that each machine gets an equal number of
processes. For these experiments, we used Epsilon dataset. Figure 10 refers to the performance comparison for MPI-Java,
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FIGURE 9 Java BLAS Performance Against Vector Size
Variation

FIGURE 10 Big Data Stack vs HPC Benchmark on Dis-
tributed Ensemble SVM

Spark-RDD, Twister2-Task and Twister2-TSet. It is clear from this experiment that Twister2 APIs provide similar performance
concerning MPI implementation while still being faster than the Spark RDD-based application. In considering the anatomy
of MPI-Java application, MPI Allreduce communication performs the model synchronization across the processes. Twister2
also supports the allreduce-based model synchronization with a binary tree-based optimized communication. Spark-based
application is based on the worker-to-driver and driver-to-worker-based communication model, which is another way of doing
the model synchronization in iterative batch applications.

The main difference between MPI and Twister2 implementations vs. Spark implementation is the way the models are synchro-
nized. While MPI and Twister2 perform a tree-based reduce, Spark synchronizes the modelsfrom each task back to the drive.
For an iterative application, this model is costly. That is the main reason for the performance boost obtained by Twister2 and
MPI-based implementations over Spark. Clarifying Twister2 performance further, the existing literature on Twister2 commu-
nication model (Twister2:Net) shows that it performs better when compared to classic dataflow models. Furthermore, it ranks
closely in terms of performance when compared to the state-of-the-art BSP models in the HPC domain. With the usage of an
ensemble model, the noise in the experiments is slightly less than the iterative model-based experiments on HPC benchmarks
discussed in Section 5.1. We designed the scale-up experiments using up to 256 parallel processes (16 nodes with 16 cores each)
and 320,000 data samples. Here we didn’t use thread parallelism, only used the process level parallelism with MPI-processes.
The objective of the dataflow benchmark is to showcase the usage of optimized dataflow models to obtain better performance.
From the dataflow model benchmarks, it is clear that our Twister2 implementation can be very effective in designing iterative
and non-iterative workloads at scale with better performance compared to classic dataflow engines.

6 CONCLUSION

Our research primarily focused on two aspects in designing scalable SVM implementation. First, we investigated the high-
performance computing implementations on two popular programming languages used in academic and industrial research. Then
we investigated how state-of-the-art dataflow engines can be used to implement a scalable SVMmodel.We expanded our analysis
to compare both HPC and dataflowmodels on a scalable SVM implementation. Our experiments resulted in several conclusions.
Firstly, HPC-oriented application development on multiple programming languages like Java and C++ provide a variety of
advantages. With Java implementations, the main objective is to obtain better programmability. With C++ implementations, the
objective is to gain higher performance. In supporting this statement, we draw our conclusion as follows. Our observations from
without-BLAS optimizations in Java shows that with-BLAS, the performance is slightly low when the number of features per
data points is smaller. This fact is clear from the results gathered from Ijcnn1 (22 features) andWebspam (254 features) datasets.
But with the Epsilon (2000 features) the BLAS implementation outperforms without-BLAS optimized implementation. We
analyzed this furthermore and identified that with the increasing feature size BLAS-based Java implementation can outperform
just-compiler optimized Java implementation. The Epsilon dataset-based analysis done on C++ vs Java against BLAS and
without BLAS implementations shows a performance improvement factor between 1 and 2 for Java and 6 and 7 for C++. This
concludes that C++ always outperforms Java for better performance when a dataset has a higher number of features. With the
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increasing big data, most of the cases falls into the higher dimensional cases where C++ based implementations with BLAS can
be leveraged for better performance. But for datasets with smaller number of features can get better performance with Java than
C++ implementations. Depending on the programmability factor and the nature of the data distribution, our in-depth analysis
allows a user to select the most suitable developer configurations to get the better performance in using SGD-based SVM in
scientific and enterprise applications.
The conclusions drawn from the dataflow experiments demonstrate that optimized dataflow engines like Twister2 are promising
in obtaining better scaling with respect to classic dataflow engines like Apache Spark. The usage of high-performance com-
puting principles in the dataflow communication provides better performance in distributed training of the SVM algorithm at
scale. Finally, the optimized dataflow implementation in Twister2 performs well when compared to classic HPC implementa-
tion with MPI collective communication. Twister2 TSet includes an efficient dataflow API like Apache Spark RDD for easier
programming. It also offers better scale-up compared to a corresponding HPC implementation. The research conducted in this
paper shows the optimized design for the SVM algorithm at scale on high-performance computing and dataflow paradigm.
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